Proceedings of LISA '99: 18ystems Administration Conference

Seattle, Washington, USA, November 7-12, 1999

RAT: ASECURE ARCHIVING
PROGRAM WITH FAST RETRIEVAL

Willem A. (Vlakkies) Schretder and Maria Murillo

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WhtiZ// www. usenix.org

Rights to individual papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

rat: A Secure Archiving
Program With Fast Retrieval

Willem A. (Vlakkies) Schretider — University of Colorado at Boulder
Maria Murillo — University of Colorado at Boulder

ABSTRACT

A new archive format called rat was developed. This format was designed to allow very
fast retrieval of individual files. This is achieved using a table of contents to quickly find the
file.

Each file in the archive is individually compressed with a compression method specific to
the file. A user created configuration file is used to specify what type of compression to use on
each file based on parameters such as the file extension and file size. Multiple sets of rules can
be defined and activated from the command line to achieve different aims such as speed or size
or to deal with different types of file sets. Parameters passed to the compression algorithms may
also be specified.

The format also provides for signatures to be stored with the files. The program will
generate and save the signature when the archive is created and verify the file when the archive
is restored. Encryption is possible but not implemented.

The format is quite robust. If the archive is truncated or the table of contents is lost, the
files in the portion that survived can still be recovered. Every file and table is preceded by a
magic number so even recovery from bit rot may be possible.

The current implementation incorporates gzip (as zlib), bzip2, and LZO compression.
Library versions of these compression algorithms are linked in for performance reasons. Only
PGP signatures are currently implemented. Due to export restrictions on encryption software, a
child process is spawned to execute a separate binary to do the signature creation and
verification.

A library called librat implements all the functionality required to create the archive and
restore files from the archive. Alternate user interfaces or embedded applications are therefore
quite readily created. Three front ends to librat have been implemented. The first front end is a
simple command line interface similar to tar. The second front end is character based interface
that allows the user to browse the archive and selectively restore files similar to the restore

program used with dump. The third front end is a GUI implemented using Qt.

Introduction

Archiving tools are widely used for many pur-
poses. Of these tar, zip, and dump/restore are probably
the most widely used. dump/restore is mostly for tape
backups, although restore does provide a user inter-
face to browse the archive and select which files to
restore. zip is very popular on DOS based systems and
is geared towards making archives on disk rather than
to tape. tar is the most widely used archive program on
UNIX systems. It is used for backing up to tape as
well as making archives on disk.

As a class project for the System Administration
class of Evi Nemeth at the University of Colorado at
Boulder, a requirement for a public domain archive
program that combine the best features of tar, zip and
dump/restore was posed as a term project. The specific
features that this program should have were defined as
follows:

¢ The archive should use space as efficiently as
possible.

1999 LISA XIII — November 7-12, 1999 — Seattle, WA

e The archive should be geared towards fast
retrieval of individual files.

e The format should be robust and allow access
to files in case of errors such as a truncated
archive.

e The format should support security.

e The format should be extensible.

¢ Special files such as hard links, soft links, files
with holes and device files must be supported.

e The archive is intended to be written to a ran-
dom access device such as a disk drive rather
than a tape drive.

For the implementation, it was decided that the
following features are important:

e The design should be modular to allow differ-
ent front ends and embedded applications.

e Support for multiple, fixed-size volumes should
be incorporated.

¢ Support for commonly used compression meth-
ods should be linked into the program for per-
formance reasons.

79

rat: A Secure Archiving Program With Fast Retrieval

¢ Due to export restrictions, any encryption soft-
ware should be invoked as an independent
binary.

e The implementation should support remote
backups.

¢ A front end with a restore-like browsing facil-
ity should be provided.

Fulfilling the above requirements was deter-
mined to be more important than being compatible
with existing software like tar.

Much consideration was given to adapting exist-
ing software like tar to the task. tar is a de facto indus-
try standard, but has been superseded by pax in the
POSIX.2 specification. The new, extended file format
for tar is specified in POSIX.1. tar is freely available,
and the Gnu tar-1.12 implementation already supports
device files, files with holes, remote backups and such
desirable features.

One approach would be to implement per-file
compression in tar, and then store the table of contents
as just another file. When restoring the archive with an
older version of tar, the files would be restored as the
compressed version of the file which can then be man-
ually uncompressed. The table of contents would be
restored as an extra file. While this is a valid alterna-
tive, this approach was abandoned because the tar for-
mat does not use space efficiently. tar archives are
written in 512 byte blocks. The header for each file
uses 512 bytes, and the data are stored in 512 byte
blocks. A one byte file would therefore consume 1024
bytes. The blocks are padded with null bytes. When
the entire archive is compressed using gzip, these inef-
ficiencies are less important because long runs of null
bytes compress well. However, the drawback of this
approach is that the entire archive must be filtered
through the decompression algorithm to retrieve any
individual file.

Header
File0

Filen

Table of Contents
UID Table

GID Table

Figure 1: Rat archive format.

In order to fulfill all the requirements set out
above, a completely new archive format named rat
was designed and implemented. The name rat was
chosen to be tar backwards, and to fit in with the ani-
mal theme of some of the names in the GNU project
and book covers from O’Reilly and Associates.

rat Archive Format

Figure 1 shows the layout of the rat archive. All
strings in the archive are saved as variable length

80

Schreiider and Murillo

sequence of bytes terminated by a null. All integers
are saved as unsigned binary integers with the most
significant byte first.

The header section contains the archive label and
similar global information, as well as 64 bit pointers to
the start of the files section, table of contents (TOC)
and UID and GID tables. The order in which the
remaining sections of the archive appears is deter-
mined by these pointers, but this is usually in the order
shown in Figure 1.

Magic (uint32)
Header Size (uint16)
Signature Type (uint8)
Compression Type (uint8)
Mode (uint16)
UID (uint32)
GID (uint32)
Mtime (uint64)
Ctime (uint64)
Uncompressed Size (uint64)
Flags (uint16)
Flag Dependent Data (ACLs,...)
Data Size | (uint64)
Data
Signature Size | (uintl6)
Signature

Figure 2: File Layout.

Files

The files section is the bulk of the archive. It
consists of files and file pointers saved contiguously.
A file pointer contains the file name, file type and a
pointer to the file. A file contains the data for the file
as shown in Figure 2. Each file contains all the rele-
vant information from the inode of the file, the con-
tents of the file (data blocks) and possibly a signature.

This layout closely mirrors the layout in the disk
file system. The file pointers correspond to directory
entries. Hard links are supported by having multiple
file pointers point to the same file. The file pointer
names the file, but does not contain any data other
than the file type and a pointer to the file. The special
value zero in the pointer field is used to indicate that
the file immediately follows the file pointer.

The file entry contains the file data but not the
name of the file. The file data consists of three sec-
tions, a header section, data section and signature sec-
tion. Each section is preceded by a size entry, indicat-
ing the size of the rest of the section. This makes it
easy to process the contents of the file by reading only
the size entries and treating the remained of the sec-
tion as a block of data. The data size is stored as a 64
bit integer so extremely large files are supported.

The header section contains file attribute infor-
mation such as the owner, permissions, size and times,

1999 LISA XIII — November 7-12, 1999 — Seattle, WA

Schreiider and Murillo

but not the name of the file. Times are stored as 64 bit
integers in the UNIX style. Special information such
as the device major and minor numbers and soft link
text are stored in the data section. The data size will
always reflect the true number of bytes used by the
data section.

Only the UID and GID are stored for each file.
The corresponding user and group names can be
obtained from the UID and GID tables stored in the
archive. The Flags field is used to signal various spe-
cial cases. Bit 0 in the Flags field is used to indicate
that the file contains holes. Such files are stored like
any other file since the compression algorithms com-
presses long sequences of zeroes quite efficiently.
When this flag is set, the restore function finds long
sequences of zeroes and recreates the holes. Bit 1 in
the Flags field is used to indicate that the file has an
associated Access Control List (ACL) which will
appear at the end of the header. The remaining bits are
reserved for future expansion.

Code | Algorithm
0 None
1 gzip (zlib)
2 bzip2
3 LZO

Table 1: Compression Codes.

The Compression Type field defines the com-
pression method used in the data section. Table 1
shows the codes used for the different methods cur-
rently implemented. The Signature Type field defines
the type of signature used. Currently only values of 0
(CRC-32), 1 (MD5) and 2 (MD5+PGP) are imple-
mented. This field can also specify an encryption
method.

The signature section contains the checksum of
the header and data sections. The checksum always
appears first in the signature section. When files are
signed using PGP, the PGP signature immediately fol-
lows the checksum.

It should be noted that the file pointers in the file
section replicates the information already contained in
the table of contents (TOC) described below. The pur-
pose of the file pointers is to allow recovery of the
information in the archive if the TOC is missing, such
as when the archive is accidentally truncated.

Table of Contents

The Table of Contents (TOC) typically follows
the files section. The layout of the TOC is shown in
Figure 3. For each file, the TOC contains only the file
name, file type and two 64 bit pointers, one to the file
pointer and one to the beginning of the actual file,
both of which are in the files section. When the item
in the TOC is a directory, the full path to the file is
saved as the name. For all other items such as regular
files, links and device files only the name of the file is

1999 LISA XIII — November 7-12, 1999 — Seattle, WA

rat: A Secure Archiving Program With Fast Retrieval

stored. The full path is implied by the preceding direc-
tory in the TOC. The local directory is implied at the
beginning of the TOC. In order for this to uniquely
name each file, subdirectories must always appear
after non-directory items. Reconstructing the full path
name is trivial if the TOC is read sequentially. When
the paths are long, this convention reduces the size of
the TOC considerably.

Magic (uint32)
Signature Type (uint8)
Number of Entries (uint64)

Name0 | Type0 Link0 File0
(...0) (uint8) | (uint64) | (uint64)

Namen | Typen | Linkn | Filen
Signature Size (uint16)
Signature

Figure 3: Table of contents.

The purpose for saving both the offset of the file
pointer and the file itself in the TOC is to expedite
updating of the archive. The pointers are used to track
which file pointers and files are still referenced.
Unreferenced items are removed when the archive is
updated.

A checksum of the TOC is computed and stored
in a signature section identical to that for a file in the
files section. If so indicated by the signature type
code, the checksum will also be signed.

The layout of the UID and GID tables are similar
to the TOC. It lists the UID and user name or GID and
group name in pairs, ordered by UID or GID. These
tables are typically small, but can save a large amount
of space since the user and group names does not have
to be saved for each file. Both the UID and GID tables
have corresponding signature sections.

Security

The rat archive format attempts to make the
archive secure by securing each individual file, the
TOC, UID and GID tables. A checksum is computed
for every such entity. Currently CRC-32 (32 bit) and
MDS5 (128 bit) checksums are implemented, but more
secure checksums can be added as they become avail-
able. The type of checksum can be set in the .ratrc
configuration file, the default being MDS5.

Of course, checksums only protect the archive
from accidental corruption, not malicious alteration.
To secure the archive, the checksum can be signed. In
the current implementation, only the use of PGP to
sign the archive is supported, and implies that an MD5
checksum will be used.

When a file or the TOC, UID or GID table is
read from the archive, the checksum is recomputed
and compared against the stored checksum. If signed,
PGP is used to verify the checksum. If either the

81

rat: A Secure Archiving Program With Fast Retrieval

checksum does not match the stored checksum, or the
signature does not verify the checksum, the read will
return the result ErrCheck.

librat Implementation

The rat archive was implemented as a library
named librat. The librat interface is quite compact. The
calls to librat to open and close the archive are:

rat_t rat_init(char* device,
int verbose,
char* label,int level,
char* user,char* pass);

int rat_open_write(rat_t rat);
int rat_open_read(rat_t rat);
int rat_open_update(rat_t rat);
int rat_close(rat_t rat);

A call to rat_init is used to initialize the library
and initialize parameters such as the device to be used
for the archive, verboseness level, set of rules (level)
and user name and pass phrase for the signature.

rat_init reads the .ratrc configuration file and
returns a private structure of type rat_t that is used by
all other functions.

When creating an archive, rat_open_write is used
to open the archive, while rat_open_read is used to
open the archive for reading. To modify an existing
archive, rat_open_update is used to open the archive.
When done, rat_close is used to close the archive.

Reading an archive is achieved by calling the
functions

int rat_open_toc(rat_t rat);

int rat_next_ toc(rat_t rat,
char pathl],
char* type,
u_int64_t* offset);

int rat_inqg_file(rat_t rat,
const u_intb64_t offset,
info_t* info);

int rat_read_file(rat_t rat,
u_int64_t offset);

int rat_check toc(rat_t rat);

Each call to rat_open_toc starts reading the TOC
from the beginning. Each call to rat_next_toc returns
the full path name of the next entry in the TOC as well
as the type and offset. The returned type can be tested
using an set of enumerated constants defined in the
header file. The offset returned by rat_next_toc can be
passed to rat_ing_file or rat_read_file. A «call to
rat_ing_file returns all the fields stored in the file header
in an structure of type info_t. A call to rat_read_file
restores the file, including any necessary directories. If
the file has a signature, rat_read_file also checks the
signature. Note that rat_read_file will create missing
intervening directories, but will not recursively restore
files and subdirectories.

The integrity of the archive can be checked by
calling rat_check_toc. Not only does this call check

82

Schreiider and Murillo

that the TOC matches file pointer entries in the files
section, but it also checks the checksums and signa-
tures of the files.

After calling rat_open_write or rat_open_update, a
file can be added to the archive by calling

int rat_add_toc(rat_t rat,
const char* path);

A call to rat_add_toc simply adds the list of files
specified to the TOC. Only when rat_close is called are
the files in the TOC written to the archive. rat_add_toc
recursively adds all files and subdirectories when the
path is a directory. rat_add_toc returns -1 if the addi-
tion failed, typically because the file does not exist or
is not readable. If the addition succeeded, rat_add_toc
returns the number of entries in the TOC that was
replaced. Adding all new files will result in a 0 being
returned. The existing entries in the TOC are searched
for every file being added to ensure that each file is
unique. Adding the same file twice causes the previ-
ous occurrence to be replaced.

After calling rat_open_write or rat_open_update, a
file can be removed from the archive by calling

int64_t rat_find toc(rat_t rat,
const char* path);

int rat_del_toc(rat_t rat,
u_int64_t index) ;

A call to rat_find_toc is used to get the index of
the named file in the TOC. If the file is not in the
TOC, -1 is returned. Both files and directories are
found by rat_find_toc. A call to rat_del_toc with the
index returned by rat_find_toc deletes that file from the
TOC. If the index points to a directory, all files and
subdirectories of that directory are also deleted from
the TOC. As with rat_add_toc, removing the files from
the archive is delayed until rat_close is called.

A call to rat_close closes the archive. If the
archive was opened with rat_open_read, the archive is
simply closed. If the archive was opened with
rat_open_write, all the items in the TOC are written to
the archive before it is closed. If the archive was
opened with rat_open_update, a call to rat_close will
cause the archive to be updated to reflect the current
contents of the TOC. When rat_open_update is first
called, the TOC, UID and GID tables are read into
memory. Subsequently, when rat_close is called, the
first operation is to remove all items in the archive that
were removed by calls to rat_del_toc or replaced by
calls to rat_add_toc. This is done in place, without
copying the archive, by moving the remaining entries
in the archive closer to the head of the archive so that
the parts of the archive that did not change are con-
tiguously packed at the head of the archive. New files
are then appended to the truncated archive. Finally, the
TOC, UID and GID files are appended from memory.
This procedure makes adding only new files efficient
since it requires only the TOC, UID and GID tables to
be read from the archive, the files added, and then the

1999 LISA XIII — November 7-12, 1999 — Seattle, WA

Schreiider and Murillo

TOC, UID and GID tables rewritten to the archive.

Calls to rat_open and rat_close can be freely inter-
mixed. The library will flush changes to the archive as
necessary. For example, after creating a file with calls
to rat_open_write and rat_add_toc, a call to rat_open_
read will write all files to the archive and reopen the
archive for reading. Extra calls to rat_close will return
safely.

Finally, rat_free should be used to free the rat
structure allocated by rat_init.

The .ratrc Configuration File

When rat_init is called, librat attempts to read a
file called .ratrc. It first tries the current directory for a
ratre file, then the user’s home directory for a .ratrc
file, and finally /etc/ratrc. The first file found is used.

The purpose of the .ratrc file is to allow the user
to configure librat. In particular, .ratrc is intended to
control the compression algorithms to be used on par-
ticular files and how to interface with the security pro-
grams. An example .ratrc file is shown in Figure 4.

How to run pep

pgps pgps -btu%s %s -o-

pgpv pgpv tbatchmode=1 %s.sig
Global parameters for BZIP2
BZ2blockSize 9

BZ2workFact O

Set of Rules 1
level 1

any CompNone

Set of Rules 2
level 2

any CompGZ

Set of Rules 3
level 3

any CompBZ2

Set of Rules 4
level 4
any CompLZO

Set of Rules 9 (default)

level 9

ext .rat CompNone
ext .82 CompNone
ext .bz2 CompNone
ext .gif CompNone
ext .jpe CompNone
hole CompBZ2
smaller 8192 CompGZ
any CompBZ2

Figure 4: Example .ratrc file.

When calling rat_init, the level parameter is inter-
preted as the compression level. In the .ratrc file, this
is manifested as up to nine sets of rules named 1
through 9, each corresponding to a compression level.

1999 LISA XIII — November 7-12, 1999 — Seattle, WA

rat: A Secure Archiving Program With Fast Retrieval

Only the rules outside any set of rules and the selected
set of rules (level) are evaluated. Rules are evaluated
in the order they appear in the .ratrc file. The first rule
to match is used to select the algorithm to use for each
file.

The user can configure these sets of rules to
reflect local experience with the types of files being
archived. Different sets of rules can be tuned for
speed, archive size, or any such desired metric. The
ratre file shown in Figure 4 defines five such sets of
rules that were used to generate the results shown in
Table 3 below. Set 1 causes all files to be stored with-
out compression. Sets 2, 3 and 4 causes all files to be
compressed using zlib (as in gzip), bzip2, and LZO,
respectively.

Set 9, which is the default rule set, uses a non-
trivial set of rules. Files for which the file name ends
in .rat, .gz, .bz2, .gif and .jpg are assumed to be
already compressed, so attempting to re-compress
them is futile. Therefore these files are stored in the
archive without further compression. The bzip2 algo-
rithm in general does better with big files than the gzip
algorithm, while the opposite is true for small files.
Therefore Set 9 uses the gzip algorithm to compress
files less than 8192 bytes in size, while the bzip2 algo-
rithm is used for all other files. The bzip2 algorithm is
also used for files with holes.

Some compression algorithms are themselves
configurable. For example, Figure 4 shows the use of
the BZ2blockSize and BZ2workFact parameters which
are used to control the bzip2 algorithm. Since these
parameters are specified outside any set of rules, they
apply to all sets. However, different values could be
specified inside the rule set which would then take
precedence. Using such configurable parameters
allows the user to tune the algorithms to best suit the
local conditions.

Finally, the example in Figure 4 also controls
how to invoke PGP on the local system. The particular
version shown is for PGP 5.0i. The pgps line controls
how the signature is generated, while the pgpv line
controls how the signature is verified. The parameters
filled in on the pgps line are the user name and the file
name, while only the file name is filled in on the pgpv
line.

Example Implementations

Three example implementations were written.
The first implementation is a simple command line
style interface similar to tar. This implementation
required 244 lines of code (including comments) of
which only about 50 lines actively manipulate the
archive.

A more elaborate implementation that allows the
user to browse the archive was also written. In this
implementation familiar commands such as Is, pwd and
cd are used to browse and traverse the archive. The
header command is used to list all the information

83

rat: A Secure Archiving Program With Fast Retrieval

about a file. Commands such add and delete are used
to add or remove files to or from a list of files to
restore. The command Ismark is used to show the list
of files marked for extraction, while the extract com-
mand is then used to restore all files marked for
extraction to disk.

Finally an implementation with a graphical user
interface (GUI) was written using the Qt library. This
implementation shows the files in the archive as a tree
structure with boxes next to each file name. Boxes
can be checked to specify that files are to be extracted.
Clicking on the box next to a directory marks or
unmarks all files in the directory and subdirectories.
This implementation required only 390 lines of C++
code. Figure 5 shows a screen shot of this implemen-
tation.

-
File A Select All |
#[0 1zo-1.04/
[AUTHORS Clear All |
-[] Bues
—[1 copyIng Restore |
1 changeLog
INSTALL Delete |
1 LZ0.1sn
Oracttem ||t |
1 Makefile.am
1 Makefile.in -
NEUS Verify |
—1 README
THANES Close |
- acconfig.h
=R | acconfig/
[acinclude.md
-1 aclocal.md
=i by
[0 0D0readme.txt
-O antocont. opt
dosl6/ y
| =

Figure 5: Qtrat.

All the implementations use calls to rat_open_toc
and rat_next_toc to build a tree structure of the TOC.
For detailed file listings calls to rat_inqg_file are used.
To translate the UID and GID to user and group
names, calls are made to

const char* rat_inq_uid(rat_t rat,
u_int32_t uid)
const char* rat_inq_gid(rat_t rat,
u_int32_t gid)

Once the user has selected a list of the files to
extract, repeated calls are made to rat_read_file to
restore the files.

84

Schreiider and Murillo

Results

The rat implementation was tested on a mixed
data set. Statistics for the data are shown in Table 2.
The total size of all the files is 236.5 MB. Note that
the standard deviation is about ten times the average
file size, and the largest file is 36 MB. The files are a
mix of C source code files, object files, ELF binaries
and postscript files. Tables 3a and 3b compares the
results obtained with rat, tar and zip.

With no compression, the rat archive is only 0.3
MB larger than the total file size for 3186 files, while
the tar archive is 2.2MB larger than the total file size.
Creating the archive and restoring the entire archive
takes a bit longer with rat, but rat retrieves a single file
much faster than tar. It is clear that the rat file store
and retrieve functions need to be optimized.

When using gzip, bzip2 or LZO to compress the
archive the rat and tar results are very similar as far as
the archive size, creation time and full restoration time
are concerned. Support for gzip is incorporated into
tar. bzip2 compression is achieved by piping the out-
put through the bzip2 utility, while decompression is
achieved by processing the output from the bzcat util-
ity. LZO compression and decompression is similarly
achieved by piping through the lzop utility. When
using gzip, bzip2 or LZO to compress the entire tar
archive, the compression is theoretically more effi-
cient than if each file is compressed individually as in
rat. This is borne out by Table 3, but the increase in
size is only a few percentage points. In all cases, how-
ever, almost instantaneous access to an individual file
is achieved with rat while tar can take several minutes.

The zip utility uses an algorithm very similar to
gzip, but also does per file compression. Table 3
shows that the resulting file size is slightly larger than
the rat file, but better performance than either tar or rat
when creating the archive. When restoring a single
file, the performance of rat and zip are similar, but zip
is slightly faster than rat when restoring all the files.

Note that the mixed set of rules that uses gzip on
files less than 8192 bytes and bzip2 on larger files
yields a slight improvement in archive size. Defining
optimal sets of rules for file size remains a task for the
future.

Finally, the data was archived and signed using a
1024 bit PGP key. This adds 66 bytes per file so the
resulting archive is only slightly larger than the
archive without signatures. However, creating and
checking the signatures takes a considerable amount
of time. This extra time is attributable to both the
actual work of creating or checking the signature as
well as spawning a new process to run PGP for every
file.

Adding a single new file to the archive with rat
takes less than a second and does not involve copying
the archive. Adding a single new file to a zip or tar
archive takes quite a bit longer, probably because of

1999 LISA XIII — November 7-12, 1999 — Seattle, WA

Schreiider and Murillo

the time it takes to copy the archive. A file cannot be
added to a compressed tar archive. The whole archive
must first be uncompressed, the file added, and then
the whole archive recompressed.

Deleting a single file from the archive with rat or
zip takes approximately the same time and is quite
fast. tar does not support deleting a file a file from the
archive.

Conclusions

The three sample implementations showed that
librat is easy to use and provides sufficient functional-
ity to construct a sophisticated user interface. The sets
of rules in the .ratrc file proved to be very useful dur-
ing the performance tests.

Number of Files 3186

Total Size 236.5 MB
Average Size 76.0 kB
Std.Dev. Size 749.6 kB
Maximum Size 36.1 MB

Table 2: Test Data.

The results shown in Table 3 and other tests per-
formed with this implementation proved that archives
could be produced that are comparable in size to those
with tar or tar and gzip, bzip2 or LZO for about the
same amount of effort on the archive creation time,
but with dramatically improved extraction speed for
individual files. In terms of performance, rat compares
well to zip.

The ability to sign and verify files proved to be
very useful and adds little to the file size but is rather

rat: A Secure Archiving Program With Fast Retrieval

slow. The major advantage of signatures over encryp-
tion proved to be that usable files can be extracted
even when signature verification software is not avail-
able.

Future Work

The .ratrc file allows very flexible specification
of the compression method to be used on each file. A
good heuristic to select a near optimal set of rules for
general use remains to determined. It is likely that the
type of rules may have to be expanded with such a
heuristic. In particular, the rules should be expanded to
check the file’s magic as done by the file utility.

A major drawback of externally executing the
signature creation and verification program is the poor
performance. If the signature code (as opposed to the
encryption code) could be build directly into librat,
this should significantly alleviate the performance
problems.

Acknowledgements

The authors wish to thank the instructor and
teaching assistants for the System Administration
course at the University of Colorado at Boulder during
the Fall of 1999, Evi Nemeth, Vega Paithankar, Josh
Prismon and Ali Rayl for their support, and Rob
Braun for suggesting and guiding the project.

Availability

The initial distribution version of rat is rat-0.1. It
consists of librat, the simple command line front end
and the Qt front end. It is available for download from
http://www.cs.colorado.edu/"vlakkies/ .

. . Build Extract One | Extract All
Program | Compression | Size (MB) Time (sec) File (sec) Files (sec)
tar none 238.7 39 23 65
rat none 236.8 74 <1 80
tar gzip 77.7 262 27 62
rat gzip 78.7 294 <1 72
zip deflate 78.8 222 <1 67
tar bzip2 67.3 1011 186 206
rat bzip2 72.3 1090 <1 210
tar LZO 104.3 61 16 75
rat LZO 105.5 89 <1 69
rat mixed 72.0 1064 <1 209
rat gzip+PGP 78.7 10861 1 1689

Table 3a: rat, tar and zip performance.

Program Add | Delete
(sec) (sec)
tar 38 N/A
zip 24 15
rat <1 7

Table 3b: rat, tar and zip performance.

1999 LISA XIII — November 7-12, 1999 — Seattle, WA

85

rat: A Secure Archiving Program With Fast Retrieval

Author Information

Vlakkies Schrelider is a consulting engineer,
software developer and system administrator with
Principia Mathematica, and a full time student. He
holds a Ph.D in Computational Fluid Dynamics from
the University of Stellenbosch and is currently work-
ing on a second Ph.D in Parallel Systems at the Uni-
versity of Colorado at Boulder. Contact him at
<vlakkies@colorado.edu>.

Maria Murillo holds an MS in Geophysics from
the University of Tulsa. She is currently a full time
student pursuing a Ph.D in Computer Science at the
University of Colorado at Boulder. Contact her at
<murillo@colorado.edu>.

References

J. Seward, bzip2, a block-sorting file compressor,
http://www.bzip2.org .

J. Gailly and M. Adler, GNU Zip, http://www.gzip.
org/.

M. F. X. J., Oberhumer, LZO — a real-time data com-
pression library, http://wildsau.idv.uni-linz.ac.
at/mfx/lzo.html .

P. Zimmerman, Pretty Good Privacy, http://www.pgpi.
com/ .

AT&T, tape file archiver, http://ftp.digital.com/pub/
GNUT /tar/.

M. Adler, R. B. Wales, J. Gailly, G. Roelofs, O. van
der Linden and K. U. Rommel, Info-ZIP, http://
www.cdrom.com/pub/infozip/ .

J. Gailly and M. Adler, zlib, a general purpose data
compression library, http://www.cdrom.com/pub/
infozip/zlib/ .

86

Schreiider and Murillo

1999 LISA XIII — November 7-12, 1999 — Seattle, WA

