
SCSI Transport Class
Development

Mike Christie (mchristi@redhat.com)

 Simplifying SCSI Transport
Class Development and

Use.
● Transport Class Issues.
– Kernel.
– Userspace.

● Possible Solutions.
– Merge common SCSI abstractions.
– Provide userspace apps with simplified API.

How to Make Userspace
Maintainers Cry

● Using the SCSI sysfs API is hard.
– lsscsi provides in depth transport information on a

wide range of kernels.
● lscsi maintainer had to read transport class maintainers

minds and dig in the transport class code
– Multipath-tools can barely figure out one transport.

● Minimal Fibre Channel support.
● Tools should be able to take advantage of transport timers,

but they don't.

How to Make Kernel
Maintainers Cry

● Target blocking API is difficult to use.
– Some driver's transport class block/unblock use is

racey.
– Some of the drivers have implemented their own

work around.
– The rest have given up.

● Duplicate Functionality, but slightly different
implmentations.
– Port scanning, blocking, locking hacks.

Kernel Solution
● Provide abstraction for SCSI ports and I_T

Nexus.
– Scanning and blocking become standardized.
– Eliminate need to port fixes between classes.
– Transport classes can add/override common sysfs

attrs for these objects like with scsi_hosts and
scsi_devices, or add new objects under the SCSI ones.

SCSI port and I_T Nexus
structs

 _ _ {struct scsi transport template

 / * Classes can set these up to export
 .* transport specific values for the object
 /*
 _ _ _struct transport container local port attrs;
 _ _ _struct transport container remote port attrs;
 _ __ _struct transport container i t nexus attrs;

}

 _ {struct scsi port
 struct device dev;
 _void *transport data;
 / . * this is just the sysfs id The port values that make up the port
 _ _* id for the transport are added via the the scsi transport template
 .* attrs
 /*
 int id;

/) (/* scanning and recovery dev loss tmo, fail fast tmo, etc fields *
........

};

 ___ {struct scsi i t nexus
 struct device dev;
 _void *transport data;
 int id;
};

SCSI port and I_T Nexus
API example

● iSCSI class creating a target port.
_ _) _ _ (iscsi create session struct iscsi port *initiator port
|- _ ___) _ _ (scsi add i t nexus struct scsi port *initiator port
 {

 ___ __struct scsi i t nexus *i t nexus;

..........

__ -> . = & _ -> .i t nexus dev parent initiator port dev
_)& __ -> (device register i t nexus dev

......

_ _ _) __ (scsi add target port i t nexus ;
 }
 |- _ _ _) ___ __ (scsi add taget port struct scsi i t nexus *i t nexus
 {

 _ _struct scsi port *target port;

..........

_ -> . = & __ -> .target port dev parent i t nexus dev
_)& _ -> (device register target port dev

......
 }

Userspace Benefits

Tree
......

_scsi host
.
|-- _scsi port
| |-- ___scsi i t nexus
| | |-- _scsi port
| | | |-- _scsi target
| | | | |-- _scsi device

 Transport class specific values like iSCSI target name or FC port id would be placed under
 . .the scsi port or Nexus structs Classes Could also add their own objects under the scsi ones

● Provide userspace with a common starting point
to find port, and I_T Nexus values.

Userspace Library
● Common kernel objects do not solve all of

userspaces's problems.
– Differences in sysfs layout between kernels.
– Applications will still need to know something about

the transport to get lower level transport values.
● Should there be a userspace library?

