Simplifying Cyber Foraging for Mobile Devices

Rajesh Krishna Balant, Darren Gergle#, Mahadev Satyanarayanan+, and James Herbsleb*
T Singapore Management University, $Northwestern University, and «Carnegie Mellon University
rajesh@smu.edu.sg, dgergle @ northwestern.edu, {satya, jdh}@cs.cmu.edu

ABSTRACT

Cyber foraging is the transient and opportunistic use of compute
servers by mobile devices. The short market life of such devices
makes rapid modification of applications for remote execution an
important problem. We describe a solution that combines a “little
language” for cyber foraging with an adaptive runtime system. We
report results from a user study showing that even novice develop-
ers are able to successfully modify large, unfamiliar applications in
just a few hours. We also show that the quality of novice-modified
and expert-modified applications are comparable in most cases.

Categories and Subject Descriptors
D.2.13 [Reusable Software]: Domain Engineering

General Terms

Design, Human Factors, Experimentation

Keywords

Mobile Computing, Retargeting Applications, User Study, Soft-
ware Engineering, Rapid Prototyping, Programmer Productivity

1. INTRODUCTION

By a curious paradox, applications of highest value to a mobile
user are the hardest to support on lightweight and compact hard-
ware with long battery life. Natural language translation and speech
recognition, for example, would be helpful to a traveller in a for-
eign country. Optical character recognition of signs in a foreign
script could help a lost traveller find his way. A wearable computer
with an eyeglass display and a camera for face recognition could
serve as an augmented-reality system for assisting an Alzheimer’s
patient. Alas, the CPU, memory and energy demands of these ap-
plications far outstrip the capacity of devices that people are willing
to carry or wear for extended periods of time. On such hardware,
improving size, weight and battery life are higher priorities than
enhancing compute power.

This research was supported by the National Science Foundation (NSF)
under grant numbers ANI-0081396 and CCR-0205266, and two IBM
graduate fellowships. Any opinions, findings, conclusions or recommen-
dations expressed in this material are those of the authors and do not
necessarily reflect the views of the NSF, IBM, Carnegie Mellon University,
Northwestern University, or Singapore Management University.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

MobiSys’07, June 11-14, 2007, San Juan, Puerto Rico, USA.

Copyright 2007 ACM 978-1-59593-614-1/07/0006 ...$5.00.

272

One way to resolve this paradox is for a mobile device to perform
remote execution on a nearby compute server over a wireless link.
Cheap commodity machines widely dispersed for public use could
act as compute servers for mobile devices in their vicinity. We
refer to this transient and opportunistic use of resources as cyber
foraging. Although deployment of compute servers for public use
is not imminent, our work addresses future environments where
they may be as common as water fountains, lighting fixtures, chairs
or other public conveniences that we take for granted today. When
public infrastructure is unavailable, other options may exist. For
example, the body-worn computer of an engineer who is inspecting
the underside of a bridge may use a compute server in his truck
parked nearby.

Implementing cyber foraging involves three steps. First, a mo-
bile device must find a compute server. Second, it must establish
trust in that server. Third, it must partition the application between
local and remote execution. This decision may have to change with
fluctuations in operating conditions such as wireless bandwidth and
battery level.

We focus on the third problem in this paper, deferring to others
for solutions to the first two. Service discovery [36] is an active area
of research in pervasive computing, with solutions such as Jini [51],
UPnP [24], and Bluetooth proximity detection [21, 41]. Establish-
ing trust in hardware is a major goal of the security community,
especially the Trusted Computer Group [49]. The recent work on
trusted platform modules at IBM [39, 40], and Chen and Morris’
work on tamper-evident remote execution [9] are of particular rel-
evance here.

Our goal is to enable rapid modification of applications for cy-
ber foraging. This is important because of the short useful life of
mobile devices. Smart cell phones, wearable computers, PDAs and
other mobile devices are emerging at a dizzying rate that shows no
sign of slowing [12, 19, 26, 52]. With a typical market life of barely
a year, fast delivery of new hardware with a full suite of applica-
tions is critical.

‘We propose a solution based on the well-known approach of little
languages [4]. By developing abstractions that are well-matched to
the problem of cyber foraging, our solution makes possible a com-
pact static description of all the meaningful partitions of an applica-
tion. Complementing this static description is a powerful runtime
system that provides the dynamic components necessary for adap-
tation to fluctuating operating conditions. A stub-generation tool
creates application-specific interfaces to the runtime system.

We report results from a user study showing that our approach
can help novice developers modify large, unfamiliar applications in
just a few hours. These applications span speech, natural language,
and computer vision technologies and are relevant to domains such
as travel, health care, and engineering. We also report results show-
ing that the quality of novice-modified and expert-modified appli-
cations are comparable in most cases.

2. DESIGN CONSIDERATIONS
2.1 Language-Independent & Coarse-Grained

An obvious design strategy for cyber foraging would require all
applications to be written in a language that supports transparent re-
mote execution of procedures. Java would be an obvious choice for
this language, though other possibilities exist. The modified lan-
guage runtime system could monitor operating conditions, deter-
mine which procedures to execute remotely and which locally, and
re-visit this decision as conditions change. No application modi-
fications would be needed. This language-based, fine-grained ap-
proach to remote execution has been well explored, dating back to
the Emerald system [25] of the mid-1980s.

We rejected this strategy because of its restriction that all appli-
cations be written in a single language. An informal survey of ex-
isting applications from the domains mentioned in Section 1 reveals
no dominant language in which they are written. Instead, the pre-
ferred language depends on the existence of widely-used domain-
specific libraries and tools; these in turn depend on the evolution
history and prior art of the domain. For example, our validation
suite in Section 4 includes applications written in C, C++, Java,
Tcl/Tk and Ada.

Our decision to be language-independent had a number of con-
sequences. First, it eliminated the use of fully automated code-
analysis techniques since these tend to be language-specific. Sec-
ond, it implied that applications had to be manually modified to use
runtime support for cyber foraging. Third, it led to a coarse-grained
approach in which entire modules rather than individual procedures
are the unit of remote execution. Without language support, every
procedure would need to be manually examined to verify if remote
execution is feasible, and then modified to support it. By coars-
ening granularity, we lower complexity but give up on discovering
the theoretically optimal partitioning. This is consistent with our
emphasis on reducing programmer burden and software develop-
ment time, as long as we are able to produce an acceptable cyber
foraging solution.

2.2 Support for Runtime Adaptation

The fickle nature of resource availability in mobile computing
environments has been well documented by researchers such as
Forman et al. [15], Katz [27], and Satyanarayanan [42]. Dynamic
change of fidelity (application-specific output quality) can be effec-
tive in coping with fluctuating resource levels as shown by de Lara
etal [10], Flinn et al. [14], Fox et al [16], Narayanan et al. [31], and
Noble et al. [34].

These findings, including the causes of resource variation that
underlie them, also apply to a mobile device that uses cyber for-
aging. The device may be subject to additional resource variation
if its compute server is shared. Many factors affect this variation,
including the demands of other mobile devices, and the compute
server’s admission control and resource allocation policies.

Clearly, a good design for cyber foraging must support the con-
cept of fidelity. It must also include the runtime support necessary
for monitoring resource levels and selecting an appropriate fidelity.
The selection mechanism must take user preference into account
when there are multiple dimensions of output quality. For example,
a user in a casual conversation may prefer less accurate yet quicker
natural language translation; for a business negotiation, however,
accuracy may be much more important than speed.

2.3 Port Early, Port Often

Short device life and its implications for software development
were dominant considerations in our design. We target a vendor

273

who must rapidly bring to market a new mobile device with a rich
suite of applications. Some applications may have been ported to
older devices, but others may not. To attract new corporate cus-
tomers, the vendor must also help them rapidly port their critical
applications. The lower the quality of programming talent needed
for these efforts, the more economically viable the proposition.

This leads to the central challenge of our work: How can novice
software developers rapidly modify large, unfamiliar applications
for cyber foraging? We assume that application source code is
available; otherwise, the problem is intractable. Just finding one’s
way around a large body of code is time consuming. Our design
must help a developer rapidly identify the relevant parts of an un-
familiar code base and then help him easily create the necessary
modifications for coarse-grained remote execution. Obviously, the
quality of the resulting port must be good enough for serious use.
In rare cases, a new application may be written from scratch for the
new device. Our design does not preclude this possibility, but we
do not discuss this case further in this paper.

2.4 Rejected Strawman Solutions

Cyber foraging was proposed because seemingly obvious solu-
tions proved to be unacceptable. The first obvious solution is to run
all applications completely on fast remote servers with the mobile
client connecting to these servers using ssh, VPN, or other meth-
ods. This solution requires no application changes and allows mo-
bile clients to run any application. However, this solution requires
every input on the mobile client to be sent to the remote server. This
latency quickly becomes unacceptable; especially for truly mobile
clients where the remote server may be located far away. Further-
more, battery concerns or lack of wireless bandwidth may prevent
even nearby servers from being used. Another obvious solution
is to run all the applications locally. This solution does not incur
any latency overhead and is not dependent on available bandwidth.
Unfortunately many useful applications cannot be run locally, with
acceptable performance, on lightweight and compact mobile de-
vices. Cyber foraging allows devices to seamlessly bridge these
two extremes.

We also choose not to use a formal Webservices [54] approach.
The initial Webservices models were little more than RPC-based
thin client solutions which we rejected for the reasons stated above.
However, more sophisticated service oriented solutions allow clients
to dynamically pick services based on priorities and metrics. Clients
can also execute tasks locally (with degraded quality) if resources
are not available. Our solution is conceptually similar to this ap-
proach but has the important advantage of preserving existing in-
vestments in applications, development tools, software libraries,
and programmer learning. It therefore lowers the barrier to entry
for use of cyber foraging. This, in turn, increases the likelihood
that a critical mass of applications will emerge in a short enough
timeframe to encourage investment in the infrastructure for cyber
foraging.

3. OUR SOLUTION
3.1 Properties of a Good Solution

Given these considerations, how can we tell if we are successful?
What defines a good solution? Such a solution would enable novice
developers to do the following:

e Face complex applications confidently with little training.
Less required training is always better, of course, but some
training will be needed before a novice can use our solution.
About an hour of training is acceptable in commercial set-

tings, and is probably close to the minimum time needed to
learn anything of substance.

o Modify complex applications quickly. It is not easy to be-
come familiar with the source code of a complex new appli-
cation, and then to modify it for adaptation and cyber for-
aging. Based on our own experience and that of others we
expect the typical time for this to be on the order of multiple
weeks. Shortening this duration to a day or less would be a
major improvement.

o Modify complex applications with few errors. Since pro-
gramming is an error-prone activity, it is unrealistic to ex-
pect a novice to produce error-free code with our solution. A
more realistic goal is a solution that avoids inducing system-
atic or solution-specific coding errors by novices. The few
errors that do occur should only be ordinary programming
errors that are likely in any initial coding attempt.

e Produce modified applications whose quality is comparable
to those produced by an expert. When fidelity and perfor-
mance metrics are carefully examined under a variety of cy-
ber foraging scenarios, the adaptive applications produced by
novices using our solution should be indistinguishable from
those produced by an expert.

3.2 Solution Overview

Our solution is in three parts. First, we provide a “little lan-
guage” called Vivendi for expressing application-specific informa-
tion that is relevant to cyber foraging. A developer examines the
source code of an application and creates a Vivendi file called the
“tactics file.” The tactics file contains the function prototype of
each procedure deemed worthy of remote execution, and specifies
how these procedures can be combined to produce a result. Each
such combination is referred to as a remote execution tactic or just
tactic. For many applications, there are only a few tactics. In other
words, the number of practically useful ways to partition the appli-
cation is a very small fraction of the number of theoretical possi-
bilities. A tactics file has to be created once per application. No
changes are needed for a new mobile device.

The second part of our solution is Chroma [3], a runtime sys-
tem that provides support for resource monitoring, adaptation, and
learning-based prediction. Chroma also supports history-based pre-
dictive resource management in a manner similar to that described
by Narayanan et al. for the Odyssey system [31]. A call to Chroma
allows the application to discover the tactic and fidelity it should
use for the next compute-intensive operation. Chroma bases its es-
timate on current resource levels and predicted resource consump-
tion of the next operation. Chroma has to be ported once to each
new mobile device, and is then available to all applications.

The third part is the Vivendi stub generator, which uses the tac-
tics file as input and creates a number of stubs. Some of these stubs
perform the well-known packing and unpacking function used in
remote procedure calls [S]. Other stubs are wrappers for Chroma
calls. Calls to stubs are manually placed in application source code
by the developer.

Although not a tangible artifact, there is an implicit fourth com-
ponent to our solution — a set of application-independent instruc-
tions to developers to guide them in using the three solution com-
ponents mentioned above. This includes documentation, as well as
a checklist of steps to follow when modifying any application.

To modify an application for cyber foraging, a developer pro-
ceeds as follows. She first examines the application source code
and creates the tactics file. Next, she runs the Vivendi stub genera-
tor to create stubs. Then she modifies the application by inserting

274

APPLICATION graphix;
REMOTEQOP render;

IN int size DEFAULT 1000; // parameters
OUT float quality FROM 0.0 TO 1.0; // fidelities

// TACTIC definitions
// do step 1 followed sequentially by step 3
TACTIC do_simple = step_1 & step_3;

// do steps 1 & 2 in parallel, then do step 3
TACTIC do_all = (step_1, step_2) & step_3;

// RPC definitions

RPC step_1 (IN string input, OUT string bufl);

RPC step_2 (IN string input, OUT string buf2);

RPC step_3 (IN string bufl, IN string buf2,
OUT string final);

Figure 1: Example Tactics File in Vivendi

calls to the stubs at appropriate points in the source code. Finally,
she compiles and links the modified application, stubs and Chroma.
On occasion, there may be an additional step of modifying the user
interface of an application for a new mobile device. Our work does
not address this step, but defers to ongoing work on automated user
interface generation [11, 32]. We describe the key aspects of each
of our solution components in more detail in Sections 3.3 to 3.5.

3.3 Vivendi

Vivendi enables concise description of the tactics and fidelities of
an application. In this section, we provide just the key features of
Vivendi and refer the reader elsewhere [2] for the detailed syntax.

Figure 1 shows the tactics file for a hypothetical application called
graphix. Each application code component that may benefit from
remote execution is called a remoteop (short for “remote opera-
tion”) and is identified in Vivendi by the tag REMOTEOP. A remo-
teop’s size and complexity determine the granularity at which cyber
foraging occurs. We expect only a few remoteops for each appli-
cation, possibly just one. For example, Figure 1 shows a single
remoteop called render for the application graphix.

Next, the tactics file specifies the critical variables that influence
the amount of resources consumed by executing this remoteop. In
language translation, for example, the number of words in the sen-
tence to be translated is the (single) critical variable. A scene il-
lumination application may have two such variables: the name of
the 3D image model and its current viewing position. We refer to
such variables as parameters of the remoteop. Figure 1 shows a
single parameter, called size for the remoteop render. Vivendi
passes parameter information to Chroma, which uses this knowl-
edge in its history-based resource prediction mechanism. Chroma’s
prediction specifies the fidelity at which the remoteop should be ex-
ecuted. Figure 1 indicates that quality is the variable correspond-
ing to fidelity for the remoteop render. Parameters and fidelities
are specified like C variables, with the keyword IN indicating pa-
rameters and OUT indicating fidelities. Vivendi supports a full suite
of C-like primitive data types.

The tag TACTIC identifies a tactic for this remoteop. Each tactic
represents a different way of combining RPCs to produce a remo-
teop result. Chroma selects the appropriate tactic and the binding of
RPCs to compute servers. These choices are frozen for the duration
of a remoteop, but are re-evaluated for the next remoteop. Vivendi
syntax allows any combination of sequential and parallel RPCs to
be specified as a tactic. It also provides control over placement of

From
Utilit Selected tactic L

F " | External Solver °, | Application
unctions| soyrce and fidelities

Resource Predicted

availability resource usage

Resource Monitors Resource Demand
Predictor
| A

(actual resource consumption
fed back to improve prediction)

Figure 2: Main Components of Chroma

specific RPCs on servers. This might be useful, for example, where
a later RPC has to be run on the same server as an earlier RPC to
take advantage of a warm cache or to avoid shipping a large inter-
mediate result. For brevity, we omit these syntax details. A taste
of the syntax can be obtained from Figure 1, which specifies two
tactics: do_simple and do_all. Sequential RPCs are separated
by an & operator while parallel RPCs are separated by commas and
appear within parentheses.

Finally, the RPCs used in tactics are specified using a syntax
similar to that for standard function prototype definitions. The tag
RPC identifies the RPCs of remoteop render in Figure 1. Although
we omit the details here, a wide range of basic data types can be
used as RPC arguments. This includes uninterpreted binary data
objects and file variables.

3.4 Chroma

Chroma is the runtime system component that provides resource
measurement, prediction and fidelity selection functions that com-
plement Vivendi. Through integration with Linux, Chroma is able
to perform these functions even when concurrent applications use
cyber foraging. Chroma understands application requirements by
reading the application’s tactics file. A key feature of Chroma is
that it isolates applications from the underlying operating system,
device characteristics, and resource availability. Hence, applica-
tions do not need to target specific network interfaces or worry
about different resource situations (such as a lack of bandwidth)
— Chroma handles all of these concerns. Chroma also takes care
of error recovery and has the capability to both run multiple opera-
tions in parallel and to take advantage of extra resources available in
the environment. The detailed architecture, mechanisms, and per-
formance results of Chroma have been previously published [2, 3].
Chroma’s main components are shown in Figure 2 and we provide
a quick recap of these components in the rest of this section.

At the heart of Chroma is a solver that responds to queries from
Vivendi stubs regarding the tactics and fidelity to use for a remo-
teop. The solver constructs a solution space of tactic-fidelity com-
binations and then exhaustively searches this space for the current
optimum. The space is relatively small since there are few tactics.
The goodness of a specific point in this space is computed by a
utility function that quantifies informal directives such as “conserve
battery”, “maximize quality” or “give best quality under 1 second”.
Our prototype uses closed-form utility functions provided by an
entity outside Chroma. A more complete system would derive the
utility function from current user preferences.

The inputs to the solver include resource supply measurements
and resource demand predictions. The supply measurements are
provided by the resource monitors shown in Figure 2. These are
software sensors in the mobile client and compute server that re-
port values of network bandwidth, CPU utilization, memory usage,

275

/* APIs to interface with adaptive runtime */
int graphix_render_register ();
int graphix_render_cleanup ();
int graphix_render_find_fidelity ();
int graphix_render_do_tactics (char *input,
int input_len, char *final, int *final_len);

/* Parameters and fidelity variables */
void set_size (int value);
float get_quality ();

Figure 3: Vivendi Wrapper Stubs for Chroma Interactions

battery level and so on. As shown in Figure 2, resource demand
predictions are made by a history-based predictor. This predictor
continuously improves its accuracy by comparing previous predic-
tions with actual resource usage, and refining its prediction model.
The predictor can be initialized using off-line training or history
from an older mobile device. Parameter values from the Vivendi
stub are factored into the prediction model.

3.5 Generated Stubs

The Vivendi stub generator creates two kinds of stubs from a
tactics file: standard RPC stubs and wrapper stubs. The standard
RPC stubs perform packing and unpacking of arguments. They
also provide a server listener loop with opcode demultiplexing. We
omit further discussion of these since they follow well-known RPC
practice (the full details are available elsewhere [2]). The wrapper
stubs simplify application modification by customizing the Chroma
interface to the application.

Figure 3 shows the wrapper stubs for the tactics file shown in
Figure 1. A developer inserts graphix_render_register at the
start of the application and graphix_render_cleanup just before
its exit. She inserts graphix _render_find fidelity just be-
fore the code that performs the render remoteop. Right before
this, she inserts set_size to set the parameter value for this re-
moteop. Right after this, she inserts get_quality to obtain the
fidelity recommended by Chroma. Finally, she removes the ac-
tual body of code for the remoteop and replaces it by a call to
graphix render_do_tactics. This will create the client that
performs the operation remotely, using a tactic selected by Chroma.

To create the server from an unmodified application, she inserts
two API calls, service_init and run_server into the applica-
tion’s main routine to initialize the server and to start the server’s
listening loop respectively. Finally, she creates the required RPC
server functions using the remoteop code removed from the client.

3.6 Using The Solution

Figure 4 shows how the three parts of the solution, using the
Panlite application (described in Section 4.1.2), are combined in a
4-step process, called RapidRe, that allows developers to rapidly
retarget applications. The four steps are as follows: first, the de-
veloper describes, using Vivendi, the adaptive capabilities of the
application to be retargeted. The help of a domain expert, who pro-
vides high level domain information about possible parameters and
fidelities, is useful here. Second, the stub generator uses this de-
scription to create the code to interface the application with the
runtime system (Chroma). The stub also generates application-
specific APIs that need to be manually inserted into the applica-
tion. Third, the developer manually inserts these APIs, using a
well-defined series of tasks (shown in Table 2), to create the ap-
plication’s client and server components. Finally, the components
are compiled with the stub generated code and runtime libraries to

create the final retargeted application that can connect to Chroma
and participate in cyber foraging. More details about RapidRe are
available elsewhere [2].

4. VALIDATION APPROACH

The primary goal of our validation study was to assess how well
our solution meets the goodness criteria laid out in Section 3.1. A
secondary goal was to gather detailed process data to help identify
areas for future research. Our approach combines well-established
user-centric and system-centric evaluation metrics. The user-centric
metrics for programmers focus on measures such as ease-of-use,
ease-of-learning, and errors committed [45]. The system-centric
metrics focus on measures such as application latency or lines of
generated code.

We combined these techniques in a laboratory-based user study
with two parts. In the first part, novice developers modified a vari-
ety of real applications for cyber foraging. We describe this part in
Section 4.1 and report its results in Sections 5 to 7. In the second
part, we compared the performance of these modified applications
to their performance when modified by an expert. We describe this
part in Section 4.2 and report its results in Section 8

4.1 User-Centric Evaluation

Following the lead of Ko et al. [29] and Klemmer et al [28],
we took user-centric evaluation methods originally developed for
user interface investigations and adapted them to the evaluation of
programming tools.

4.1.1 Control Group

In designing the user study, a major decision was whether to in-
clude a control group in our design. When there is substantial doubt
about whether a tool or process improves performance, it is custom-
ary to have one condition in which the tool is used and a control
condition where subjects perform the task without the tool. This
allows reliable comparison of performance. However, the practi-
cality and value of control groups is diminished in some situations.
For example, it is difficult to recruit experimental subjects for more
than a few hours. Further, the value of a control group is negligible
when it is clear to task experts that performing a task without the
tool takes orders of magnitude longer than with it.

Our own experience, and that of other mobile computing re-
searchers, convinced us that modifying real-world applications for
adaptive mobile use is a multi-week task even for experts. Given
this, our goal of one day is clearly a major improvement. Running
a control condition under these circumstances would have been
highly impractical and of little value. We therefore chose to forego
a control group.

4.1.2 Test Applications

We chose eight applications of the genre mentioned at the begin-
ning of this paper. Table 1 shows their salient characteristics. The
applications were: GLVU [48], a virtual walkthrough application
that allows users to navigate a 3D model of a building; Panlite [17],
an English to Spanish translator; Radiator [53], a 3D lighting mod-
eler; Face [43], a face recognition application; Janus [50], a speech
recognizer; Flite [6], a text to speech converter; Music [22], an ap-
plication that records audio samples and finds similar music on a
server; and GOCR [44], an optical character recognizer.

None of these applications was written by us, nor were any of
them designed with remote execution, adaptation, or mobile com-
puting in mind. As Table 1 shows, the applications ranged in size
from 9K to 570K lines of code, and were written in a wide variety
of languages such as Java, C, C++, Tcl/Tk, and Ada. The applica-

276

J (1) Describe

Application

(2) Stub generator

Domain , |panlite.desc| - Reta.rgeted
expe Application ,‘\panlite application
V] description file Sy executable
_] anlite
b.h)
Adaptation - \Sm ; @ |
expert Chroma stub code (4) Compile
panlite.c 3) Mrohdlf:y panlite.c
7 D S—
{ i Modified
\ |panlite.h| / source code
~ 41
Application source code
Figure 4: The 4 Stages of RapidRe
g %
3 | £ Z
S |3 ¢
2| 2% 5| 8 g
A 1FIPEIE
= = g —%—j I 2 8 31
o g =] <] s} S
Application — Z |4 B A || E |
Face 20K | 105 | Ada w/C | 0 | 1 1] 2|1
(Face Recognizer) interface
Flite 570K | 182 | C 0 1 1 1
(Text to Speech)
GLVU 25K | 155 | C++, 1151 [18]1
(3D Visualizer) OpenGL
GOCR 30K 71 C++ 0 1 1 2 1
(Chr. Recognizer)
Janus 126K | 227 | C, Tcl/Tk, | 1 1 3 9 2
(Spch Recognizer) Motif
Music 9K 55 C++, Java 0 2 1 2 1
(Music Finder)
Panlite 150K | 349 | C++ o 1 |4]11]7
(Lang Xlator)
Radiator 65K | 213 | C++, 2 1 1 4 1
(3D Lighting) OpenGL

Table 1: Overview of the Test Applications

tion GOCR, was used only for training participants; the others were
assigned randomly.

4.1.3 Participants and Setup

We selected participants whose characteristics match those of
novice developers, as discussed in Section 2.3. In many companies,
the task of porting code falls to junior developers. We modeled this
group by using undergraduate seniors majoring in computer sci-
ence. In addition, we used a group size large enough to ensure the
statistical validity of our findings. While the exact numbers depend
upon the variability within the participants and the overall size of
the effects, widely accepted practices recommend between 12 and
16 users [33]. We used 13 participants, which falls within this range
and represents the limit of our resources in terms of time (six hours
per data point).

Our participants were all CS majors and were, on average, 21
years of age. Our selection criteria required them to know C pro-
gramming and be available for a contiguous block of six hours.
None of them were familiar with the research of our lab, any of

the tools under development, or any of the test applications. Ta-
ble 8 shows the assignment of participants to applications. As the
table shows, several participants returned for additional applica-
tions. In keeping with standard HCI practice, we counter-balanced
the assignment of participants to applications to avoid any ordering
effects. These additional data allowed us to investigate learning ef-
fects and to determine whether our one-time training was adequate.

Participants were compensated at a flat rate of $120 for comple-
tion of a task. We stressed that they were not under time pressure,
and could take as long as they needed to complete the task. We
made certain that they understood the motivation was quality and
not speed. This was a deliberate bias against our goal of short mod-
ification time.

The participants worked alone in a lab for the duration of the
study. We provided them with a laptop and allowed them to use
any editor of their choice. The displays of the participants were
captured throughout the study using Camtasia Studio [47]. This
provided us with detailed logs of user actions as well as accurate
timing information.

4.1.4 Experimental Procedure

Training Process:

Upon arrival, participants were given a release form and pre-
sented with a brief introduction to the user study process. They
were told that they were going to be making some existing appli-
cations work on mobile devices, and that they would be learning to
use a set of tools for making applications work within an adaptive
runtime system. The participants were then introduced to the con-
cepts of remoteops, parameters, fidelities, RPCs and tactics. We
then conducted a hands-on training session using the GOCR appli-
cation where we demonstrated how to identify and describe these
concepts in Vivendi. The participants were provided with docu-
mentation on Vivendi syntax, with many examples. We then guided
the participants in modifying GOCR. Training sessions lasted less
than one hour in all cases.

Testing Process:

After training, each participant was randomly assigned to an ap-
plication to be modified. They were given all accompanying doc-
umentation for the application written by the original application
developer that explained how the application worked and explained
the functional blocks that made up the application. This documen-
tation did not mention anything about making the application adap-
tive as that was not the original developer’s intention. The partic-
ipants were also provided with domain information from which it
was possible to extract the parameters and fidelity variables. For
example, the domain information might say that for 3D graphics
applications, the name of the model, the size of the model, the cur-
rent viewing position and current perspective affect the resource
usage of the application. It was up to the participants to deter-
mine exactly which application variables these general guidelines
mapped to.

Task Structure:

We provided participants with a structured task and a set of gen-
eral instructions. The task structure consists of three stages, as
shown in Table 2. In Stage A, the primary activity is creating the
tactics file; in Stage B, it centers on creating the client code com-
ponent; in Stage C, it centers on creating the server component.
We wanted to cleanly isolate and independently study the ability
of novices to perform each of these stages. We therefore provided
participants with an error-free tactics file for use in Stages B and

277

Stage A Stage B Stage C

Tactics file Client component | Server component

Read docs Read docs Read docs

Application Include file Include file header

In Register service_init API call

Out Cleanup Create RPCs

RPC Find Fidelities run_server API call

Tactic Do Tactics Compile and fix'
Compile and fix!

This table shows the task stages and the subtasks within each
stage. ! Note that in Stages B and C, the participants com-
piled their code, but did not run it.

Table 2: Task Stages

C. This ensured that errors made in Stage A would not corrupt the
analysis of Stages B and C.

Ending Condition:

For Stage A, participants were told that the task ended when they
had created a complete tactics file for the provided application. For
Stages B and C, the task ended when the participants were able to
successfully compile their retargeted client and server components
respectively. We did not allow participants to test their retargeted
applications as they would have had to understand how Chroma
worked, in some detail, before they could successfully test their
applications. We felt that providing this detailed knowledge would
have a) significantly increased the amount of time needed for each
user study, and b) more importantly, made it more difficult to obtain
accurate retargeting times. Our approach thus allowed us to get
good estimates of retargeting times and also allowed us to see some
of the more common runtime bugs made during retargeting. We
explain in Section 7 how we accounted for the trivial programming
bugs that naturally arise due to this no-testing possible setup. For
Stages B and C, we also provided each participant with a working
compilation environment. Hence, the times reported in Section 6
are pure retargeting times and do not include any build environment
setup time (which can take hours in practice).

As Table 2 shows, each stage consists of a structured sequence
of subtasks. For each subtask, participants were given a general set
of instructions, not customized in any way for specific applications.
After completion of each subtask, we asked participants to answer
a set of questions about it.

4.1.5 Data Collected

Timing:

Using Camtasia recordings, we obtained completion times for
each subtask. These could be aggregated to find completion times
for stages or for the overall task.

Task Process:

From Camtasia recordings, we collected data on how partici-
pants completed all of the subtasks, noting where they had trouble,
were confused, or made mistakes.

Self-Report:

We collected questionnaire data of several types, including qual-
ity of training, ease of use of our solution, and performance in each
subtask.

ID || Load | BW | User Prefs Typical Scenario
Q Low | High | Highest Conducting an important busi-
quality result | ness meeting using a language
translator
T Low | High | Lowest Field engineer just wanting to
latency result | navigate a quick 3D model of
a building to understand the
building’s dimensions
LH || Low | High | Highest Sitting in an empty cafe with
quality result | plentiful bandwidth and un-
within X's used compute servers
HH|| High | High | Highest Bandwidth is available in cafe
quality result | but long lived resource inten-
within X s sive jobs are running on the
compute servers
LL || Low | Low | Highest Cafe’s compute servers are un-
quality result | used but other cafe users are
within X's streaming high bitrate multi-
media content to their PDAs
HL || High | Low | Highest The cafe is full or people either
quality result | streaming multimedia content
within X s or using the compute servers
for resource intensive jobs

Load is the compute server load. BW is the available band-
width. User Prefs are the User Preferences. X is 20s for Face,
25s for Radiator, and 1s for the rest.

Table 3: Scenario Summary

Solution Errors:

We noted all errors in the participants’ solutions. We fixed only
trivial errors that kept their code from compiling and running. This
allowed us to collect performance data from their solutions.

4.2 System-Centric Evaluation

The goal of the system-centric evaluation was to understand whether

rapid modification by a novice resulted in adequate application qual-
ity. For each application, we asked an expert who had a good un-
derstanding of our solution and the application to create a well-
tuned adaptive version of the application. The performance mea-
surements from this expert-modified application were then used as
a reference against which to compare the performance of novice-
modified applications under identical conditions.

4.2.1 Testing Scenarios

Ideally, one would compare novice-modified and expert-modified
applications for all possible resource levels and user preferences.
Such exhaustive testing is clearly not practical. Instead, we per-
formed the comparisons for six scenarios that might typically occur
in cyber foraging.

These six scenarios are shown in Table 3. We used two values
of load on compute servers: light (1% utilization) and heavy (95%
utilization). We used two bandwidth values: high (5 Mb/s) and
low (100 Kb/s), based on published measurements from 802.11b
wireless networks [30]. This yielded four scenarios (labeled “LH,”
“HH, “LL” and “HL” in Table 3). All four used the same user pref-
erence: return the highest fidelity result that takes no more than X
seconds, where X is representative of desktop performance for that
application. X was 1 second except for Face (20 s) and Radiator
(25 s). The other two scenarios are corner cases: scenario “Q,”
specifying highest fidelity regardless of latency; and scenario “T,”
specifying fastest result regardless of fidelity.

278

4.2.2 Experiment Setup

To model a resource-poor mobile device, we used an old Thinkpad
560X laptop with a Pentium 266 MHz processor and 64 MB of
RAM. We modeled high and low end compute servers using two
different kinds of machines: Slow, with 1 GHz Pentium 3 proces-
sors and 256 MB of RAM, and Fast, with 3 GHz Pentium 4 proces-
sors and 1 GB of RAM. The mobile client could also be used as a
very slow fallback server if needed. All machines used the Debian
3.1 Linux software distribution, with a 2.4.27 kernel for the client
and a 2.6.8 kernel for the servers. To avoid confounding effects
due to Chroma’s history-based mechanisms, we initialized Chroma
with the same history before every experiment.

4.2.3 Procedure

Each novice-modified and expert-modified application was tested
on 3 valid inputs in each of the 6 scenarios above. These 18 combi-
nations were repeated using fast and slow servers, yielding a total
of 36 experiments per application. Each experiment was repeated
5 times, to obtain a mean and standard deviation for metrics of in-
terest. Our system-centric results are presented in Section 8.

5. RESULTS: LITTLE TRAINING

The first criterion for a good solution relates to training dura-
tion, as listed in Section 3.1: “Can novices face complex appli-
cations confidently with little training?”” Our training process was
presented in Section 4.1.4. As stated there, the training session was
one hour or less for all participants, thus meeting the above crite-
rion. What is left to be determined is whether this training was ad-
equate. The ultimate test of adequate training is task performance,
as shown by the success our participants have in actually modify-
ing applications. These results are reported in the rest of the paper.
A secondary test is the subjective impression of participants. We
asked participants several questions after task completion to help
us judge whether they felt adequately prepared.

Our questions probed directly about the value of the training and
training materials. Participants responded on a 5-point Likert scale
(1 — Helped immensely, 2 — Quite a lot, 3 — Somewhat, 4 — A little
bit, 5 — Didn’t help at all). In response to the question, “Was the
training helpful?” the average participant response fell between
1 (Helped immensely) and 2 (Quite a lot), with a mean value of
1.33 and a standard deviation of 0.48. The results were similar for
the question “Was the documentation helpful?” The mean response
was 1.64 and the standard deviation was 0.76.

In addition, after every subtask of Table 2, we probed partici-
pants’ confidence in their work through the question, “How certain
are you that you performed the subtask correctly?” Responses were
provided on a 7-point Likert scale (1 — Incredibly certain to 7 —
Completely uncertain). As shown in Figure 5, participants reported
a high degree of confidence across the range of applications. The
mean response ranged from 1.3 for Face, to 2.2 for Music.

These self-report ratings correlate highly with the task perfor-
mance times presented in Section 6. The correlation coefficient (r)
is 0.88, indicating a strong positive correlation. The p value of
0.009 indicates that it is highly unlikely this correlation would oc-
cur by chance. We will discuss these results in more detail and iden-
tify opportunities for improving our solution in Section 10. Over-
all, these results suggest that the participants believed their training
prepared them well for the modification tasks they faced.

6. RESULTS: QUICK MODIFICATIONS

In this section, we address the second criterion listed in Sec-
tion 3.1: “Can novices modify complex applications quickly?” To

Scale ranges from:

61 1-Incredibly certain to 7-Completely uncertain
e
> Bad
£ 4 e e
£ Good
8 3]
c
=]

e B B8 BN A

Face Flite Janus GLVU Music Panlite Radiator

For each application, the height of its bar is the mean uncer-
tainty score on the Likert scale shown in the legend, averaged
across all participants. Error bars show the standard deviation.

Figure 5: Self-Reported Uncertainty Scores

N

a

o
L

200 -

150 -

100 +

Completion Time (minutes)
()]
o

0 T T T T T T |
Face Flite Janus GLVU Music Panlite Radiator

For each application, the height of its bar is the mean com-
pletion time averaged across all participants. Error bars show
the standard deviation.

Figure 6: Measured Application Completion Times

Scale ranges from:
1-Really easy to 7—Incredibly hard

(<]
L

o
L

TERRAEE

Flite GLVU

Difficulty Score
w S

N
L

Face Janus Music Panlite Radiator

For each application, the height of its bar is the mean difficulty
score on the Likert scale shown in the legend, averaged across
all participants. Error bars show the standard deviation.

Figure 7: Self-Reported Task Difficulty Scores

answer this question, we examined overall task completion times
across the range of applications in our validation suite. We found
that the average completion time was just over 2 hours, with a mean
of 2.08 and a standard deviation of 0.86. Figure 6 shows the dis-
tribution of task completion times, and Table 4 presents the break-
down of these times across task stages. These data show mean
completion times ranging from 70 to 200 minutes, with no par-

279

App Stage A Stage B Stage C Total
Face 10.3 (1.7) 36.6 (4.5) | 33.6(17.8) | 80.5(22.7)
Flite 12.6 (7.8) 37.7(6.7) | 20.6 (16.4) | 70.9 (20.4)
Janus 29.3(14.0) | 31.0(6.5) | 42.1(10.2) | 102.4 (26.2)
GLVU 66.3 (20.8) | 65.1(22.5) | 40.3(7.7) | 171.7(33.8)
Music 49.6 (15.7) | 68.2(17.1) | 83.0(23.0) | 200.8 (45.4)
Panlite 36.2(7.7) | 48.7(20.2) | 32.8(14.7) | 117.8 (36.6)
Radiator 17.2(6.0) | 45.3(8.7) 39.4(7.0) | 101.9(11.7)

Each entry gives the completion time in minutes for a task
stage, averaged across all participants who were assigned that
application. Values in parentheses are standard deviations.

Table 4: Completion Time by Task Stage

ticipant taking longer than 4 hours for any application. For two
applications, some participants only needed about an hour.

The proportion of the original code base that was modified is an-
other measure of task simplicity. Table 5 shows the relevant data.
These data show that only a tiny fraction of the code base was mod-
ified in every case, and that there was roughly ten times as much
stub-generated code as hand-written code. In addition to the reduc-
tion in coding effort, the use of stubs allowed participants to get
away with minimal knowledge of Chroma.

Finally, we asked participants the question “How easy did you
find this task?” Responses were provided on a 7-point Likert scale
(1 — Really easy to 7 — Incredibly hard). As Figure 7 shows, the
responses were heavily weighted toward the easy end of the scale
for all applications. These self-report ratings also correlate highly
with the task completion times reported earlier (r = 0.82, p = 0.02),
increasing our confidence that these results are meaningful. As an
additional validation, the self-reported confidence and task diffi-
culty scores were also strongly correlated (r = 0.88, p = 0.01).
Taken together, these pieces of evidence converge to suggest that
the participants were able to quickly and easily modify the com-
plex applications represented in our validation suite.

7. RESULTS: LOW ERROR RATE

In this section, we examine the third criterion listed in Section 3.1:
“Can novices modify complex applications with few errors?” Since
programming is an error-prone activity, we expect novice-modified
applications to contain ordinary programming errors of the types
described by Pane et al. [35]. In addition, we expect a few addi-
tional simple errors because participants could not test their solu-
tion, except to verify that it compiled cleanly. We divide the anal-
ysis into two parts; errors in creating tactics files (Stage A); and
errors in modifying application code (Stages B and C). An expert
scored both parts through code review.

Table 6 shows the errors for Stage A. The parameter, RPC, and
tactic errors were due to specifying too few parameters, RPC ar-
guments, and tactics respectively. Too few parameters can lead to
poor predictions by Chroma. Too few tactics could hurt applica-
tion performance because the tactics-fidelity space is too sparse.
Too few RPC arguments results in a functionally incorrect solu-
tion. There were also 4 harmless errors that would not have caused
any performance problems. In particular, the participants specified
extra fidelities that Chroma would ignore.

For Stages B and C, we classified the errors found as either #riv-
ial or non-trivial. Trivial errors are those commonly occurring in
programming assignments. Examples include being off by one on
aloop index, or forgetting to deallocate memory. Trivial errors also
include those that would have been detected immediately if our pro-

App Lines File Tactic Stage B: Client Modifications Stage C: Server Modifications
of Code | Count File Lines Lines Stub Files Lines Lines Stub Files
Size Added Removed | Lines | Changed Added Removed | Lines | Changed

Face 20K 105 10 31-68 12-15 556 2 26-45 15-24 186 2
Flite 570K 182 10 29 -39 1-5 556 2 13-30 3-87 186 2
GLVU 25K 155 38 62-114 3-21 1146 2 88 — 148 12-32 324 2
Janus 126K 227 25 28 — 47 2-17 1538 3 59 - 130 7-170 434 4
Music 9K 55 11 61-77 4-6 1127 2 131-269 | 23-147 203 2
Panlite 150K 349 21 30-66 1-39 1481 3 12-73 18 -39 406 3
Radiator 65K 213 15 41-51 1-47 643 2 49 - 106 17-32 202 2

Any a—b value indicates a lower bound of a and an upper bound of b. Lines of Code and File Count show the size and number of
files in the application. Tactic File Size gives the number of lines in the application’s tactics file. The Lines Added and Removed
columns show how many lines were added and removed when performing the task. Stub Lines gives the number of stub-generated
lines of code. Files Changed gives the maximum number of files that were actually modified by the participants.

Table 5: Application Modifications

Apps Params RPCs Tactics Harmless || # Apps Okay
Face 0 0 0 0 3 3
Flite 1 0 0 0 3 2
GLVU 1 1 0 3 5 4
Janus 0 0 0 1 3 3
Music 0 1 0 0 3 2
Panlite 0 0 2 0 5 3
Radiator 0 2 0 0 3 1
Total 2 2 0 4 25 18

The # Apps column lists the no. of tactics files created for
each app. Okay lists how many tactic files had no harmful
errors.

Table 6: Total Errors for Stage A Across All Participants

cedure allowed participants to test their modified applications. An
example is forgetting to insert a register_API call to Chroma. All
other errors were deemed non-trivial.

Table 7 shows the error distribution across applications. A to-
tal of 25 trivial errors were found, yielding an average incidence
rate of one trivial error per modification attempt. The bulk of these
errors (80%) were either a failure to register the application early
enough or an incorrect specification of the output file. The regis-
ter error was due to participants not placing the register call at the
start of the application. This prevented the application from con-
necting to Chroma. The output file errors were due to incorrect use
of string functions (a common programming error); this resulted
in the application exiting with an error when performing an RPC.
Both of these errors would have been discovered immediately if the
participants had been able to test their applications.

A total of 10 non-trivial errors were found, giving an incidence
rate of 0.4 per modification attempt. These took two forms: incor-
rectly setting parameter values, or incorrectly using fidelities. The
parameter errors appeared across many applications while the fi-
delity errors occurred only in GLVU. Neither of these errors would
be immediately apparent when running the application. We exam-
ine the performance impact of these errors in Section 8.

In summary, we achieved a good success rate with 72% (18 of
25) of the Stage A tactics files having no harmful errors and 64%
(16 of 25) of the Stage B and C novice-modified applications hav-
ing no non-trivial errors. At first glance, these numbers may seem
unimpressive. However, no novice-modified application had more
than 1 non-trivial error. This is very low given that the applications

Trivial Errors Non-Trivial
Errors
Apps Reg. Output Output Mem. Other || Params Fids
Late File Space Freed

Face 0 3 0 0 0 1 0
Flite 0 3 0 0 1 0 0
GLVU 3 0 1 0 1 1 4
Janus 1 2 0 0 0 0 0
Music 1 0 0 2 0 1 0
Panlite 4 0 0 0 0 1 0
Radiator 2 1 0 0 0 2 0
Total 11 9 1 2 2 6 4

Observed trivial errors include: did not register application
early enough; did not create output file properly; did not allo-
cate enough space for output; freed static memory. Observed
non-trivial errors include: did not set parameters correctly;
did not use fidelities to set application state properly

Table 7: Total Errors for Stages B and C Across All Partici-
pants

being modified consisted of thousands of lines of code and hun-
dreds of files. We are confident that any manual attempt, even by
experts, to modify these applications would result in far larger num-
bers of non-trivial errors. This low error rate is also an upper bound
as the participants were not able to actually test their modified ap-
plications — they only confirmed that it compiled cleanly. The
low error rate also substantially improves standard testing phases as
the applications are mostly correct. In addition, any errors caught
during testing can be rapidly traced to the offending code lines,
because relatively few lines of code were inserted or deleted. In
Section 10 we examine ways to reduce this error rate even further.

8. RESULTS: GOOD QUALITY

The fourth criterion listed in Section 3.1 pertains to the quality of
modified applications: “Can novices produce modified applications
whose quality is comparable to those produced by an expert?” To
answer this question, we conducted the system-centric evaluation
described in Section 4.2.

For each novice-modified application, we conducted 36 exper-
iments comparing the performance of the novice-modified appli-
cation to that of the same application modified by an expert. As
explained in Section 4.2.3, these 36 experiments explored combi-

280

Participant Number

1 2 3 4 5 6 7 8 9 10 11 12 13

Face || 100% 100% 67%

Flite 100% 100% | 67%
GLVU || 44% 44% 44% 100% 44%

Janus 100% | 100% 100%
Music 100% 100% 100%
Panlite 100% 83% 100% 100% 100%
Radiator 94% 100% 78%

A score of 100% indicates that the participant’s client version matched the performance of the expert in all 36 experiments. A
blank entry indicates that the participant was not asked to create a modified version of that application.

Table 8: Relative Performance of Novice-Modified Client Component

nations of compute server loads, network bandwidths, user prefer-
ences, and server speeds. For each experiment, we report fidelity
and latency of the result. Fidelities are normalized to a scale of 0.01
to 1.0, with 0.01 being the worst possible fidelity, and 1.0 the best.
Fidelity comparisons between different versions of the same appli-
cation are meaningful, but comparisons across applications are not.
‘We report latency in seconds of elapsed time.

We deemed applications to be indistinguishable if their perfor-
mance on all 36 experiments came within 1% of each other on
both fidelity and latency metrics. This is obviously a very high
bar. Data points differing by more than 1% were deemed anoma-
lies. We evaluated the performance of the client and server compo-
nents of each application separately. No anomalies were observed
for server components: all 25 were indistinguishable from their
expert-modified counterparts.

Table 8 presents our client component results. The table entry
for each participant, and application modified by that participant,
gives the percentage of the 36 experiments for which the novice-
modified and expert-modified applications were within 1% of each
other. A score of 100% indicates indistinguishable applications;
a lower percentage indicates the presence of anomalies. Table 8
shows that novice- and expert-modified applications were indistin-
guishable in 16 out of 25 cases.

Table 9 shows details of the anomalies. To save space, it only
shows the performance of one anomalous version of GLVU; the
other 3 anomalous versions were similar. For each application, we
provide the relative fidelity and latency obtained for all 3 inputs in
all 6 scenarios. The relative fidelity is expressed as H (Higher),
S (Same), or L (Lower) than the expert-modified version. Latency
is given as a ratio relative to the expert. For example, a value of
11.9 indicates that the novice-modified application had 11.9 times
the latency of the expert-modified application, for the same input.

We observe, from Table 8, that GLVU was the source of most
of the anomalies. The novices’ solutions selected an inappropri-
ately high fidelity resulting in their solutions exceeding the latency
goals for the T, LH, HH, LL, and HL scenarios. Code inspection
of the anomalous versions of GLVU revealed that all 4 anomalous
versions made the same mistake. To successfully modify GLVU,
participants needed to use a fidelity value returned by Chroma to
set the application state before performing the chosen tactic. In all
4 cases, the participants read the value of the fidelity but forgot to
insert the 2 lines of code that set the application state. As a result,
these 4 applications always performed the chosen tactic using the
default fidelity, and were unable to lower fidelity for better latency.

The other 5 anomalies (1 Face, 1 Flite, 1 Panlite and 2 Radia-
tor versions) were due to mis-specified parameters. In 4 of the 5
cases, the participants set a parameter value that was too small. For
Panlite, the parameter was set to a value of O instead of the num-

281

ber of words in the input string. For Flite, the participant forgot to
set the parameter value, which then defaulted to a value of 0. For
Face, the parameter was set to input file name length instead of file
size. For Radiator (participant 12), the parameter was set to a con-
stant value of 400 instead of the number of polygons in the lighting
model. These mis-specifications of parameter values led Chroma
to recommend fidelity and tactic combinations that exceeded the
scenario latency requirements.

In the last case (Participant 4’s version of Radiator), the parame-
ter was set to a far higher value than reality. In particular, it was set
to the size of the model file on disk instead of just the number of
polygons in the model being used. This caused Chroma to be more
pessimistic in its decision making than it should have been. So this
application version achieved lower fidelity than it could have.

In summary, our results confirm that novice-modified applica-
tion code is of high quality. All 25 of the server components, and
16 of the 25 client components modified by participants were indis-
tinguishable from their expert-modified counterparts. Where there
was divergence, analysis of the anomalies give us ideas for improv-
ing our solution. We discuss these improvements in Section 10.

9. WHY OUR SOLUTION WORKS

At first glance, the results of the previous sections seem too good
to be true. Modifying a complex application for cyber foraging,
a task that one expects will take a novice multiple weeks, is ac-
complished in just a few hours. The modified application performs
close to what one could expect from an expert. Yet, it is not imme-
diately clear what accounts for this success. Vivendi, Chroma and
the stub generator are each quite ordinary. Somehow, their com-
bined effect is greater than the sum of the parts. What is the magic
at work here?

The key to explaining our success is to recognize the existence of
a deep architectural uniformity across modified applications. This
is in spite of diversity in application domains, programming lan-
guages, modular decompositions, and coding styles. It arises from
the fact that, at the highest level of abstraction, we are dealing
with a single genre of applications: mobile interactive resource-
intensive applications.

In a mobile environment, all sensible decompositions of such ap-
plications place interactive code components on the mobile client,
and resource-intensive components on the compute server. This
ensures low latency for interactive response and ample compute
power where needed. This space of decompositions is typically a
tiny fraction of all possible procedure-level decompositions. The
challenge is to rapidly identify this “narrow waist” in an unfamiliar
code base.

In examining a broad range of relevant applications, we were sur-
prised to observe that every unmodified application of interest to us

Scenarios Scenarios
QT LH HH LL HL Q| T LH HH LL HL
Slow S,5.24 S,5.22 Slow S, 2.33 S, 245
S,5.26 S,5.24 S,2.77 S,2.74
S, 5.20 S, 5.25 S, 2.51 S,2.42
Fast S, 1421 | S, 14.22 Fast S,2.91 S,2.97
S,14.37 | S, 1429 | ... S, 3.56 S,3.23
S,14.17 | S, 1425 | ... S, 3.16 S, 3.38
(a) Face (Participant 11) (b) Flite (Participant 12)
QT LH HH LL HL Q| T LH HH LL HL
Slow H,11.26 | ... H,3.04 | ... H, 3.06 Slow H, 7.68 H, 7.57
H,13.29 | H,1.16 | H,4.65 | H,1.15 | H,4.61 H, 6.89 H, 6.93
H, 8.31 H, 2.47 H, 245 H, 7.54 H, 7.49
Fast H,11.34 H, 3.06 H, 3.02 Fast
H, 13.40 H, 4.59 H, 4.67
H, 7.85 .. H, 2.46 H, 2.48 . ..
(¢) GLVU (Participant 1) (d) Panlite (Participant 4)
QT LH HH LL HL Q| T LH HH LL HL
Slow Slow
L,0.17 H,398 | H,1.14 | H,1.10 | H, 1.15
Fast Fast
L, 0.05 H, 1.11 H,1.12 | H,1.16 | H,1.14

(e) Radiator (Participant 4)

(f) Radiator (Participant 12)

Each entry consists of a relative fidelity followed by a relative latency for a single input. The relative fidelity is either L-lower than
expert, S—same as expert, or H—higher than expert. The relative latency gives the ratio between the participant's version versus
the expert. E.g., a latency of 11 indicates the participant’s version had 11 times the latency of the expert. Only the anomalous

values are presented. All other values are replaced by the symbol ...

to avoid visual clutter.

Table 9: Detailed Results for Anomalous Application Versions

was already structured to make such decomposition easy. In hind-
sight, this is not so surprising. Code to deal with user interaction is
usually of a very different flavor from code that implements image
processing, speech recognition, and so on. Independent of mobile
computing considerations, a capable programmer would structure
her application in a way that cleanly separates these distinct flavors
of code. The separation would be defined by a small procedural
interface, with almost no global state shared across that boundary
— exactly the criteria for a narrow waist.

In addition to this similarity of code structure, there is also sim-
ilarity in dynamic execution models. First, there is a step to obtain
input. This could be a speech utterance, a natural language frag-
ment, a scene from a camera, and so on. Then, resource-intensive
processing is performed on this input. Finally, the output is pre-
sented back to the user. This may involve text or audio output,
bitmap image display, etc.

In modifying such an application for mobile computing, the main

change is to introduce an additional step before the resource-intensive

part. The new step determines the fidelity and tactic to be used
for the resource-intensive part. It is in this step that adaptation to
changing operational conditions occurs. A potential complication
is the need to add the concept of fidelity to the application. For-
tunately, this has not been necessary for any of our applications.
Most applications of this genre already have “tuning knob”” param-
eters that map easily to fidelities — another pleasant surprise.

Our solution exploits these similarities in architecture and exe-
cution model. The architectural similarity allows us to use a “lit-
tle language”(Vivendi) to represent application-specific knowledge

282

relevant to cyber foraging. This knowledge is extracted by a devel-
oper from the source code of an application and used to create the
tactics file. The similarity in execution model allows us to use a
common runtime system (Chroma) for adaptation across all appli-
cations. The use of stubs raises the level of discourse of the runtime
system to that of the application. It also hides many messy details
of communication between mobile device and compute server.

The net effect of executing the solution steps using a checklist is
to quickly channel attention to just those parts of application source
code that are likely to be relevant to cyber foraging. At each stage
in the code modification process, the developer has a crisp and nar-
row goal to guide his effort. This focused approach allows a devel-
oper to ignore most of the bewildering size and complexity of an
application.

In addition to reducing programmer burden, there is also a sig-
nificant software engineering benefit to the clean separation of con-
cerns implicit in our design. The application and the runtime sys-
tem can be independently evolved, with many interface changes
only requiring new stubs.

10. IMPROVING THE SOLUTION

Our solution could be improved in several ways: eliminating all
errors, further reducing the time required, and ensuring it applies to
the widest possible range of potential mobile applications. In order
to chart out these future directions, we analyze all the non-trivial
errors, examine how the subjects spent their time, and examine the
differences in applying the solution to the range of applications.

40 - 40 -

Stage A
- NGLVU
< .
'€ 301 B Musicmatch
g 7 Panlite
S 0 Other
= 20 A
]
2
o
£ 10
o
0
7.
6 Scale ranges from:
° 1—Incredibly certain to
:o: 51 7-Completely uncertain
n
=y
=3
2
£
8

Other (3)

Read
Docs

RPC Read Docs

Find
Fidelities

40 -

Stage B

Stage C

Z/m

Other (5)

Do Tactics Other (4) Create RPCs Compile and

Fix

Only the largest time values (top row) and self-reported difficulty scores (bottom row) are shown. The Other bar presents either
the sum (for times) or the average (for difficulty) of the remaining subtasks (no. of subtasks shown in parentheses on the x-axis).

Figure 8: Time and Difficulty of Each Individual Subtask

Since our solution is already fast, we focus on improving the solu-
tion quality.

The non-trivial errors in Stage A took 3 forms; specifying too
few parameters, specifying too few RPC arguments, and specify-
ing too few tactics. These errors were distributed randomly across
participants and applications.

All of the non-trivial errors in Stages B and C occurred in one
subtask, “Find Fidelities”, while creating the client, and were of
only two types. In one type of error, all for GLVU, novices suc-
cessfully read the fidelity values returned by Chroma, but failed
to use those values to set the application state. In the other cases,
novices failed to set the parameters correctly to reflect the size of
the input. There were no errors associated with any other subtask
involved in creating either the client or server.

In order to eliminate these errors, we need to determine whether
the programmers were unable to understand the task or simply for-
got to complete all necessary steps. If the latter, straightforward
improvements in the instructions may be sufficient to eliminate all
observed errors. An examination of the evidence summarized in
Figure 8 suggests that forgetfulness is the likely cause. Subjects
did not report that the “Find Fidelities” subtask was particularly
difficult, rating it only 2.6 on a 7-point difficulty scale where 4 was
the midpoint. They also did not report a high degree of uncertainty
(not shown) in their solution, giving it a 1.7 on a 7-point uncertainty
scale (midpoint at 4). Table 8 shows that, of the seven programmers
who made at least one non-trivial error, five successfully modified
a second application with no errors. Of the other two, one modified
only a single program, and the other made non-trivial errors on both
programs they modified. Together, these results suggest that nearly
all the subjects were capable of performing all tasks correctly. This
implies forgetfulness was the problem. This analysis leads us to
believe that forcing developers to pay more attention to these error-
prone parts of the “Find Fidelities” task, perhaps with an extended
checklist, will eliminate most of the errors.

Figure 8 also suggests that the difficult and time-consuming tasks
vary considerably across application types. For example, GLVU re-
quired more time in the “In” and “RPC” subtasks of Stage A as it

283

had a large number of parameters and RPC arguments as shown in
Table 1. It also had larger times for the “Find Fidelities” and “Do
Tactics” subtasks of Stage B as “Find Fidelities” required partic-
ipants to set each of the parameters while “Do Tactics” required
participants to manage each of the RPC arguments. Similarly, Pan-
lite required more time during the “Tactic” subtask of Stage A as it
had a large number of tactics that had to be identified and described.
In each of these cases, we suspect that instructing programmers on
how to keep track of the minutiae of these subtasks, and ensuring
that each is completed, would be of substantial benefit.

Finally, Music had a very large “Compile and fix” time for Stage
C. This was because Music was originally written as a non-adaptive,
desktop oriented client—server application. Thus it already used a
specific on-wire data format that participants had to reuse, requiring
them to write large amounts of relatively simple buffer manipula-
tion code. Trivial errors in this code led to the increased subtask
times. This suggests that there will be issues specific to some types
of applications that may make them less amenable to our solution.

11. RELATED WORK

Our work spans mobile computing, software engineering and
HCI. At their juncture lies the problem of rapid modification of
resource-intensive applications for cyber foraging. To the best of
our knowledge, we are the first to recognize the importance of this
problem and propose a solution. Our solution and its validation
build upon work in three areas: little languages, adaptive systems,
and HCI evaluation methods.

The power of little languages was first shown by early versions of
the Unix programming environment. Make [13] is perhaps the best-
known example of a little language. As Bentley explains [4], the
power of a little language comes from the fact that its abstractional
power is closely matched to a task domain. Our use of tactics and
the design of Vivendi apply this concept to cyber foraging.

Chroma’s approach to adaptation builds on ideas first proposed
in Odyssey [34]. Its use of history-based prediction follows the lead
of Narayanan et al. [31] and Gurun et al [20]. The use of remote

execution to overcome resource limitations has been explored by
many researchers, including Rudenko [38] and Flinn [14].

We used well-established techniques from HCI to conduct our
user-centric evaluation. Nielsen [33] gives a good overview of
these techniques. Ko et al. [29] and Klemmer et al. [28] show how
these techniques could be applied to the evaluation of programming
tools.

From a broader perspective, our work overlaps with automatic
re-targeting systems such as IBM’s WebSphere [8] and Microsoft’s
Visual Studio [55]. These systems allow developers to quickly
port applications to new target systems. Unfortunately, they use a
language-specific approach, which runs counter to our design con-
siderations.

Finally, dynamic partitioning of applications has a long and rich
history in distributed systems and parallel computing. In the space
available, we cannot fully attribute this large body of prior work. A
sampling of relevant work includes Mentat [18], Jade [37], Nesl [7],
Abacus [1] and Coign [23]. None of these efforts focus specifically
on mobile computing.

12. CONCLUSION

Mobile computing is at a crossroads today. A decade of sus-
tained effort by many researchers has developed the core concepts,

techniques and mechanisms to provide a solid foundation for progress

in this area. Yet, mass-market mobile computing lags far behind
the frontiers explored by researchers. Smart cell phones and PDAs
define the extent of mobile computing experience for most users.
Laptops, though widely used, are best viewed as portable desktops
rather than true mobile devices that are always with or on a user.
Wearable computers have proven effective in industrial and mili-
tary settings [46, 56], but their impact has been negligible outside
niche markets.

An entirely different world, sketched in the first paragraph of
this paper, awaits discovery. In that world, mobile computing aug-
ments the cognitive abilities of users by exploiting advances in ar-
eas such as speech recognition, natural language processing, image
processing, augmented reality, planning and decision-making. This
can transform business practices and user experience in many seg-
ments such as travel, health care, and engineering. Will we find this
world, or will it remain a shimmering mirage forever?

We face two obstacles in reaching this world. The first is a tech-
nical obstacle: running resource-intensive applications on resource-
poor mobile hardware. Remote execution can remove this obstacle,
provided one can count on access to a compute server via a wire-
less network. The second obstacle is an economic one. The effort
involved in creating applications of this new genre from scratch is
enormous, requiring expertise in both the application domain and
in mobile computing. Further, there is no incentive to publicly de-
ploy compute servers if such applications are not in widespread
use. We thus have a classic deadlock, in which applications and
infrastructure each await the other.

Our work aims to break this deadlock. We lower the cost of
creating resource-intensive mobile applications by reusing existing
software that was created for desktop environments. Using our ap-
proach, relatively unskilled programmers can do a credible job of
rapidly porting such software to new mobile devices. Even if the
result is not optimal in terms of performance, it is typically good
enough for real use. We have validated our approach on seven ap-
plications. The next step is, of course, to enlarge the suite of appli-
cations. This will help us broaden the validity of our approach, and
improve it along the lines discussed in Section 10. If these efforts
meet with continued success, we are confident that our work can
help stimulate the transformation of mobile computing.

284

13. REFERENCES

[1] Amiri, K., Petrou, D., Ganger, G., Gibson, G. Dynamic Function
Placement for Data-Intensive Cluster Computing. Proceedings of the
USENIX Annual Technical Conference, San Diego, CA, June 2000.

[2

—

Balan, R. K. Simplifying Cyber Foraging. PhD thesis, Technical
Report CMU-CS-06-120, Carnegie Mellon University, Pittsburgh,
PA, May 2006.

Balan, R.K., Satyanarayanan, M., Park, S., Okoshi, T. Tactics-Based
Remote Execution for Mobile Computing. Proceedings of the 1st
International Conference on Mobile Systems, Applications, and
Services (MobiSys), San Francisco, CA, May 2003.

3

—_

[4

—

Bentley, J. Little Languages. Communications of the ACM,
29(8):711-721, 1986.

[5

—

Birrell, A.D., Nelson, B.J. Implementing Remote Procedure Calls.
ACM Transactions on Computer Systems, 2(1):39-59, February
1984.

[6

=

Black, A.W., Lenzo, K.A. Flite: a small fast run-time synthesis
engine. 4th ISCA Tutorial and Research Workshop on Speech
Synthesis, Perthshire, Scotland, August 2001.

3
=

Blelloch, G.E., Chatterjee, S., Hardwick, J.C., Sipelstein, J., Zagha,
M. Implementation of a Portable Nested Data-Parallel Language.
Proceedings of the fourth ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP), San Diego, CA,
May 1993.

[8

=

Budinsky, F., DeCandio, G., Earle, R., Francis, T., Jones, J., Li, J.,
Nally, M., Nelin, C., Popescu, V., Rich, S., Ryman, A., Wilson, T.
‘WebSphere Studio Overview. IBM Systems Journal, 43(2):384-419,
May 2004.

[9] Chen, B., Morris, R. Certifying Program Execution with Secure
Processors. Proceedings of the 9th Workshop on Hot Topics in

Operating Systems (HOTOS), Lihue, HI, May 2003.

[10] de Lara, E., Wallach, D.S., Zwaenepoel, W. Puppeteer:
Component-based Adaptation for Mobile Computing. Proceedings of
the 3rd USENIX Symposium on Internet Technologies and Systems

(USITS), Berkeley, CA, March 2001.

[11] Eisenstein, J., Vanderdonckt, J., Puerta, A. Applying Model-Based
Techniques to the Development of Uls for Mobile Computers.
Proceedings of the International Conference on Intelligent User

Interfaces (IUI), Santa Fe, NM, January 2001.

[12] Federal Communications Commision. License Database.
https://gullfoss2.fcc.gov/prod/oet/cf/eas/reports/

GenericSearch.cfm, March 2003.

[13] Feldman, S.I. Make-A Program for Maintaining Computer Programs.

Software - Practice and Experience, 9(4):255-265, 1979.

[14] Flinn, J., Satyanarayanan, M. Energy-Aware Adaptation for Mobile
Applications. Proceedings of the 17th ACM Symposium on Operating

Systems Principles, Kiawah Island, SC, December 1999.

[15] Forman, G., Zahorjan, J. The Challenges of Mobile Computing.

IEEE Computer, 27(4):38-47, April 1994.

Fox, A., Gribble, S.D., Brewer, E.A., Amir, E. Adapting to Network
and Client Variability via On-Demand Dynamic Distillation.
Proceedings of the Seventh International ACM Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), Cambridge, MA, October 1996.

[16]

[17] Frederking, R., Brown, R.D. The Pangloss-Lite Machine Translation
System. Expanding MT Horizons: Proceedings of the Second
Conference of the Association for Machine Translation in the

Americas, Montreal, Canada, October 1996.

[18] Grimshaw, A.S., Liu, J.W. MENTAT: An Object-Oriented Data-Flow
System. Proceedings of the second ACM Conference on
Object-Oriented Programming Systems, Languages and Applications

(OOPSLA), Orlando, FL, October 1987.

[19]

[20]

[21]

[22]

(23]

[24]
[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

Gross, D. Buy Cell: How many mobile phones does the world need?
Slate. http://slate.msn.com/id/2101625/, June 2004.

Gurun, R., Krintz, C., Wolski, R. NWSLite: A Light-Weight
Prediction Utility for Mobile Devices. Proceedings of the Second
International Conference on Mobile Computing Systems,
Applications and Services, Boston, MA, June 2004.

Haartsen, J. The Bluetooth Radio System. IEEE Personal
Communications, 7(1):28-36, February 2000.

Hoeim, D., Ke, Y., Sukthankar, R. SOLAR: Sound Object
Localization and Retrieval in Complex Audio Environments.
Proceedings of the 30th IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Philadelpha, PA, March
2005.

Hunt, G.C., Scott, M.L. The Coign Automatic Distributed
Partitioning System. Proceedings of the 3rd Symposium on
Operating System Design and Implementation (OSDI), New Orleans,
LA, Feb. 1999.

Jeronimo, M., Weast, J. UPnP Design by Example. Intel Press, 2003.

Jul, E., Levy, H., Hutchinson, N., Black, A. Fine-Grained Mobility in
the Emerald System. ACM Transactions on Computer Systems,
6(1):109-133, February 1988.

Kanellos, M. Nation: Techno-revolution in the making. CNET
news.com. http://news.com.com/Nation+
Techno-revolution+in+the+making+-+Part+1+of+South+
Koreas+Digital+Dynasty/2009-1040_3-5239544.html, June
2004.

Katz, R.H. Adaptation and Mobility in Wireless Information
Systems. IEEE Personal Communications, 1(1):6-17, 1994.

Klemmer, S.R., Li, J., Lin, J., Landay, J.A. Papier-Mache: Toolkit
Support for Tangible Input. Proceedings of the ACM Conference on
Human Factors in Computing Systems (CHI), Vienna, Austria, April
2004.

Ko, A.J., Aung, H.H., Myers, B.A. Eliciting Design Requirements
for Maintenance-oriented IDEs: A Detailed Study of Corrective and
Perfective Maintenance Tasks. Proceeding of the 27th International
Conference on Software Engineering (ICSE). To Appear, St. Louis,
MO, May 2005.

Lakshminarayanan, K., Padmanabhan, V.N., Padhye, J. Bandwidth
Estimation in Broadband Access Networks. Proceedings of the 4th
ACM/USENIX Internet Measurement Conference (IMC), Taormina,
Sicily, Italy, October 2004.

Narayanan, D., Satyanarayanan, M. Predictive Resource
Management for Wearable Computing. Proceedings of the 1st
International Conference on Mobile Systems, Applications, and
Services (MobiSys), San Francisco, CA, May 2003.

Nichols, J., Myers, B.A., Higgins, M., Hughes, J., Harris, T.K.,
Rosenfeld, R., Pignol, M. Generating Remote Control Interfaces for
Complex Appliances. Proceedings of the 15th Annual ACM
Symposium on User Interface Software and Technology (UIST),
October 2002.

Nielsen, J. Usability Engineering. Academic Press, San Diego, CA,
1993.

Noble, B.D., Satyanarayanan, M., Narayanan, D., Tilton, J.E., Flinn,
J., Walker, K.R. Agile Application-Aware Adaptation for Mobility.
Proceedings of the 16th ACM Symposium on Operating Systems
Principles, Saint-Malo, France, October 1997.

Pane, J.F.,, Myers, B.A. Usability Issues in the Design of Novice
Programming Systems. Technical Report CMU-HCII-96-101,
Carnegie Mellon University, Pittsburgh, Pennsylvania, August 1996.

Richard III, G.G. Service and Device Discovery: Protocols and
Programming. McGraw-Hill Professional, 2002.

285

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[471

(48]

[49]

[50]

(511

[52]

[53]

[54]

[55]

[56]

Rinard, M.C., Lam, M. S. The Design, Implementation, and
Evaluation of Jade. ACM Transactions on Programming Languages
and Systems, 20(3):483-545, May.

Rudenko, A., Reiher, P., Popek, G.J., Kuenning, G.H. Saving
Portable Computer Battery Power through Remote Process
Execution. Mobile Computing and Communications Review,
2(1):19-26, January 1998.

Sailer, R., van Doorn, L., Ward, J.P. The Role of TPM in Enterprise
Security. Technical Report RC23363(W0410-029), IBM Research,
October 2004.

Sailer, R., Zhang, X., Jaeger, T., van Doorn, L. Design and
Implementation of a TCG-based Integrity Measurement
Architecture. Proceedings of the 13th USENIX Security Symposium,
San Diego, CA, August 2004.

Salonidis, T., Bhagwat, P., Tassiulas, L. Proximity Awareness and
Fast Connection Establishment in Bluetooth. Proceedings of the 1st
ACM International Symposium on Mobile Ad Hoc Networking &
Computing (MobiHoc), Boston, MA, 2000.

Satyanarayanan, M. Fundamental Challenges in Mobile Computing.
Proceedings of the Fifteenth ACM Symposium on Principles of
Distributed Computing (PODC), Philadelphia, PA, May 1996.

Schneiderman, H., Kanade, T. A Statistical Approach to 3D Object
Detection Applied to Faces and Cars. Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), Hilton Head Island, South Carolina, June 2000.

Schulenburg, J. GOCR source code and online documentation.
http://jocr.sourceforge.net/, Feb. 2004. (Version 0.39).

Shneiderman, B. Empirical Studies of Programmers: The Territory,
Paths, and Destinations. Proceedings of First Workshop on Empirical
Studies of Programmers, Alexandria, VA, Jan 1996.

Smailagic, A., Siewiorek, D. Application Design for Wearable and
Context-Aware Computers. [EEE Pervasive Computing, 1(4),
October-December 2002.

TechSmith Corporation. Camtasia Studio.
http://www.techsmith.com/, June 2004.

The Walkthru Project. GLVU source code and online documentation.
http://wuw.cs.unc.edu/~walk/software/glvu/, Feb. 2002.
(Accessed on July 23 2002).

Trusted Computing Group. Trusted Platform Module Main
Specification, Version 1.2, Part 1: Design Principles, Part 2: TPM
Structures, Part 3: Commands, October 2003.
https://www.trustedcomputinggroup.org.

Waibel, A. Interactive Translation of Conversational Speech. IEEE
Computer, 29(7):41-48, July 1996.

Waldo, J. The Jini Architecture for Network-centric Computing.
Communications of the ACM, 42(7):76-82, 1999.

Walko, J. Handset sales reach new high in 2004. EE Times.
http://www.eetimes.com/showArticle. jhtml;?articleID=
59100009, January 2005.

Willmott, A.J. Radiator source code and online documentation.
http://www.cs.cmu.edu/~ajw/software/, Oct. 1999.
(Accessed on July 23 2002).

The World Wide Web Consortium (W3C). Web Services
Architecture. http://www.w3.org/TR/ws-arch/, Feb. 2004.

Yao, P., Durant, D. Microsoft Mobile Internet Toolkit Lets Your Web
Application Target Any Device Anywhere. MSDN Magazine, 17(11),
November 2001.

Zieniewicz, M.J., Johnson, D.C., Wong, D.C., Flatt, J.D. The
Evolution of Army Wearable Computers. /[EEE Pervasive
Computing, 1(4), October-December 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

