Stacking

Erez Zadok & Jan Blunck

LSF 2008

2/25/2008 Stacking -- LSF'08



Topics

1. Page cache consumption
2. Stack space pressure
3. Persistent inode numbers

4. \Whiteouts
5. Readdir/telldir/seekdir

2/25/2008 Stacking -- LSF'08



(1) Page Cache Consumption

Problem:

e each layer maintains its own objects
(dentries, inodes, pages, etc.)

e want address_space (or vm_operations)
— for mmap to work, executing binaries, etc.

e pages are "duplicated" at each layer,
Increasing memory pressure
— Even worse when stacking on tmpfs

e some stackable file systems don't change
data b/t layers (e.g., unionfs)
— others do change data (e.g., eCryptfs)

2/25/2008 Stacking -- LSF'08



Problem (cont.)

 NO way to share pages among layers
— page—mapping—host points to one inode
structure
e also: address_space ops are too
complex for what stackable f/s want
— want: just pass op to lower

— must deal with: page locking state, page
flags, AOP_WRITEPAGE_ ACTIVE...

2/25/2008 Stacking -- LSF'08



Past attempts included

e copy to lower page, then try to release lower
page after lower op is done (e.q.,
PG _reclaim)
— Reduces average memory pressure
— still doesn't relieve the pressure, esp. under stress
o temporarily set upper page—mapping—host
to lower_inode, pass op to lower layer, then
fix —host up
— Only keeping upper pages
— Ugly to “fix up” a pointer, racy

2/25/2008 Stacking -- LSF'08



Past attempts (cont.)

 Implement vm_operations—fault op
(e.qg., aufs)
— Simplifies code (no address_space ops)

— Set “vma—vm_file = lower _file”, then call
lower —fault op

— Still needs to “fixup” a pointer
 Other suggestions?

2/25/2008 Stacking -- LSF'08



(2) Stack Space Pressure

Problem:
e each layer adds more to the stack
 layers on top of layers possible today

Suggestions/Solutions:
« short term: build kernel with larger stacks

* long term:

— linked list of ops: foofs_op — barfs_op —
lowerfs _op

— VFS iterates through list?
» Similar to Windows’ I/O Manager
2/25/2008 Stacking -- LSF'08



(3) Persistent Inode Numbers

Problem:

e EXxporting f/s and some userland tool need
persistent iInums

o Stackable f/s don’t have a persistent store

— Rely on lower f/s for that; use iunique()
* Non-persistent

o Solutions/Suggestions:

— Inherit lower_inode->|_ino
e Can’t cross into other lower f/s

— Store pathname->number persistently
e Can store in extra file, or small partition

» Hard-links difficult to support
2/25/2008 Stacking -- LSF'08



VFS St acki ng | ssues

For Uni on Mounts, Uni onFS, etc.

Jan Bl unck <jblunck@use. de>, Erez Zadok
<ezk@s. sunysb. edu>




Whiteouts - The Missing Filetype

We need to remove whiteouts of logical empty directories

O Call readdir() with specialized handler

O Worked well except that we don’t know the struct vismount

O Otherwise add code to all FS that want to support
whiteouts

O Otherwise let the userspace handle it (racy)

O Otherwise make readdir() an inode operation

0 Introduce opendir(),releasedir(), etc.




POSIX wants us to support directory seeking

Duplicate removal and whiteouts are hard in kernel-space
O seeking makes it even harder

O watch out for DoS by create()/unlink()/seekdir()

Implement in user-space

O need to export visibility of whiteouts and stacking

O need to be able to access a directory on a specific layer




