
2/25/2008 Stacking -- LSF'08 1

Stacking

Erez Zadok & Jan Blunck

LSF 2008

2/25/2008 Stacking -- LSF'08 2

Topics

1. Page cache consumption

2. Stack space pressure

3. Persistent inode numbers

4. Whiteouts

5. Readdir/telldir/seekdir

2/25/2008 Stacking -- LSF'08 3

(1) Page Cache Consumption

 Problem:

• each layer maintains its own objects
(dentries, inodes, pages, etc.)

• want address_space (or vm_operations)
– for mmap to work, executing binaries, etc.

• pages are "duplicated" at each layer,
increasing memory pressure
– Even worse when stacking on tmpfs

• some stackable file systems don't change
data b/t layers (e.g., unionfs)
– others do change data (e.g., eCryptfs)

2/25/2008 Stacking -- LSF'08 4

Problem (cont.)

• no way to share pages among layers

– page mapping host points to one inode

structure

• also: address_space ops are too

complex for what stackable f/s want

– want: just pass op to lower

– must deal with: page locking state, page

flags, AOP_WRITEPAGE_ACTIVE…

2/25/2008 Stacking -- LSF'08 5

 Past attempts included

• copy to lower page, then try to release lower

page after lower op is done (e.g.,

PG_reclaim)

– Reduces average memory pressure

– still doesn't relieve the pressure, esp. under stress

• temporarily set upper_page mapping host

to lower_inode, pass op to lower layer, then
fix host up

– Only keeping upper pages

– Ugly to “fix up” a pointer, racy

2/25/2008 Stacking -- LSF'08 6

Past attempts (cont.)

• implement vm_operations fault op

(e.g., aufs)

– Simplifies code (no address_space ops)

– Set “vma vm_file = lower_file”, then call

lower fault op

– Still needs to “fixup” a pointer

• Other suggestions?

2/25/2008 Stacking -- LSF'08 7

 (2) Stack Space Pressure

Problem:

• each layer adds more to the stack

• layers on top of layers possible today

Suggestions/Solutions:

• short term: build kernel with larger stacks

• long term:
– linked list of ops: foofs_op barfs_op

lowerfs_op

– VFS iterates through list?
• Similar to Windows’ I/O Manager

2/25/2008 Stacking -- LSF'08 8

(3) Persistent Inode Numbers

Problem:

• Exporting f/s and some userland tool need
persistent inums

• Stackable f/s don’t have a persistent store
– Rely on lower f/s for that; use iunique()

• Non-persistent

• Solutions/Suggestions:
– Inherit lower_inode->I_ino

• Can’t cross into other lower f/s

– Store pathname->number persistently
• Can store in extra file, or small partition

• Hard-links difficult to support

VFS Stacking Issues

For Union Mounts, UnionFS, etc.

Jan Blunck <jblunck@suse.de>, Erez Zadok
<ezk@cs.sunysb.edu>

Whiteouts - The Missing Filetype

 We need to remove whiteouts of logical empty directories

 Call readdir() with specialized handler

 Worked well except that we don’t know the struct vfsmount

 Otherwise add code to all FS that want to support

whiteouts

 Otherwise let the userspace handle it (racy)

 Otherwise make readdir() an inode operation

 Introduce opendir(),releasedir(), etc.

POSIX wants us to support directory seeking

 Duplicate removal and whiteouts are hard in kernel-space

 seeking makes it even harder

 watch out for DoS by create()/unlink()/seekdir()

 Implement in user-space

 need to export visibility of whiteouts and stacking

 need to be able to access a directory on a specific layer

