
Proceedings of LISA '99: 13th Systems Administration Conference
Seattle, Washington, USA, November 7–12, 1999

D E S I G N A N D I M P L E M E N T AT I O N O F
A F A I L S AF E P R I N T S Y S T E M

Giray Pultar

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Design and Implementation of a
Failsafe Print System
Giray Pultar – Coubros Consulting LLC

ABSTRACT

This paper describes a printing system designed for an environment with several hundred
printers, such that there is no single point of failure, and the print service continues to be
available to new print jobs, even if any part of the print system fails.

The paper also describes the following ideas implemented in this system:
• use of a single queue name (myprinter) for almost all print jobs from the client
• use of dynamically created print queues for each user (user-<username>),
• use of dynamically created print queues to manage low cost desktop printers, that are

directly attached to a users display device (local-<xterm>),
• integration of the print service with the Zephyr notification system to send print progress

messages, error messages, as well as route print jobs based on user location as reported
by the notification mechanism.

• ability to route print jobs from legacy systems to all printers in the system, without
having to define all the printers on the legacy system. (VM, VMS)

The system was implemented using LPRng [1], taking advantage of its job routing, control file
rewriting and dynamic printcap features.

Overview

This paper describes a printing system designed
for the research and development division of a phar-
maceutical company. Because of its interaction with
the FDA (Food and Drug Administration of the United
States government), this division produces a large
amount of documentation that needs to be printed on
short notice. Therefore, printing is one of the top items
on the list of ‘‘mission critical’’ systems.

Some of the features of the print system as
implemented are:

• Banner pages on colored paper
• Pooling of printers under one queue
• Translation/mapping of usernames from other

systems (VM/VMS/NT)
• Graphical user interface for queue management
• Pop-up notices when jobs are queued, being

printed, and completed.
• Printing to inkjet printers connected to X termi-

nals.
• printer defaults per user

The Old System

Like most environments, there was an existing
print system in place. As much as possible, the team
tried to treat the project as a ‘‘design from scratch’’,
but in many instances the existing system affected the
decisions made in designing the new system.

There were many disadvantages to having an
existing system in place: Many users wanted the capa-
bilities of the existing system replicated in the new
system, even if these ‘‘capabilities’’ were quirks of the
old system. Some users wanted ‘‘all’’ the features of

the old system to be available in the new system, even
though some of the features were not needed anymore.
The technically advanced users had their own ideas
about how the system could be fixed; and wanted their
(in most cases stop gap) fixes implemented.

On the other hand, there were some advantages
of having an existing system: Users were aware of
their specific needs that were not being met with the
current system; and were able to articulate their
requirements for a new system well. Some of the well
conceived but poorly implemented features could be
re-implemented in the new system so that they would
work. Also, the old system could be used as a test lab,
or a rapid prototyping lab, to demonstrate some new
ideas. It would then be easier to see the users’ reac-
tions to these new ideas that would be fully imple-
mented in the new system.

It is therefore difficult to characterize whether
the old system was an asset or liability in designing
the new system.

Here are some quotes (some made up, others as
best as I can recall) from users about the old printing
system:

• ‘‘I got this printer on my desk 3 weeks ago.
When are you going to set it up?’’

• ‘‘Oh, I sent this job to the printer this morning.
I hope I can get it before I go home.’’

• ‘‘I always print twice. One of them never
comes out anyway.’’

• ‘‘Why can’t I print from application A to
printer B?’’

• ‘‘How was I supposed to know that he was
printing 2000 pages. If I had known, I would
have used the printer next to it.’’

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 219

Design and Implementation of a Failsafe Print System Pultar

• ‘‘There are 5 printers in this room; and not a
single one is printing my document!’’

• ‘‘I hate those ‘your print job is printed’ mes-
sages. Can’t I turn them off?’’

• ‘‘The Payroll application can’t print on my
desktop printer. So every time I print something
out, I have to run like mad to the printer room.’’

SD

E NTE RPRISE
2

Sun
Ω

S P A R C
D R I V E N
U L T R A

XDM Server

SD

E NTE RPRISE
2

Sun
Ω

S P A R C
D R I V E N
U L T R A

Print Spooler

SD

E NTE RPRISE
2

Sun
Ω

S P A R C
D R I V E N
U L T R A

Print Spooler

SD

E NTE RPRISE
2

Sun
Ω

S P A R C
D R I V E N
U L T R A

Printer Driver

SD

E NTE RPRISE
2

Sun
Ω

S PA R C
D R I V E N
U L T R A

Printer Driver

S D

QMS 17 25
P r i n t S y s t e m

S LS

LETTER

LETTER

S D

QMS 17 25
P r i n t S y s t e m

S LS

LETTER

LETTER

S D

H E W LE T T
P AC K A R D
a p o llo

S e r ie s 7 1 5 /8 0

Workstation

SD

HP 700/RX

HEWLETT
PACKARD

X Terminal

SD

HP 700/RX

HEWLETT
PACKARD

X Terminal

Printer Printer

Inkjet
Printer

Figure 1: High level Physical design.

The Old Architecture

The old system consisted of two hosts that were
dedicated to printing. All servers and workstations
were configured with queues that would forward print
jobs to server A. Server A would then talk to all the
printers and try to send the jobs. Server B was sup-
posed to be a backup for server A. Server B’s configu-
ration had not been maintained for a long time: it is
unlikely that it could print anything without significant
reconfiguration. Moreover, one would have to recon-
figure all the workstations and servers to send jobs to
server B instead of server A, in case it failed.

Administrators’ Problems

From an administrators point, this system was
designed to solve the following problems that were
being faced:

• How can one manage (create, remove) hun-
dreds of printer queues, if every user wants to
have a printer on their desktop?

• How does one set up printer lists in each appli-
cation, so that users can print to any one of the
hundreds of printers available?

• How does one get print jobs from non-Unix
systems to print to their printers, with cover
pages with Unix login names, and proper
accounting, without too much configuration on
either the Unix or non-Unix side?

• How does one distribute printer configuration
(aka /etc/printcap) information to all their
workstations/XDM servers?

• Can one build a print system so that if any of
the print servers go down, all printing service
can continue?

The Design

The print system consists of two sets of identi-
cally configured host(s): The Print Spoolers (PS) and
the Printer Drivers (PD).

The purpose of the print spoolers is to receive
print jobs from clients, make any user name transla-
tions (for non-Unix systems), and/or formatting
adjustments (such as landscape, 12 cpi, etc.) and send
it to the appropriate PD server.

The purpose of the printer drivers is to communi-
cate with printers and manage the pooling of printers.

A print job from a client (such as a user’s work-
station) goes through the following steps:

1. client contacts a PS server and sends the job
2. PS server makes any adjustments necessary to

the print job
3. PS server sends jobs to PD server.
4. PD server puts job in a pool queue, and waits

until a printer in the pool is available.
5. PD server sends jobs to the printer.

This flow is also covered in the section ‘‘Life of a
Print Job’’.

Redundancy

As shown in Figure 1, there are several redun-
dant paths a print job can take from a client to the
printer. The redundancy of the system is achieved via
the mechanisms below.

Client Contacting a PS Server
The clients are configured to send all print jobs

to host ’printhost’. This hostname, using DNS,
resolves to a round robin list of addresses of all the PS
servers.

The client will try all the addresses in turn, until
it succeeds in sending the print job.

220 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Pultar Design and Implementation of a Failsafe Print System

If a PS server is down, the client will try the next
one on the address list. If all the PS servers are down,
the lpr client will reject the job at the client rather than
queueing the job.

$Id: lpd_client.conf,v 1.3 1998/05/05 16:52:19 giray Exp $

default_remote_host=printhost.domain.com.
use_identifier
use_queuename
originate_port 2000 3000
check_for_nonprintable@

Listing 1: Sample /etc/lpd_client.conf file.

$Id: printcap.pl,v 1.28 1.3 1998/09/05 13:51:16 giray Exp $

PS servers
spoolhost:This is a print spooler host:::server:PS
otherspooler:This is another print spooler host:::server:PS
PD servers

badhost:This is a printer driver server:::server:PD
goodhost:This is another printer driver server:::server:PD

A pool of printers (aka floor server), floor_0 with the two printers
rdprint3 and rdprint4, using the PD server badhost, and if badhost
is unavailable then goodhost

floor_0:Basement Printers:visible:badhost,goodhost:floor:rdprint3,rdprint4

A HP 4si queue for the printer with hostname rdprint3.domain.com.
Note that this printer is not directly visible by users, but
is part of the floor_0 pool.

rdprint3::::hp4si:rdprint3.domain.com

A remote printer: using LPR/LPD with rp=pr11xcsl and
rm=mvs.cmis.domain.com. Send print jobs to this printer using LPD.

MVS_pr11xcsl:Remote pr11xcsl on MVS:::remote:pr11xcsl@mvs.cmis.domain.com.

Listing 2: Sample printer.conf file.

PS Server Contacting PD Server
The queues on PS servers are configured such

that each queue is assigned to a deterministic list of
PD servers. The PS servers go through the list until
they can send the job.

If a PD server is down, the PS server will try the
next PD server listed for that queue.
PD Server Choosing a Printer

The printers are arranged in pools. Users will
typically submit their jobs to one of these pools. The
PD server picks the next available printer in a pool to
send the job.

If a printer is down, the PD server (after schedul-
ing one print job that will never complete), will stop
sending jobs to that printer as it is not available, and
use other printers in the pool.
Failsafe Requirement

The requirement that was stated as: ’’If a compo-
nent of the print system fails, the system should

continue to function for any NEW jobs submitted to
the system. The system will also try to complete as
many as the existing print jobs as it can.’’

The implications of this requirement is discussed
in the discussion section.
Detailed Configurations
Client Configuration

The clients that are using this system can be clas-
sified in two broad categories:

• hosts with LPRng client software
• hosts with LPD server software

The hosts with LPRng client software are hosts
typically under our administrative control. There are
two items required on these hosts to get printing work-
ing.

1. The lpr binary from the LPRng package
2. The /etc/lpd_client.config file. The main pur-

pose of this file is to indicate where to contact
to send print jobs. (e.g., printhost.domain.com).
It is unlikely that this file will change. Thus, it
is unlikely that the configuration will ever have
to be updated on the clients.

Most of the clients not under our administrative
control could communicate using the LPD protocol.

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 221

Design and Implementation of a Failsafe Print System Pultar

We would typically request the addition of one queue
on their hosts pointing to the PS servers.

For example, one would set up a queue on VM
that is configured to forward jobs to a queue called
‘‘fromvm’’ on printhost.domain.com. (the print spool-
ers).

The operation of these queues from legacy sys-
tems is covered in the ‘‘Legacy Printing’’ section.

PS and PD Server Configuration

The PS and PD server are set up as typical LPD
servers [3], with one major exception: Instead of a
static printcap file; the printer configuration informa-
tion is generated dynamically.

LPRng has the ability to use a script to generate
printcap entries instead of using the traditional
/etc/printcap file.

For this purpose, we have developed a perl script
called /etc/printcap.pl that generates this information
using a config file of our creation called printer.conf.

floor_0|Basement Printers
:sd=/usr/spool/lpd/floors/floor_0
:as=|/usr/local/lib/print/queued
:bq=floor_0@badhost,goodhost

Listing 3: Sample output from /etc/printcap.pl on a
PS server.

User Specific Queues

The user queues are queues of the form
user-<username>. These queues only exist on PS
servers, and are used to route jobs from a user to their
selected printers. The main purpose is to make it easy
for applications to print: they can print to user-<user-
name>, and the print job will go to the user’s selected
printer.

This mechanism uses the dynamic printcap fea-
ture in LPRng: LPRng will execute the dynamic print-
cap script /etc/printcap.pl (described earlier) when
looking up the printcap entry for user-<username>.

The script, will then look up the user’s preferred
printer, and return a printcap entry that routes the job
to the user’s preferred printer. The script, if necessary,
create a spooling directory for this user. Therefore,
when a new user tries to print for the first time, their
queues is automatically set up; and no administrator
action is necessary.

If the user has selected ‘‘My Desktop Printer’’ as
their preferred printer; then this script will look up the
user ’s location via Zephyr, and route the job to the
appropriate local queue (local-<hostname>), described
below.

Local Queues

The local queues are queues of the form
local-<hostname>. These queues exist both on PS and
PD servers, and are used to route jobs from a user to

the printer connected to the X terminal that they are
logged in on. All the X terminals in this environment
are equipped with parallel ports, and several users
have connected inkjet printers, mainly for privacy
concerns [6, 7].

The main purpose of local queues is to make it
easy to route jobs to a terminal that a user is logged in
on. Print jobs can be routed to local-<hostname>, and
they will go the printer connected to that host.

Similar to user queues, the spooling directories
for local queues are created dynamically. As a result,
whenever a new X terminal is added, or a printer is
attached to an existing X terminal; a queue is automat-
ically created when the first job is queued.

The Most Commonly Used Queue: myprinter

This queue routes its jobs to user-<username>
based on the user who submitted the print job. This is
accomplished via the routing filter mechanism pro-
vided by LPRng.

When a job is sent to ‘‘myprinter ’’, LPRng will
invoke the routing filter which picks up the username
from the control file, and routes the job to user-<user-
name>

DNS Configuration
The system uses multiple address records in

DNS to achieve redundancy at the PS level.

An entry for ‘‘printhost’’ is required. This entry
will have the addresses of all the PS servers in the sys-
tem.

X Terminal Configuration
All X Terminals in the environment are config-

ured to accept connections on a specific port, and pass
all data received on this port to the parallel port. Using
this mechanism, users can connect an inkjet printer to
their X terminal.

Support for Other Systems and Legacy Printing
Printing via the LPD protocol:

To allow non-LPRng systems to send jobs to this
system, we establish one queue on the legacy system,
and one queue on this system for each legacy system
that is going to send jobs to this system. This queue is
then run through a control file rewrite filter and a rout-
ing filter, before being forwarded to the ‘‘myprinter ’’
queue.

The control file rewrite filter rewrites the user-
name field in the control file; by doing a lookup of the
users username on the foreign system and translating
it into their UNIX username. The translation is com-
pletely automated, except for the case when the user-
name cannot be found in the mapping table.

There are several reasons for this setup:
• Only one queue on the other system is needed
• The job can be rerouted to any printer
• Using username mapping, proper accounting,

and print progress messages are possible.

222 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Pultar Design and Implementation of a Failsafe Print System

The major disadvantage, however, is that the
username mapping needs to be maintained. It is hoped
that in the future, this can be stored in an LDAP style
directory.

User: VM1234
Queue: UNIXQ

VM Print
Subsystem

printhost ?

printhost
1.2.3.4
1.2.3.5

User: VM1234
Queue: fromvm

1

2

3

5

4

7
control filter

User: joe
Queue:
fromvm

printcap.pl
fromvm

routing filter User: joe
Queue:

myprinter

Queue: fromvm

11

13

printcap.pl
myprinter

routing filter

User: joe
Queue: local-

xterm002

Queue: myprinter

15

User: joe
Queue:

xterm002@badhost
xterm002@goodhost

printcap.pl
local-xterm002

Queue: local-xterm002

6

8

10

9

xterm002:
joe's

preference

12

badhost is down

14

Mainframe

spoolhost

Figure 2a: Logical print job flow.

Printing Via ‘‘Port’’ Functionality in Terminals

Historically, people would use terminals (or
dumb terminals) to login to multiuser hosts (e.g.,
VAX/VMS). Typically, these terminals would also
have a printer port that users could attach a printer to.

printcap.pl
local-xterm002

User: joe
Queue:

xterm002

Queue: local-xterm002

16

17

goodhost

xterm002

inkjet printer

parallel port

port 9101

18

19

20

15

Figure 2b: Logical print job flow.

Instead of having to define all printers connected
terminals on a VMS system, they designed a way to
print to ‘‘any’’ printer attached to a terminal. The way
this works is that the host (the VAX in this case) sends
a special sequence of characters that tells the terminal
to switch to ‘‘printer mode’’ [4]. Once in ‘‘printer
mode’’ the terminal will send all the characters it
receives to the printer instead of displaying them on
the screen. This continues until the host sends another
sequence that tells the terminal to switch back to ter-
minal mode and start displaying the characters.

During a VAX terminal session all characters
coming from the VAX are screened using a filter pro-
gram, that watches for the special sequences that
switch into and out of ‘‘printer mode’’.

Once the ‘‘printer mode’’ is switched off, this fil-
ter then calls lpr to print all the characters collected.

The Life of a Print Job
This section will describe, in detail, all the pro-

cesses a sample print job goes through when being
printed in order to demonstreate how the different
parts of the system work together to get the job
printed.

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 223

Design and Implementation of a Failsafe Print System Pultar

The sample print job is one that originates in the
VM system and is destined to a printer connected to
an X terminal. In addition, it is assumed that one of
the PD servers is down.

• User on VM
• Print Job
• Print Subsystem on VM
• printhost via LPD protocol
• DNS multiple A record
• to spoolhost (PS server) on queue from-VM
• username translation filter
• print job with Unix login
• routing filter
• print job with new destination
• myprinter queue
• routing filter
• print job with user-<username>
• user-<username> queue
• routing filter (look up from settings for desktop

printing, look up from Zephyr for location)
• new print job with local-<xterm>
• local-<xterm> queue -
• badhost server local-xterm queue fails
• goodhost server local-xterm queue succeeds
• interface filter
• Xterminal
• parallel port.

1. A user on VM decides to print, invokes the
print command and generates a print job.

2. This job is processed via the VM Print subsys-
tem, which will decide to send the job to the
‘‘fromvm’’ queue on ‘‘printhost’’ using the
LPD protocol.

3. VM will perform a DNS lookup to resolve the
name ‘‘printhost’’. VM will receive a number
of addresses associated with this name, and
pick one to send the job to.

4. Assume that VM picked the address for spool-
host.

5. VM will then send the job to the lpd daemon
running on spoolhost destined for the queue
‘‘fromvm’’.

6. The lpd daemon on spoolhost will execute
/etc/printcap.pl to get a printcap entry for
‘‘fromvm’’. This script will generate a printcap
entry that lists that both a control file filter and
a routing filter will be used. The lpd daemon
on spoolhost will then receive the print job and
store it in the spooler directory.

7. The lpd daemon on spoolhost will invoke the
control file filter associated with this queue.
This filter is the username translation filter,
which will rewrite the username in the control
file, and replace the user’s VM username with
their Unix login.

8. The lpd daemon on spoolhost will then invoke
the routing filter associated with this queue.
This filter is the routing filter, which returns
‘‘myprinter ’’. The lpd daemon, will redirect
this job to the ‘‘myprinter ’’ queue.

9. The lpd daemon spoolhost will execute
/etc/printcap.pl to get a printcap entry for
‘‘myprinter ’’. This script will generate a print-
cap entry that lists that a routing filter will be
used.

10. The lpd daemon will transfer the print job to
the ‘‘myprinter ’’ queue.

11. The lpd daemon on spoolhost will then invoke
the routing filter: This filter will look up the
users’ preferred printer. Assume that the user
has listed ‘‘My Desktop Printer’’ as their
default printer. The routing filter will then use
‘‘zlocate’’ to locate the user, and find which X
terminal they are logged into. Assume the user
is logged in from xterm02. The filter will
return local-xterm02.

12. The lpd daemon on spoolhost will execute
/etc/printcap.pl to get the printcap entry for
local-xterm02. /etc/printcap.pl will create a
spooling directory for this queue if necessary. It
will return a printcap entry that lists PD servers
to try in a particular order: first badhost and
then goodhost.

13. The lpd daemon on spoolhost will transfer the
print job to ‘‘local-xterm02’’

14. The lpd daemon on spoolhost will try to con-
nect to badhost. After a while, this connection
will time out.

15. The lpd daemon on spoolhost will try the next
PD in the list. It will try to connect to goodhost.
This time the connection will succeed. The lpd
daemon spoolhost will send the job to the
‘‘local-xterm02’’ queue on goodhost.

16. The lpd daemon on goodhost will execute
/etc/printcap.pl to get a printcap entry for local-
xterm02. printcap.pl will create the spooling
directory if necessary. It will also return a print-
cap entry pointing at port 9101 of host xterm02.

17. The lpd daemon on goodhost will then open a
connection to port 9101 of host xterm02 and
send the job.

18. The Xterminal xterm02 is configured to send
all input from port 9101 to its parallel port. It
will send the print job to the parallel port.

19. The printer is connected to the parallel port and
and will print the job.

20. The user will pick up their print job, hopefully
smiling, and thinking ‘‘Hey, this is great. I hit
print, and seconds later, here’s my print job!’’
without being aware of all these processes that
have gone on in the background.

Features and implementation

This section describes, the features introduced in
the overview, and how they are implemented.

Banner Pages On Colored Paper

The banner page program includes the necessary
PCL and Postscript code to switch to different paper
tray for the cover page and then switch back. The

224 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Pultar Design and Implementation of a Failsafe Print System

printers are stocked with colored paper on one tray
and white paper on other trays.

Pooling Of Printers

This feature is already implemented in LPRng
with subserver queues.

Translation/mapping Of Usernames From Other Sys-
tems (VM/VMS/NT)

The translation of usernames from other systems
is done using the control file filter feature in LPRng.

Once a job is received, LPRng will execute a fil-
ter. This filter programs looks for the username field
in the control file, extracts the username, then looks up
this username in a simple directory; and finally
rewrites the control file with the new username.

Graphical User Interface For Queue Management
And Preferences

A simple Tk frontend to LPRng’s lpq and lpc
was developed. Users can look up the jobs in queue
and cancel or move jobs.

This tool also allows the user to change their pre-
ferred printer, i.e., the printer that user-<username>
will print to.

Pop-up Notices When Jobs Are Queued, Being
Printed, And Completed.

This is accomplished via the Zephyr package
from MIT’s Project Athena. Using Zephyr, it is possi-
ble to send pop-up messages to users as their print
jobs progress through the printing system. The
accounting filters in LPRng are set up to send these
Zephyr messages.

Printing To Inkjet Printers Connected To X Terminals.

Printing to inkjet printers connected to X termi-
nals is done via the local-<Xterm> queues mechanism
described above.

When the user has selected ‘‘My Desktop
Printer ’’ as their default destination, their user-<user-
name> queue will route jobs to local-<xterm>, by
querying Zephyr to locate the xterminal that the user is
logged in on.

For example, for a user ‘‘joe’’ working on
xterm02, their queue user-joe would forward jobs to
the local queue would be local-xterm02.

The PD server for X terminals will send the job
to port 9101 on the host specified: If a user prints a job
to local-xterm02, the PD server would contact
xterm02 on port 9101 and send the job.

It is possible to print to the workstations using
this mechanism as well. All the workstations have a
daemon running on port 9101 /usr/bin/localprintd
(started through inetd), that will send the jobs to the
workstation’s parallel port.

Printer Defaults Per User

Another simple Tk application was developed
that allows the user to edit their printer preferences.
Using this application, they are able to select their

preferred printer, orientation and see their username
mappings for print jobs received from other systems.

These preferences are stored in a simple flat file,
which is used by the PS servers.

Modifications to LPRng
The following modifications, merged into LPRng

distribution, were made to LPRng.

Multiple A Records

LPRng only used the first address returned by
DNS. The code was modified to try all the addresses
returned by the name query. (This is similar behavior
to most telnet clients).

With this change, clients using the new LPRng
lpr client would try contacting all the Print Spoolers,
until it found one that worked.

Multiple ‘‘rm’’ Entries In Printcap

Traditionally, lpd servers could only have one
remote machine (rm) entry for each remote queue.
This was changed to add the ability to define multiple
hosts to be tried in order.

This change was necessary to implement fail-
over between PD servers. Each queue has a list of PD
servers that it is hosted on. It was necessary that PS
servers to try these hosts in order; for queue listing
consistency.

Solutions To Administrators Problems

The section describes how this system solves
each of the following administrators’ problems.

How does one manage printer queues, if every user
wants to have a printer on their desktop?

This is solved using the local-<xterm> capability.
One can print to any users X terminal/workstation, by
sending the job to local-<hostname>. Since the
queues and spooling directories are created dynami-
cally, the administrators do not have to get involved in
managing these queues. Any user/department can pur-
chase a cheap inkjet printer and connect it to their ter-
minals.

How does one set up printer lists in each application,
so that users can print to any one of the hundreds of
printers available?

Each application is configured to only print to
‘‘myprinter ’’. This queue is automatically routed to
the users user-<username> queue. Instead of having
the printer manage the list of applications, this func-
tionality is moved into the printing system (more
details in ‘‘Local Queues’’ section).

How does one get print jobs from non-Unix systems to
printer to their printers, with cover pages with Unix
login names, and proper accounting, without much
configuration on the Unix side?

The print jobs from non-Unix systems are
received on a special queue that does non-Unix user-
name to Unix username mapping. The job can then be

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 225

Design and Implementation of a Failsafe Print System Pultar

routed to ‘‘myprinter ’’, and follow the usual print
path.

There is only need for one queue on the non-
Unix system, which will be used to send jobs to all
possible printers on the Unix system. (More details in
‘‘Other systems and Legacy Printing’’.)

How does one distribute printer configuration (aka
/etc/printcap) information to all their worksta-
tions/XDM servers?

The only printer configuration information stored
on the clients is the hostname of the print spoolers,
which is the same for all clients, and never changes.

The clients, regardless of queue name, always
send the jobs to a print spooler. The solution is to
move all the spooling and configuration information
off of the clients, and put them on the ‘‘print spooler’’
hosts.

Can one build a print system so that if any of the print
servers go down, all printing service can continue?

In this implementation, there are two PS servers,
and two PD servers. In theory it is possible to have
any arbitrary number.

If a PS server were to fail; clients would connect
another PS server using the round robin multiple A
record in DNS.

If a PD server were to fail; PD servers will use
the next available server defined in the server list for
that queue.

Therefore, if any server fails, the print service is
still available for any new job. The only loss would be
jobs that are in queue on the server that went down.

Discussion

Roll out
The roll out of the new print system was not

without its problems.

By the time this project was started, the entire
system administrator team had changed. Having noone
know how the old system was set up in all its intricate
details was a big hindrance during the roll out. It
seems, no matter how hard the team tried, there was
always, yet another undocumented feature, or an
application that used the old system with hard-coded
entry points. Parts of the old system that did not ini-
tally make sense to the team, seemed crystal clear
once the same modes of failure were encountered in
the new system (e.g., WordPerfect assuming that hosts
were always single user, and see the print system fail
in mysterious ways on multiuser XDM servers.)

Another problem was keeping up-to-date with
the new versions of LPRng. During the development
cycle of the project, there was a new version of LPRng
almost every other week, and it contained changes that
the project team had contributed or changes that were
desperately needed. Of course, there were several
occasions where LPRng had changed in a way that

had not anticipated, especially in the bleeding edge
areas that this system depended on most: control file
filters and routing filters.

Failsafe

As stated earlier in this paper, the failsafe
requirement of this project only applied to new jobs
being submitted to the system.

It would have been a pretty difficult design chal-
lenge if this requirement also applied to existing jobs.
After all, if a print job is currently on server A, and
server A goes down; how does one recover the print
job? One would have had to build a system that
tracked print jobs on multiple servers simultaneously:
not a simple feat!

One side effect of the system as implemented is
that queue listings maybe inconsistent. The queue list-
ing requests (lpq) go through the same failsafe mecha-
nisms as the jobs. As a result, if one submits a job, and
queries the queue immediately, he may not see his job:
His job may be being processed on a different PS
server than the one he is using to get the queue listing.

Another interesting side effect is the disappear-
ance of jobs when a PD server is resurrected. While a
PD server is down, print jobs that would have been
processed on it are sent to a different server. When the
PD is back up, the system will automatically switch
back to using the PD server for queue listings. How-
ever, there may be jobs queued on a different PD
server waiting to be printed.

Weaknesses In Implementation

The dynamic printcap generation script,
/etc/printcap.pl is currently implemented in perl. This
means that a new copy of perl is spawned every time
lpd needs some printcap information. Under heavy
printing, this can put a nontrivial load on the system.

The PS servers utilize users’ preferences when
processing print jobs. Currently these preferences are
stored on a flat file on a NFS mounted filesystem. The
design was to store these files locally on all PS
servers, and when the user updated their preferences,
update all copies.

Another weakness is in the implementation of
Zephyr. Since the environment had no prior installa-
tion of Zephyr, it was installed specifically for this
project. During the implementation Zephyr was used,
without much regard to how else it could be used.
Therefore, to use the current installation of Zephyr as
a general purpose messaging mechanism may involve
some rework in the print system implementation.

Comparison To Prior Work

In [8], the author uses a number of sections to
cover printers, and their configurations. As an obser-
vant reader will note, this paper does not cover the
configurations (and difficulties associated with) the
printers themselves. One interesting feature covered in
his paper; that can also be applied to this work in the

226 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

Pultar Design and Implementation of a Failsafe Print System

future, is the assignment of a location to print servers.
In the current implementation of this print system, all
the PS servers are treated equally. In a future version,
it is possible to assign locations to these servers, and
have clients contact a print spooler close to their loca-
tion. The author also has several sections on the
importance of automation. In this system, the
approach taken was to ‘‘eliminate’’ instead of
automating a lot of the maintenance work. For exam-
ple, instead of distributing printer information to all
the clients, the system was designed such that the
client configuration is not affected by changes to the
print system; and have, in effect, eliminated the need
to distribute this information.

In [9], the authors describe a print system that
they have built using the LPRng package. In their
paper, they describe a design that they rejected that is
similar in nature to this system: ‘‘in which a master
front end machine distributes print jobs to an array of
workers’’ because they considered the front end
machine a single point of failure. This system uses
multiple front end machines to accomplish the distri-
bution, and thus does not suffer from the single point
of failure. Moreover, in this system, when a server
failed all new jobs are automatically routed around the
failure; as opposed to the CERN work, which in the
authors words: ‘‘In case of a failure of one of the
servers, a reconfiguration of the naming service
databases suffices to reallocate the queues served by
the failed server onto active ones.’’ Another comment
the authors make in their ‘‘Future Developments’’ sec-
tion is that they would like to implement user notifica-
tion via Zephyr, which is already implemented in this
system.

It is unfortunate that the work described in this
paper had already been completed by the time [8] and
[9] were published.

Availability

This system is based on the LPRng print system,
whose source is available from the LPRng web site [2]

Due to the legal requirements of the company
where this work was performed, the additional sources
(such as /etc/printcap.pl) can not be distributed.

Future Work

There are several possibilities for future work in
this area:

• As suggested in [8], implement the idea of
assigning locations to the PS servers. This
should make the system scale much better.

• Consider using lbnamed [5] to load balance to
PS servers.

Author Information

Giray Pultar received a Bachelor of Science
degree in Engineering and a Bachelor of Arts degree
in Economics from Swarthmore College in 1994. He
worked as a System Administrator at Motorola in the

Cellular Infrastructure Group in Arlington Heights, IL
until 1996; followed by a similar position at Abbott
Laboratories in Abbott Park, IL until 1998. He is cur-
rently working as a consultant at John Hancock Funds
in Boston, MA. He can be reached at
<giray@coubros.com>

References

[1] LPRng – An Enhanced Printer Spooler System,
Patrick Powell, and Justin Mason, LISA ’96.

[2] http://www.astart.com/LPRng .
[3] Man pages: lpr, lpd.
[4] VT100 terminal documentation – printer mode

escape sequences.
[5] lbnamed, Load Balancing Name Server.
[6] HP Envizex X terminal documentation.
[7] NCD X NCD 17/19 documentation.
[8] Building An Enterprise Printing System, Ben

Woodard, LISA ’98.
[9] Large Scale Print Spool Service, Ignacio

Reguero, David Foster, and Ivan Deloose, LISA
’98.

1999 LISA XIII – November 7-12, 1999 – Seattle, WA 227

228 1999 LISA XIII – November 7-12, 1999 – Seattle, WA

