
  

pNFS over OSD

Benny Halevy
bhalevy@panasas.com

Linux Storage and File System Workshop
February 13, 2007



  

Background



  

What problem are we trying to 
solve?

● Essentially, scaling out I/O, so that:



  

What problem are we trying to 
solve?

● Essentially, scaling out I/O, so that:
– Many clients



  

What problem are we trying to 
solve?

● Essentially, scaling out I/O, so that:
– Many clients
– Can talk to many storage devices, in parallel



  

What problem are we trying to 
solve?

● Essentially, scaling out I/O, so that:
– Many clients
– Can talk to many storage devices, in parallel
– Without having to go through the server



  

Sounds Familiar?
● Well, quite a few clustered file systems were 

built this way...
● So why not keep doing that?

– Proprietary protocols are bad
– Interoperability is good for everybody
– I don't know anyone that enjoys chasing linux

(well, maybe Boaz does actually ;-)



  

So this is how pNFS was born
● pNFS is now in the IETF NFSv4.1 draft
● Sun implemented it on Solaris
● CITI, IBM, EMC, Netapp, Panasas working on 

linux
● DESY doing it in Java
● CMU doing research obout it
● Connectathon tests are passing with nfsv4.1 

pnfs and sessions prototypes as of last week.



  

But, you talked about SAN 
Filesystems...

● And Panasas is doing objects...
● Hmm, and what Sun and Netapp are there for?
● Well, we figured out we all want to solve the 

same problem but we just happen to use 
different types of storage.

● So pNFS comes in three different basic flavors:
– Files (NFSv4.1)
– Blocks (SCSI SBC)
– Objects (SCSI OSD)



  

So how do you do this?
● LAYOUTGET, LAYOUTCOMMIT, and 

LAYOUTERETURN carry layout_type specific 
metadata (defined in other WG RFCs)

● CB_LAYOUTRECALL kindly asks the client to 
return layouts.

● GETDEVICELIST and GETDEVICEINFO save 
the admin whole lot of trouble

● FILE_LAYOUT_HINT is an attribute that can be 
set on CREATE.



  

How does the layout look like?
● Here's a glimpse into the pnfs-obj layout:

http://www.nfsv4-editor.org/draft-08/draft-ietf-nfsv4-minorversion1-08.txt:

   struct layout4 {
       offset4                 lo_offset;
       length4                 lo_length;
       layoutiomode4           lo_iomode;
       layouttype4             lo_type;
       opaque                  lo_layout<>;
   };

● http://www.ietf.org/internet-drafts/draft-ietf-nfsv4-pnfs-obj-02.txt:

   struct pnfs_osd_layout4 {
       pnfs_osd_data_map4      map;
       pnfs_osd_object_cred4   components<>;
   };



  

Object-based layout map
● The map describes how the file is striped

   struct pnfs_osd_data_map4 {
       length4                     stripe_unit;
       uint16_t                    group_width;
       uint16_t                    group_depth;
       uint16_t                    mirror_cnt;
       pnfs_osd_raid_algorithm4    raid_algorithm;
   };

   enum pnfs_osd_raid_algorithm4 {
       PNFS_OSD_RAID_0     = 1,
       PNFS_OSD_RAID_4     = 2,
       PNFS_OSD_RAID_5     = 3,
       PNFS_OSD_RAID_PQ    = 4
   };



  

Object-based Storage



  

Why do I like Object-based Storage
● First, it's doing local block allocation

– Dividing the problem this way really helps you scale
● Second, they're easy to manage

– When you have to manage thousands of storage 
devices you want little management overhead

● Third, somebody thought about their security 
model seriously
– No user authentication, capability based security
– The file server decides about the access policy
– And it can fence off clients easily and securely



  

Oh, one more thing
● Did I say OSDs are cool? :)
● Well, they are...

– and it doesn't mean they are necessarily wrong
● It's about time to start putting some intelligence 

in front of these spinning disks...



  

OSD Security Model

Client

Object Store

Security 
Manager

Shared Secret, 
refreshed periodically

Authorization Req

Capability,
CAP_keyReq,

Capability,
MACcap_key(Req)

1. Client asks for access  
authorization.

2. Security manager returns 
credential (cap + CapKey) 
signed over cap, system 
ID, secret key.

3. Client presents cap and 
signs the request using the 
CapKey

4. OSD verifies request 
signature using the secret 
key.



  

OSD Commands are a bit chubby
● Long identifiers, capabilities, etc, make OSD 

CDBs 200 bytes long.
7 6 5 4 3 2 1 0

8

9

SERVICE ACTION  (8806h)

10 OPTIONS BYTE

11
 Reserved GET /SET

CDBFMT
 Reserved

12 TIMESTAMPS CONTROL

13

15

 Reserved

16

23

PARTITION _ID

24

31

USER _OBJECT _ID

32

35

 Reserved

7 6 5 4 3 2 1 0
36

43

LENGTH

44

51

STARTING BYTE ADDRESS

52

79

 Get and set attributes parameters
...

80

159

 Capability
...

160

199

 Security parameters
...



  

OSD commands can set and get 
attributes

● This makes them inherently bi-directional
● For example: a WRITE command can send on 

the data out phase also a list of attributes to set 
and a list of attributes to get

● The data in phase sends data back, plus 
optional attributes



  

Kernel support for OSD
● Linux wants bi-directional SCSI commands for 

other reasons
● We also need support for large, variable length 

CDBs
● Good responses for the patches we sent for 

review to the block, scsi, and iscsi layers.
– Done some cleanup along the way
– Tested successfully on iscsi -> IET and IBM OSD 

initiator -> IBM OSD target simulator



  

More on the patches
● The main idea was to add an API to access the 

current I/O related information as uni-directional 
with little or no change to existing code, and to 
have a similar API to access bi-directional read 
and write buffers.

● The SCSI layer helps setting up bi-directional block 
requests

● Varlen CDBs are pointed at
● Scsi lib prep function makes a scsi_cmnd out of 

the request
● Scsi transports such as iscsi make a PDU out of it.



  

To do
● Some minor cleanups
● Bidi residual bytes
● OSD initiator library

● No need for testing since it will all just work™ ;-)



  

The Design



  

pNFS Software Stack
● (p)NFS client
● pnfs-obj layout driver (layout and device cache)
● OBJ RAID
● Flow control (global and per-device)
● OSD initiator
● SCSI stack
● iscsi_tcp | iser | fc | ...



  

Want to read more?
● http://www.nfsv4-editor.org/draft-08/draft-ietf-nfsv4-minorversion1-08.txt

● http://www.ietf.org/internet-drafts/draft-ietf-nfsv4-pnfs-obj-02.txt

● http://www.ietf.org/internet-drafts/draft-ietf-nfsv4-pnfs-block-01.txt

● http://www.t10.org/ftp/t10/drafts/osd/osd-r10.pdf


