Request-based multipath
(Request-based Device-mapper Multipath)

Kiyoshi Ueda
Jun'ichi Nomura
(NEC Corporation)

Contents

« Goal and basic design of the feature
e Current status
« Today's discussion topics

ssuel:
ssuez:
ssued:

ow to avoid deadlock during completion?
ow to keep requests in mergeable state?
ow to hook completion for stacking driver?

» Background of each issue
e Solution for each issue

Multipath implementations in Linux

File system File system File system
MD, DM multipath
I/O scheduler I/O scheduler I/O scheduler

Request-basec
DM multipath

Hardware subsystem

LLD multipath

Hardware subsystem

Hardware subsystem

v

Different implementations
on different hardware...

\J

Generic implementation,

but cannot get correct info.

about /O load...

taking
the Best of both!

Request-based DM multipath

File system

» Choose path when

pulling request from <é % %/éj <¢>
queue
///Osc d er
S S S S
« BIOs are already

merged v \

 Can obtain exact
count of /O units Request-based DM multipath
(that allows better

load-balancing

. Y Y
decision) Hardware Hardware

subsystem subsystem

BIO

request

Request-based DM multipath

« The goal of the feature

- Do path selection below/after the |/O scheduler
« Current design

- Keep the user space (dm) interface same
- Use __elv_add _request() for submission

- Restructure the completion procedure

« blk_end _request() as a single driver interface
 Other problems to be solved (today's topic)

Current Status

- Consensus in LSF'07: do multipath at request-level
- OLS'07: Basic design and evaluation results

- Status of patches

« Block layer changes
- blk_end_request interface: will be included in 2.6.25

< - Request stacking framework: RFC proposal >

« Device-mapper changes Today's Topic
- Request-based dm core: tentative patches available

- Request-based dm-multipath: tentative patches available
- Dynamic load balancer: tentative patches available

« Multipath-tools changes (No changes required)

Today's topics:
Issues In request stacking
« What is request stacking?

- Submitting a request in a stacking driver's queue to
lower queue (after cloning)

— Calling back the stacking driver when completing
the request

e |SSues

ssuel: How to avoid deadlock during completion?
ssue2: How to keep requests in mergeable state?

ssue3: How to hook completion for stacking driver?

7

Issue1: How to avoid deadlock
during completion?
* Drivers using __ blk_end_request() will deadlock

- blk_end_request() means the queue lock is held
through the completion process

- During the completion, upper device may want to
hold the queue lock

 To submit another request
« To finish the completing request

« Fortunately(?) the biggest user of dm-multipath
IS scsi and scsi doesn't have the problem

Queue locking (normal)

blk_end_request() knows the queue is already locked.

So no problem.

Knowing queue1
already locked.

So it's ok.
__blk_end_request

Finishing the request

queue Submitting another request
Queu‘
lock Driver (e.g. ide)

Queue locking (stacked)

Stacking driver doesn't know whether the bottom-
level queue is locked. So deadlock will happen.

Not knowing

blk_end_request < queuei already
est

. locked.
Submitting another requ

Finishing the request

queue2

Stacking driver (e.g. dm) > lock
___blk_end_request

queuef Already

lock <

locked by
Driver (e.g. ide) driver!

10

Queue locking (stacked)

If the driver uses blk_end_request(), no problem.

Not knowing

blk_end_request < queuet locked
est

e or not.
Submitting another requ

Finishing the request

queue2

Stacking driver (e.g. dm)) lock
blk_end_request

queuef OK!

(no lock)

queuel is not

Driver (e.g. scsi) locked.

11

Issue2: How to keep requests in
mergeable state?

« Once a request is pulled from the queue and
sent to device, the request has no chance of
merge

« Timing of the pull is controlled by:

- plug/unplug controls whether driver can try to pull
the request off from the queue

- Driver decides whether to pull the requests after
checking if device is busy

« What if the queues are stacked?

- (Cont. to the next slide)

12

Issue2: How to keep requests in
mergeable state?

» If the queues are stacked

- The upper driver doesn't know whether (the bottom
level) device is busy

- S0 the request is pulled whenever the queue is
unplugged

- But if the device is busy, the pulled request will stay
in the lower queue without a change of merge

=> Less merge, worse throughput
(Cont. to next slides for an example)

13

Device busy check (normal) [1/3]

A BIO is submitted and a request is
queued

BIO submitter ©

make_request_fn()

Request queue y

Driver
(e.g. Scsi mid layer)

request_fn()

) BIO
] request
| Request queue

Device busy check (normal) [2/3]

Another BIO is submitted and merged

to the existing request.
BIO submitter © Q

make_request_fn()
Request queue y y

Driver BUSY!
(e.g. Scsi mid layer)

request_fn()

Unplugged. But driver didn't pull the
request because the device is busy.
The request stays in the queue.

) BIO |
] request - 15
| Request queue

Device busy check (normal) [3/3]

BIO submitter

Request queue

Driver
(e.g. Scsi mid layer)

X X

Yet another BIO is submitted.
Since the previous request is in
the queue, the BIO is merged.

make_request_fn()

OO

O OO

i

request_fn()

When unplugged, if the
device is ready, driver will
pull the request.

) BIO |
] request - 16
| Request queue

Device busy check (stacked) [1/4]

A BIO is submitted and a request is
queued

BIO submitter ©

make_request_fn()

Request queue

(e.g. of dm) @

request_fn()

Request queue
(e.g. of scsi)
request_fn()
Driver
(e.g. Scsi mid layer) S |
<> BIO |
] request

| Request queue

Device busy check (stacked) [2/4]

Another BIO is submitted and merged
to the existing request.

BIO submitter
make_request_fn()

Request queue

(e.g. of dm)
Unplugged.
Request is sent
Request queue Y down to the
(e.g. of scsi) © © lower queue.

request_fn()

Driver
(e.g. Scsi mid laye

) BIO |
1 request - 18
| Request queue

Unplugged. But driver didn't pull the
request because the device is busy.
The request stays in the queue.

Device busy check (stacked) [3/4]

BIO submitter

Request queue
(e.g. of dm)

Request queue
(e.g. of scsi)

Driver
(e.g. Scsi mid layer)

@O @

Yet another BIO is
submitted.
Since the previous

D

request is not in
the queue, a new
request is created.

request_fn()

O O

This request has

no chance of
merge..

BUSY!

request_fn()

) BIO |
1 request - 19
| Request queue

Device busy check (stacked) [4/4]

BIO submitter

Request queue
(e.g. of dm)

Request queue
(e.g. of scsi)

Driver
(e.g. Scsi mid layer)

@ @

P

make_request_fn()

D

" This BIO could

have been
merged..

request_fn()

O O

O

When \
unplugged, if
the device is
~ ready, driver will
<:i:::::::%\guﬂtherequeSE//
<> BIO |
] request - 20

1 Request queue

Device busy check (stacked)

BIO submitter © Q ©

make_request_fn()

Request queue

(e.g. of dm) @ @ @

request_fn()

Request queue

y
(¢-g. of scsi) OO D The 3 BIOs
could be
merged like
y this.
Driver
(e.g. Scsi mid layer) Q Q Q S |

- BIO |
[request 21
- [1 Request queue

Issue3: How/where to hook
completion for stacking driver?

Before discussing about the hook,
Review the request completion process.
(Cont.)

22

Request completion

Request completion includes 2 parts:

1. Update the BIO's bvec index and offset and
notify the submitter when fully completed

2. If all BIOs are done, update the status of
request queue, release the request and notify
submitter of the request

23

Differences of bio and request

* Bio
- Completion is notified to the upper layer only when
the BIO is fully completed.

- Device locking is not required for both submission
and completion.

 Request

- Completion is notified to the upper layer even if the
request is partially completed.

- Device locking (queue lock) is required for both
submission and completion.

24

bi_end _io and rg->end_io (normal)

BIO

Submitter (fs, ioctl, etc)

Notify submitter only
when fully completed

index and offset
for each partial

Update bvec
completion

Block layer
(__end_that_request_first)

@ BIO
[] request

bi_end io()

Request

Submitter (fs, ioctl, etc)

Partial

completions
are notified to

submitter

when fully

completed

Block layer
(__end_that _request_first)

A

rg->end_io is
called only

rg->end_io()
25

bi_end o and rg->end _io (stacked)

BIO

Submitter (fs, ioctl, etc)

Notify submitter only
when fully completed bi_end_io()

T

* bi_end_io()

11

Block layer

@ BIO
[] request

Request

Submitter (fs, ioctl, etc)

* f Partial
completions

are notified to

submitter
Block Iayer

T T rq >end_io()

T T A rg->end_io()

26

Issue3: How/where to hook
completion for stacking driver?

« rg->end _Io() is called too late during the
completion process

- It's called after the completion is notified to
submitters of BIOs.

» rg->end_lio() is called with queue lock held

- So we have the deadlock problem same as Issue1

27

Solutions for each issue

ssuel:
ssuez:
ssued:

ow to avoid deadlock during completion?
ow to keep requests in mergeable state?
ow to hook completion for stacking driver?

28

Solutions for issue1 (deadlock)

A) Allow stacking only for non-locking drivers = Proposed as RFC

- Reject stacking on locking drivers, which use __ blk_end_request()
(non-locking drivers use only blk_end_request())
=> Always call the stacking hook without queue lock
=> No deadlock on finishing request
=> No deadlock on submission during completion

B) No submission during completion

- Allow stacking on locking drivers, too
=> Deadlock on submission during completion is unavoidable
(E.g. Submitting to device B during the completion for device A)
=> Can't submit any request during completion

- Add 2 stacking hooks for locking/non-locking drivers so that
stacking driver can know whether the queue is locked or not

=> Can avoid deadlock on finishing request on the queue
29

Issue1-A) Allow stacking only for
non-locking drivers

« Summary

- Allow stacking only for drivers not using __ blk_end_request().
Drivers using __ blk_end_request() are unstackable.

- No deadlock on both finishing and submission during completion
=> Another request submission during completion is available
(but the request may be submitted to other driver's device)

- Current stackable drivers: scsi, cciss, i20

« Needed work

- Change the block layer not to use __blk_end_request()
 barrier handling
« error handling for drivers (BLKPREP_KILL)
- Dasd driver change for existing dm-multipath users 30

Issue1-B) No submission during
completion

e Summary

- Allow request stacking on locking drivers, too

- Can't avoid deadlock on submission between locking driver's 2
completion processes (“AB-BA” deadlock)
=> Can't submit any request during completion
=> Use workqueue or something: Performance concern

- Deadlock on finishing request is avoidable by letting stacking hook
know about the locking status of the queue lock:

« Add 2 stacking hooks for locking/non-locking drivers
« Add an argument of locking/non-locking to stacking hook
» Needed work

- Pass any submission during the completion to workqueue "

- 2 implementations for 2 hooks or additional argument for the hook

Solutions for issue?2 (busy check)

A) Export busy state via queue flag | Proposed as RFC

 Bottom level drivers must set/clear the flag appropriately
 Bit operations. No extra lock overhead: Inexpensive

 Stacking drivers can check busy state of (bottom level)
devices without calling (bottom level) drivers

 Extra bit operation overhead: Inexpensive
B) Add busy state check function to queue

« Bottom level drivers set its own function
* No extra overhead when request stacking is not used: Free
« Stacking drivers call it whenever dispatching a request

» Busy check function may need lock: (Very) Expensive
32

Solutions for issued (stacking hook)

A) Add another hook " Proposed as RFC

« Add another hook for request stacking to the head
of blk_end_request instead of using end_io

B) Move end_io calling place

« Move end_io to the head of blk_end_request
C)Useend ioasitis

« Use end_io with the existing calling place

33

Issue3-A) Add another hook

 Summary

- Add another hook for request stacking to the head of
blk_end request() (notin __blk_end_request())
=> Stacking driver is always called without queue lock
=> Submission during completion is available

- Don't use end _io() for request stacking.
- No need to change existing end_io users

- Stacking drivers are responsible for completion of the
request against the queue/device

* Needed work

- None

34

Issue3-B) Move end o calling place

« Summary

- Move end_io to the head of blk_end_request() and
__blk_end_request() for existing end_io users
=> end_io could be called with/without queue lock held
(existing end_io users need to care about the lock status)

- Stacking drivers and existing end_io users share end_io and both
are responsible for completion of the request on the queue

 Needed work

- Existing end_io users need to be changed to take responsibility
for whole completion of the request including data (bio)
completion part, while they are interested in only request
destruction part

35

Issue3-C) Use end 0 as itis

e Summary

The block layer don't complete a request partially only for stacking driver
(stacking driver can't do partial completion)
=> Performance concern

Stacking driver is always called with the queue lock held
=> Submission during completion is unavailable

Use end_io with the existing calling place
=> No need to change existing end_io users

Stacking driver is called after finishing request on the queue is done
(No responsibility for finishing request on the queue)

« Needed work

Change the block layer not to complete bios in a request only for
stacking drivers, while device drivers call blk_end_request for partial

completion
36

Thank you

« RFC for issuel (deadlock) and issue3 (hook)
- http://Ikml.org/lkm|/2008/2/15/411
- http://Ikml.org/Ikml/2008/2/15/412
- http://Ikml.org/lkml/2008/2/15/413
« RFC for issue2 (busy check)
- http://lkml.org/lkm|/2008/2/15/416

