

DMA representations
IOMMU, sg chaining, etc

FUJITA Tomonori

NTT Cyber Space Laboratories

fujita.tomonori@lab.ntt.co.jp

NTT Cyber Space Laboratories

IOMMU issues

• Ignoring LLDs’ restrictions
– Segment length
– Segment boundary

• DMA parameters duplicated in many
structures
– struct device, request_queue, and

device_dma_parameters
• Performance

– Space management algorithm
– IOMMU API changes

Let’s ignoring LLDs’
restrictions

NTT Cyber Space Laboratories

LLD’s restrictions:
too long segment length

• Some LLDs have restrictions on segement
length
– e.g. bnx2 can’t handle more than 64KB

• We have two places to merge pages (leads to
larger segment than page size)
– The block layer respects q->max_segment_size
– IOMMUs merges as many pages as they like with

ignoring the restrictions
• Some LLDs have a workaround to split too

large segments

NTT Cyber Space Laboratories

LLD’s restrictions:
spanning segment boundary

• Some LLDs have restrictions on segement boundary
– e.g. Some ATAs can’t handle a segment spanning 64K

boundary

• Again we have two places to create segments
spanning the boundary
– The block layer respects q->seg_boundary_mask when it

merges pages
– IOMMUs maps segments to whatever memory area they

like (which cloud span the boundanry) to ruin the block
layer’s efforts

• Some LLDs have a workaround to split segments
spanning the boundary

NTT Cyber Space Laboratories

The issues to solve

• IOMMUs can’t see the device
restrictions
– The restrictions are stored in request

queue (IOMMU can’t access to)
– IOMMU can see only struct device

• e.g. dma_map_single(struct device, addr, len,
dir)

• All the IOMMUs need to be fixed to
support the restrictions

NTT Cyber Space Laboratories

New device_dma_parameters
structure

struct device_dma_parameters {
unsigned int max_segement_size;
unsigned long segment_boundary_mask;

};

struct pci_dev {
struct device_dma_parameters dma_parms;
struct device;
…;

};

struct device {
struct dvice_dma_parameters *dma_parms;
…;

};

• device_dma_para
meters is
embedded in
pci_dev (it will be
in other dma’able
devices)

• struct device has
a pointer to
struct
device_dma_para
meters

NTT Cyber Space Laboratories

What IOMMUs were fixed?

• Segment length
– x86_64 (gart)
– Alpha
– POWER
– PARISC (sba, ccio)
– IA64
– SPARC64

• Segment boundary
– x86_64 (calgary, gart, Intel)
– Alpha
– POWER
– PARISC (sba, ccio)
– IA64
– SPARC64
– ARM (jazzdma.c)
– swiotlb (x86_64, ia64)

Blue: patch merged
green: patch submitted
Red: not yet

 Let’s store LLDs’ restrictions
at three different locations

NTT Cyber Space Laboratories

dma parameters are confusing

• struct device has
– u64* dma_mask
– u64 coherent_dma_mask
– struct device_dma_parameters *dma_parms

• sturct device_dma_parameters has
– unsigned int max_segment_size;
– unsigned long segment_boundary_mask

• struct request_queue has
– unsigned int max_segment_size
– unsigned long seg_boundary_mask

NTT Cyber Space Laboratories

Needs to clean up
dma parameters

• Struct device are also used for non
dma’able devices so should not have
– u64* dma_mask
– u64 coherent_dma_mask

• The block layer and IOMMUs duplicate
the same values
– Max_segment_size
– Segment_boudnary_mask

 IOMMU is becoming
the performance bottleneck

NTT Cyber Space Laboratories

What’s the best algorithm to
mange free space?

• IOMMUs spend long time to mange free space
– Most of use simple bitmap
– Intel uses Red Black Trees

• I converted POWER iommu to use it and lost 20% of
performance with netperf.

– What’s the best (depends on the size of IOMMU memory
space)

• Should we have one library functions for IOMMU
– It’s really hard since every IOMMUs use the own

techniques
– lib/iommu-helper.c provides primitive functions for

bitmap management

NTT Cyber Space Laboratories

When should we flush IOTLB?

• Flushing IOTLB is expensive
– Most of IOMMUs delay flushing IOTLB

entries until they are reused
– Intel IOMMU (VT-d) flushes IOLTB entries

every time the entries are unmapped
• How to avoid IOTLB flush

– The drivers should batch unmapping?
– Dividing IOMMU space and assigning them

to each drivers?

NTT Cyber Space Laboratories

When should we flush IOTLB?

• Flushing IOTLB is expensive
– Most of IOMMUs delay flushing IOTLB

entries until they are reused
– Intel IOMMU (VT-d) flushes IOLTB entries

every time the entries are unmapped
• How to avoid IOTLB flush

– The drivers should batch unmapping?
– Dividing IOMMU space and assigning them

to each drivers?

NTT Cyber Space Laboratories

Why should we unmap?

• Decent hardware handles 64 bit space
• Nice IOMMU also handles large space

(64 bit)
• Just map all the host memory and

don’t unmap at all
• We lose some features (like

protection) but it would be nice in
some circumstances

SCSI data accessors, SG
chaining, SG ring, etc

NTT Cyber Space Laboratories

What’s scsi data accessors?

• Helper functions to insulate LLDs from
data transfer information
– We planed to make lots of changes to

scsi_cmnd structure support sg chaining
and bidirectional data transfer

– LLDs directly accessed to the values in
scsi_cmnd

– We rewrited LLDs to access scsi_cmnd via
new accessors

NTT Cyber Space Laboratories

scsi data accessors example
access to scsi_cmnd’s sg list

struct scsi_cmnd *sc
struct scatterlist *sg =

 sc->request_buffer;

Old way New way

struct scsi_cmnd *sc
struct scatterlist *sg =

 scsi_sglist(sc);

#define scsi_sglist(sc)
sc->request_buffer

NTT Cyber Space Laboratories

struct scsi_cmnd changed

struct scsi_cmnd {
void *request_buffer;

2.6.24 Post 2.6.24

struct sg_table {
struct scatterlist *sgl;

struct scsi_data_buffer {
struct sg_table table;

struct scsi_cmnd {
struct scsi_data_buffer sdb;

#define scsi_sglist(sc)
sc->request_buffer

#define scsi_sglist(sc)
sc->sdb.table.sgl

We just changed scsi_sglist macro, not all the drivers

NTT Cyber Space Laboratories

scatter gather chaining

• SCSI-ml couldn’t handle Large data
transfer
– scsi-ml pools 8, 16, 32, 64, and 128 sg

entries (the sg size is 32 bytes on x86_64)
– People complains about scsi memory

consumption so we can’t have large sg
entries

– scsi_cmnd struct has a point to sg entries

NTT Cyber Space Laboratories

scatter gather chaining
(cont.)

• sg chaining
– The last sg entry tells us it’s the last entry or we have

more sg entries
• The last sg entry points to the first entry of the next sg list

– sg entries aren’t continuous any more!

SG entries

SG entries

scsi_cmnd
structure

SG entries

The maximum of the entries are 7 + 7 + 8.

NTT Cyber Space Laboratories

scsi data accessors (cont.)
Too simple sg setup examples

struct scsi_cmnd *sc
struct scatterlist *sg =

 sc->request_buffer;

for(i = 0; i < nseg; i++) {
paddr = sg_dma_address(sg[i]);
…

stcuct scsi_cmnd *sc
struct scatterlist *sg;

scsi_for_each_sg(sc, sg, nseg,i) {
physaddr = sg_dma_address(sg);
…

Old way New way

How a LLD tell addresses for I/Os for the HBA

NTT Cyber Space Laboratories

How didi scsi data accessors
help sg chaining?

• Before sg chaining
#define scsi_for_each_sg(sc, sg, nseg, i)
for(i = 0, sg = scsi_sglist(sc); i < nseg, i++, sg++)

• We changed it after sg chaining
sg entries must be continuous

#define scsi_for_each_sg(sc, sg, nseg, i)
for(i = 0, sg = scsi_sglist(sc); i < nseg, i++, sg =

sg_next(sg))
sg_next macro takes care of discontinuous sg entries

LLDs can support sg chaining magically without modifications

NTT Cyber Space Laboratories

SG chaining isn’t good?

• Some wants something like sg chaing
– Crypto already has something, virto wanted it

• Difficult to modify SG chaining once creating
it
– Can’t add new entries to it or split it easily

• SCSI (and block) drivers shouldn’t manipulate
SG lists
– Building sg lists is the job for the block and scsi

mid-layer
– The drain buffer work and the IOMMU fixes

enables us to remove SG modifying code in libata

NTT Cyber Space Laboratories

SG ring: two level traversal

struct sg_ring {
struct list_head list;
int num, max;
struct scatterlist sg[0]

};

• Struct sg_ring has a list_head and a scatter
list

• We chain sg_ring structures with the
list_head

• SCSI tried a similar idea (scsi_sgtable) before

NTT Cyber Space Laboratories

SG table:

struct sg_table {
struct scatterlist *sg;
unsigned int nents;
unsigned int orig_nents;

};

• It has just a sg list and the number of
the sg entries.

• We chain the sg list as SG chain

