Proceedings of LISA '99: 18ystems Administration Conference

Seattle, Washington, USA, November 7-12, 1999

BURT: THE BACKUP
AND RECOVERY TOOL

Eric Melski

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WhtiZ// www. usenix.org

Rights to individual papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Burt: The Backup and Recovery Tool

Eric Melski — Scriptics Corporation

ABSTRACT

Burt is a freely distributed parallel network backup system written at the University of
Wisconsin, Madison. It is designed to backup large heterogencous networks. It uses the Tcl
scripting language and standard backup programs like dump(1) and GNUTar to enable backups
of a wide variety of data sources, including UNIX and Windows NT workstations, AFS based
storage, and others. It also uses Tcl for the creation of the user interface, giving the system
administrator great flexibility in customizing the system. Burt supports parallel backups to
ensure high backup speeds, and checksums to ensure data integrity. The principal contribution of
Burt is that it provides a powerful I/O engine within the context of a flexible scripting language;
this combination enables graceful solutions to many problems associated with backups of large
installations. At our site, we use Burt to backup data from 350 workstations and from our AFS
servers, a total of approximately 900 GB every two weeks.

Introduction

In the past several years, network installations
have become increasingly large and complex. These
networks consist of more workstations, and those
workstations, particularly in research environments,
run a wider variety of operating systems. In addition,
the recent dramatic decrease in the price of hard disk
drives has made it feasible for users to store large
amounts of data on their workstations. Many users
also want the best of both the datafull (all data stored
on local disks) and the dataless (all data stored on file-
servers) workstation models. Finally, system adminis-
trators are under constant pressure to decrease the
amount of time during which backups run. Together,
these points make backups more difficult than ever.

As an example, the University of Wisconsin,
Madison, Computer Sciences Department has over
350 workstations, each of which runs one of seven dif-
ferent flavors of UNIX. Some of these workstations
have eight gigabytes of data or more stored locally. In
addition, we have over 500 gigabytes of data stored on
our AFS [4] fileservers. We are given only six hours
each night during which to perform backups.

Burt, the “Backup and Recovery Tool,” was
developed to address these issues. We had several
specific goals in mind when we developed Burt, some
of which are common to many backup systems:

e Store data to long-term media

¢ Provide a means by which to track stored data

¢ Retrieve stored data

e Ensure the integrity and reliability of stored
data, to the degree allowed by the storage tech-
nology

¢ Ensure the speedy backup and recovery of data,
to the degree allowed by the storage technology

¢ Provide a mechanism to automate the backup
of data

e Secure backups, to a reasonable degree, from
likely attacks

¢ Support a variety of storage technologies

1999 LISA XIII — November 7-12, 1999 — Seattle, WA

e Support network backups
¢ Provide an easy-to-use interface

Other goals were more specific to our needs.
These related to the quantity and distribution of data at
our site, and the heterogeneity of our installation:

¢ Support the backup of large aggregate amounts
of data, on the order of hundreds of gigabytes,
and gracefully scale to accommodate growth.

¢ Support the backup of large amounts of data
from a single source; in particular, allow for the
backup of atomic sources that are larger than
the capacity of a single tape or other storage
element.

e Support the backup of data from a large number
of sources, on the order of tens of thousands of
sources, and gracefully scale to accommodate
growth.

¢ Support backups of data from many different
kinds of sources; in particular, support backups
of multiple flavors of UNIX workstations and
of AFS data.

e Allow easy integration of future kinds of data
sources; in particular, support backups of all
future operating systems and architectures with
minimal changes to the backup system.

The backup system we had been using, DK [12],
did not meet these needs adequately. We determined
that the best way to address all of these needs was to
construct a new backup system. We built that system
in two layers, one compiled and one scripted, using C
for the compiled language and Tcl [10] for the scripted
language. This model has been used in many modern
applications, such as word processors and other office
software. We found that it could be applied to backup
software as well, where it gave us both performance
and flexibility. In particular, the Burt I/O engine and
supporting scripts provide:

e Support for the backup of a wide variety of data
sources, and easy integration of new types of
sources, by using standard backup programs
like dump(1) and others

207

Burt: The Backup and Recovery Tool

e Fast backups, often at or near the maximum
speed of the storage device

e Support for large atomic sources and large
aggregate amounts of data

¢ Support for user-interfaces tailored to a particu-
lar site

e Easily extended functionality, through the
Tcl/Tk core and extensions

This paper discusses the design of Burt and its
features as seen by a system administrator. We will
begin with a brief overview of what a backup system
is. The next two sections describe the Burt Architec-
ture and user interface. The next section contain com-
parisions to other backup systems. The penultimate
section describes our experiences with Burt at the Uni-
versity of Wisconsin, Madison, over the past two
years. Finally, the last section discusses our future
plans.

Overview

A backup system consists of many subsystems.
At the coarsest level, those subsystems may be
grouped into a hardware component and a software
component. We will largely ignore the hardware com-
ponent for the remainder of this paper.

The software component may be further divided
into an agent responsible for moving data to and from
the hardware, a mechanism for tracking what data is
on each backup media volume, and a user interface.
By itself, the Burt engine is only the first of these: a
data moving agent. The other pieces are Tcl scripts
that a system administrator creates to suit the needs of
a particular site. These scripts handle all the other soft-
ware portions of a backup system, including tracking
data and providing a user interface.

With this in mind, Burt is designed to enable a
system administrator to backup a large collection of
data, from a large number of dissimilar data sources to
a single output destination. In the context of this
paper, data source includes disk partitions on work-
stations, AFS volumes, individual files, databases, and
any other unit of data for which a data stream can be
created. The output can be written to any location,
including files, sockets, and tape drives.

The Burt Architecture

Burt consists of two components: a compiled
component, and Tcl script based backup types, which
are bound to the compiled component at run time. We
chose Tcl as the scripting language for Burt because it
is easy to extend, and we felt that it was easy to learn.
In addition, the availability of the Tk graphical toolkit
extension assured us that we would be able to easily
make graphical user interfaces for our system.

The Engine

The compiled component, which we will refer to
as the engine, extends the scripting language Tcl [10]

208

Melski

and consists of roughly 7,500 lines of C. A special
effort was made to adhere to POSIX.1 standards [6] to
ensure that the engine could be easily ported to many
UNIX systems; we have successfully ported Burt to
Solaris, Linux, and SunOS. When loaded into a Tcl
interpreter, the engine adds a few commands that serve
as an API for controlling the engine:
e backup, for initiating backups
e recover, for initiating recoveries (restores)
e schedule, for scheduling data sources for
backup or
e readtape, for verifying checksums on tape and
building a list of data sources on tape
e status, for obtaining runtime status information
The engine has a number of significant features, but
two are particularly important. First is has multiplex-
ing capabilities, and second, it is “dumb.”

Data stream e o e

ID
Serial #

_—

Figure 1: Data flow in Burt during backup, as seen
by the engine.

The Multiplexing Engine

A key feature of the Burt engine is its multiplex-
ing capability: it receives as input some number of
data streams, packetizes and checksums the data, and
outputs a single stream containing those packets (Fig-
ure 1). Each packet contains a header that indicates the
origin of the data, the sequence number of the packet,
and other information; and a block of data from an
input stream.

The ability to multiplex is important because it
enables the system to achieve much higher overall per-
formance than is generally possible when using a sin-
gle input stream. Other authors have quantified the
performance benefit [2, 11]; one paper showed a
better-than-linear speed increase as the number of
input data streams increased [2]. Essentially, the
speed increase comes from the system’s ability to
compensate for slow input streams by reading data
from other input streams — the more input streams in
use, the more likely it is that any one of them will
have data waiting to be read at a given instant. Multi-
plexing does add complexity to the system, but we
feel that the performance benefits far outweigh the
cost of that complexity.

Of course, the engine has demultiplexing capa-
bilities as well. When reading a tape written by Burt,
the engine receives a data stream composed of inter-
leaved data from many data sources. The engine only
extracts data for those data sources that an operator is
interested in recovering from tape (Figure 2).

1999 LISA XIII — November 7-12, 1999 — Seattle, WA

Melski

Burt

Engine Data stream
Data stream)

Figure 2: Data flow in Burt during recovery, as seen
by the engine.

The “Dumb’ Engine

The second critical feature of the engine is that it
is “dumb.” It does not know where the input data is
coming from, nor where it is going to. The knowledge
about where the data is coming from is encapsulated
in backup types, the second component of the Burt
engine. The knowledge about where the data is going
to is managed by the user interface, and is specified by
the operator or administrator. This separation allows
Burt to support a wide variety of data sources and stor-
age devices, because the administrator need not
change the compiled portion of the system to add sup-
port for any type of data source or storage device. The
administrator only needs to extend or update the Tcl
based backup types or user interface, as described
later.

Other Important Features

A number of other engine features are worthy of
mention. One such feature is that it writes directly to
the tape, instead of writing to an intermediary storage
location first, as some systems do [2]. This allows
Burt to reduce significantly the total time required to
perform a backup.

The engine computes a checksum for every
packet written to tape, and writes the checksum out
with the packet. The checksum enables Burt to verify
that the data read from the tape is identical to the data
written to the tape. This provides protection from
media corruption. If the engine finds an incorrect
checksum when reading the tape, it notifies the opera-
tor. The engine uses a 32-bit extension of the Fletcher
checksum [3], which we chose because the algorithm
is fast, highly reliable, and easy to implement.

The engine allows backups to span tapes. This is
particularly important for data sources that are larger
than the capacity of a single backup tape. It also
allows the operator to append data to a tape previously
written by Burt. This can be useful at sites that have
aggregate data sizes smaller than the capacity of a sin-
gle backup tape. Those sites can put backups from
several successive days on a single tape, rather than
wasting the additional space.

Finally, the engine uses filemarks on tape to sig-
nify the start of data from each data source. These file-
marks can be used later to fast-forward the tape
directly to the point at which the requested data is
located. This can greatly improve the time required to
recover a particular data source from tape, because the
engine can skip all of the data preceeding the relevant
data rather than reading it. This is merely an

1999 LISA XIII — November 7-12, 1999 — Seattle, WA

Burt: The Backup and Recovery Tool

optimization; without the filemark information, the
engine can still recover all the data from the tape, but
it will take more time to do so.

4 Burt Engine R
Backup types

Multiplexing
engine

Backup proc

Workstation type A

‘ ‘
3 Backup proc 3
| |
| e |
AN |
| |

Figure 2: Each type of system has a unique backup
type implementation, but every backup type pre-
sents the same interface to the engine.

Backup Types

The second component of the Burt engine is the
backup types. These are Tcl functions that serve as an
interface between the engine and a particular type of
data source. A site will have one backup type for each
type of data source. For example, we use eight backup
types: one for each flavor of UNIX used at our site,
and one for AFS. In the terminology of object oriented
programming, Burt has a single backup type interface,
and each type of data source has a unique implementa-
tion of that interface. Figure 2 illustrates the concept.

A backup type consists of several Tcl functions
that encapsulate the knowledge about how to backup a
type of data source. Burt requires that a backup type
implement three functions: backup, monitor, and
recover. Each function is registered with the engine,
meaning that it is associated with a particular type of
data source, and is then called by the engine as needed
at runtime. For reference, the solaris backup type,
which we use to backup the majority of our worksta-
tions, is included in Appendix 1.

The Backup Function

The backup function is responsible for connect-
ing to and initiating backups of a particular data
source. When the engine is requested to backup a data
source, it invokes the backup function that is regis-
tered for the type of that data source. The engine
passes parameters to the backup function that indicate
the particular data source to be backed up. The func-
tion initiates a backup, typically by exploiting the
native backup program of the data source. For exam-
ple, the backup of a UNIX workstation could use
rsh(1) to connect to the workstation, and dump(1) to
perform the backup of a disk partition. The backup
function also prepares the standard error output from
the native backup program for processing by the

209

Burt: The Backup and Recovery Tool

engine. Finally, it returns two data streams to the
engine, one along which the backup output from the
native backup program is transmitted, and one along
which the standard error output is transmitted.

The Monitor Function

The monitor function is responsible for examin-
ing the standard error output. As the backup of the
data source proceeds, the engine feeds all standard
error output received into the monitor function regis-
tered for the type of the data source. If the monitor
function indicates that an error has occurred, the
engine terminates the backup of the data source in
question and logs that action along with the error mes-
sage.

The Recovery Function

The recovery function is responsible for creating
a data stream to which recovered data will be written.
When the engine is requested to perform a recovery of
previously backed up data from a particular data
source, it calls the recover function registered for the
type of that data source. The engine passes the recov-
ery function information indicating the original origin
of the data being recovered, and the recovery function
creates a data stream to which the engine can write
recovered data. As the engine reads data from the
backup media, it writes each packet that is from the
requested data source to the data stream created by the
recovery function.

Typically, the data stream will be a standard
UNIX pipe directly into the native recovery program
of the data source from which the recovered data was
backed up. Alternatively, the data may be written to a
file, which is useful when the operator needs to
browse the data and does not want to reread the tape.

Flexibility of the Backup Type Architecture

The backup type architecture is one place where
the benefits of separating the system into a compiled
and a scripted component are clear. Because the
backup types are not compiled, they are easy to mod-
ify and extend, and can even be altered at runtime.
Certain features of Tcl make it very suitable for use in
this context; in particular, the language’s sophisticated
process control capabilities and extensive string and
regular expression operations make it easy to construct
backup types for a wide variety of data sources.

The philosophy of exploiting the native backup
and restore programs of a particular data source is also
essential to Burt’s ability to support many kinds of
systems. This type of setup enables the administrator
to leverage existing tools rather than requiring them to
create or maintain programs for performing backups.
In addition, it reduces the amount of time between the
introduction of a new type of data source and the
introduction of backup system support for that data
source. The administrator does not need to install any-
thing on the client, provided it already has a native
mechanism for performing backups.

210

Melski

In practice, it has proven to be easy to add sup-
port for new kinds of data sources. When we origi-
nally began using Burt in August 1997, we supported
only five varieties of UNIX at our site; since that time,
we have added support for two other varieties. In both
cases, adding support consisted of less than twenty
minutes of work creating a new backup type, a few
tests to verify the proper function of the new backup
type, and then bringing the backup type “online.” An
administrator who is reasonably comfortable program-
ming in Tcl should have no difficulty creating or mod-
ifying backup types.

The User Interface

In a sense, the user interface is what brings it all
together: the engine, the backup types, and the opera-
tor. The engine adds a few commands to a standard
Tcl interpreter; the user interface is responsible for
making use of these new commands to make backups
and recoveries happen. This is the second area where
the separation of the system into a compiled and a
scripted componant has proven to be a great benefit.
Because the interface is composed of scripts, it can be
easily altered. Perhaps even more importantly, it is
easy for each administrator to customize the interface
to the particular needs of their installation. Tcl, along
with the Tk graphical toolkit, is a good choice for this
task. It is easy to create sophisticated graphical user
interfaces with Tcl/Tk, a fact which is demonstrated
by the wide variety of programs that use Tcl/Tk to cre-
ate their user interface.

As with backup types, an administrator who is
reasonably comfortable with Tcl should have no trou-
ble making user interface scripts. At minimum, these
scripts should have some means of starting backups of
some list of items, some means of starting recoveries
of some list of items, and some means of finding the
tape on which a particular item is stored. At our site,
we have chosen to follow the UNIX model of break-
ing a system into many small components. Thus we
have separate scripts for performing backups, recover-
ies, and searches. We also have a variety of “utility”
scripts, including runtime status displays and easy-to-
use schedule list editors. These scripts range from sim-
ple batch-oriented programs to fancy graphical, inter-
active user interfaces. In total, we have written
roughly 3,000 lines of Tcl/Tk code.

The Backup Script

A typical backup script begins by determining
what data sources are to be backed up to a given tape.
At our site, this is accomplished through statically
generated group files, which are simply lists of data
sources. The operator or batch processor specifies
which group file should be read. The script then
schedules each data source with the engine, via the
schedule command. Next, it must register the backup
type functions for each type that has been scheduled.
Then, the script must open an output stream, typically

1999 LISA XIII — November 7-12, 1999 — Seattle, WA

Melski

a tape drive; again, at our site, the operator or batch
processor specifies which tape drive to use. Finally,
the script instructs the engine to begin backups, via the
backup command.

Once the backups of all scheduled data sources
have completed, the script must make a record of the
data sources that have been written to the tape, in
order for the administrator to be able to locate data
from particular data sources. The normal way of doing
this is via the readtape command, which builds a list of
all the items on the tape, as well as tests the check-
sums for every packet on the tape to verify that the
data has been correctly stored. The list is then stored
in a database for future reference. Finally, the backup
script will mail the administrator with information
about the run. Pseudo-code for this entire process
might look like this:

call queue_data_sources()
call register_backup_types()
output = call open_output_stream()
call start_backups (output)
wait while backups are not complete
backup_statistics = call
get_backup_stats ()
table_of_contents =
call verify_tape()
call close_output_stream(output)
call write_to_database
(table_of contents)
call mail_operator(backup_statistics)

Our backup script can be found on the World Wide
Web at [7].

The Recover Script

A typical recover script, like a backup script,
begins by determining what data sources are to be
recovered. We use an interactive script that allows the
operator to enter data sources to recover. The script
then schedules each of these data sources with the
engine, via the schedule command. Next it registers the
backup type functions, particularly the recovery func-
tions, for each type that has been scheduled. Then, the
script must open an input stream previously written by
Burt, typically a tape; the operator specifies which
tape drive to use. Finally, the script instructs the
engine to begin recoveries, via the recover command.

The engine will first fast-forward past as many
filemarks as it is instructed to, and then begin to read
each packet on the tape. The use of filemarks is
optional in this case; if they are used, they can dramat-
ically reduce the amount of time required to recover
data from the tape. If a packet for a scheduled data
source is found, the engine writes the data in the
packet to the output stream created for that data source
by the recovery function. Our recover script can be
found on the World Wide Web at [8].

The Search Script

The search script need only provide the adminis-
trator with a means for determining what tape contains

1999 LISA XIII — November 7-12, 1999 — Seattle, WA

Burt: The Backup and Recovery Tool

the data from a particular data source. We store that
information in a simple text database; accordingly, our
search script is basically a wrapper around grep(1).

Our search script provides limited additional
functionality, such as allowing the operator to view the
log associated with the creation of a particular tape,
and determining the physical location of a particular
tape. Our search script can be found on the World
Wide Web at [9].

Other Scripts

We use a number of other scripts in addition to
the backup, recovery, and search scripts. For example,
we have a script that reads only the Burt label from a
tape and displays it; we have a script that displays the
current speed and percentage complete of a running
backup; and we have a script that coordinates the start
of nightly backups in batch mode. Most of these
scripts are between 10 and 300 lines of Tcl/Tk code.

Comparisons To Other Systems

There are several backup systems that aim to fill
the same needs as Burt. This raises the question, why
did we create something new rather than using an
existing solution?

The answer is plain: none of the systems we
examined filled all of our needs, or they did not fill
our needs as well as we would have liked. The pri-
mary contribution of Burt is that it meets the needs
established earlier, and we feel it does so better than
other systems. With respect to each system, Burt is
more flexible, more extensible, more scalable, or a
combination of these. It is also less costly than com-
mercial systems, a factor that has a significant impact
at some sites.

In this section, we examine other backup sys-
tems, highlighting specific similarities and differences.
This is not meant to be a comprehensive comparison
of backup systems; we have simply chosen a few sys-
tems that we believe other administrators will be
familiar with. A more complete comparison of backup
systems can be found in [1], though that comparison
predates Burt. The systems we consider here are

¢ Amanda, from the University of Maryland [1, 2]
¢ Legato Networker [5]

Common Features

All of the systems have some features in com-
mon. For example, they each support backups of a
range of types of data sources, and they each support
backups of several data sources in parallel. However,
the implementation of these features varies greatly
from one system to the next.

Support for Different Types of Data Sources

One feature that is implemented very differently
by the systems is their support for different types of
data sources. Although they each support backups of a
range of types of data sources, that range is signifi-
cantly different in each product due to the

21

Burt: The Backup and Recovery Tool

implementation. Legato Networker uses proprietary
backup programs for each type of data source. Conse-
quently, if Legato has not yet created a backup pro-
gram for a particular type of data source, Networker
cannot support it. Presently, Networker’s support for
various types of data sources is fairly broad, including
Windows clients and a variety of flavors of UNIX, but
there is no support for AFS backups, which is critical
for our site. This implementation can lead to delays
between the introduction of a new type of data source
and the introduction of support for backups of that
type of data source. It should be noted that the use of
custom backup programs has at least one important
advantage: it allows Networker to create very detailed
indices of the contents of each backup tape. These
indices can be made at the file level, which makes it
easier for administrators to locate a single file on a
backup tape.

Amanda uses standard backup programs for each
type of data source, including programs like BSD
dump and GNUTar. This leaves the system well posi-
tioned to support a wide range of systems, provided
that they use BSD dump-like or GNUTar-like backup
programs. Of course, this includes the majority of sys-
tems that an administrator might want to backup,
including Windows clients and various UNIX clients.
There does not seem to be direct support for AFS
backups. We believe that it would be possible to add
such support to the system, although it would require
editing Amanda’s C source code and recompiling.

Burt also uses standard backup programs for
each type of data source, but it is not limited to BSD
dump-like and GNUTar-like programs. Burt allows
the use of any program that writes to standard output
as a backup program. Consequently, Burt can backup
not only Windows clients and various UNIX clients,
but also AFS, and even more exotic types of data
sources, such as World Wide Web sites via HTTP
sockets. Part of this flexibility comes from the manner
in which the backup type layer is implemented. It pro-
vides a sufficiently generic interface to the engine that
a very wide range of data sources can be used. The
other part of the flexibility comes from the use of Tcl
as the implementation language for the backup types.

By using standard backup programs, both
Amanda and Burt limit themselves, in a sense, to the
capabilities of those programs. For example, Net-
worker’s proprietary backup programs allow the cre-
ation of backup indices that enumerate every file
backed up, rather than just listing the partitions or
hosts that were backed up. In the case of Amanda and
Burt, the creation of such indices is possible only if
the underlying backup programs used in the backup
system support that sort of index. BSD dump and
derivative programs, for example, do not, but GNUTar
and others do.

Parallel Backups

The systems also vary in their implementation of
parallel backups. Each supports the backup of several

212

Melski

systems in parallel, in order to increase backup
throughput. Legato Networker and Burt both multi-
plex backup data directly to the tape drive, as
described above. This allows very high backup speeds
to be achieved — often at or near the maximum speed
of the tape drive — providing that a large enough num-
ber of systems are backed up in parallel. However, the
tapes created by such a system may be difficult to read
without using the backup software to do so.

Amanda, by contrast, uses a “holding disk™ to
which backups are written in parallel; from that hold-
ing disk, the backup data is written serially to tape.
This implementation has some advantages. First, it is
faster than serially backing up systems directly to tape,
as demonstrated in [2]. And it creates a tape that can
be read easily with standard UNIX programs like
dd(1). However, this implementation can be signifi-
cantly slower than multiplexing directly to tape. This
is primarily due to the addition of a ‘“middle-man” to
the data path. Each block of backup data received by
Amanda must be written to disk, then later read from
disk and written to tape. Burt and Networker have
only one write, directly to tape, for each block of data
received.

Unique Features

Besides their common features, each system has
some unique features as well. Amanda’s most notable
feature is the high degree of automation that it pro-
vides to the administrator. It will automatically sched-
ule backups and perform load balancing on backup
tapes. It can also protect against accidental tape over-
writes, and as noted above, produces tapes that can be
read easily using standard UNIX utilities.

Burt’s most notable feature is its high degree of
flexibility in terms of supported types of data sources
and user interface. We have not created a general pur-
pose, graphical user interface for Burt; by design, such
an interface is not a part of Burt. We have created a
fairly sophisticated administrative interface, but it is
highly site-specific, and probably of little use to other
sites, except as a demonstrative example. In any case,
we feel that the creation of the user interface is best
left to the individual administrator, who is best quali-
fied to know what features are needed at their site. Tcl
certainly provides the tools to make an impressive
user interface. Similarly, we have not created a general
purpose backup scheduler, though we have created a
scheduler for our AFS backups, and are in the process
of developing a scheduler for our workstation back-
ups. In addition to this flexibility, Burt has the ability
to distribute backup data over multiple tapes, and it
uses checksums to help ensure data integrity.

Networker’s most notable feature is its sophisti-
cated user interface. In addition to providing access to
the administrative functions of the system, Net-
worker’s user interface provides users the ability to
request restores from the system. If the backup media
is stored in an automatic loader, such as a tape changer

1999 LISA XIII — November 7-12, 1999 — Seattle, WA

Melski

or tape library, Networker can perform user requested
recoveries without administrator intervention. Net-
worker also has the ability to distribute backup data
over multiple tapes.

Experience and Performance

We began using Burt as our primary backup sys-
tem in August 1997. After a few initial problems due
to bugs in the implementations of our backup types,
everything has gone smoothly.

Overview

We backup a total of around 900 gigabytes every
two weeks, counting both full backups and incremen-
tal backups. We use a collection of thirty 4 mm DDS-2
tape drives for backups, with 90 m DDS tapes, each
with an uncompressed capacity of two gigabytes. We
have enabled hardware compression on the tape drives
to increase the capacity of our tapes. We choose to
backup to a large array of relatively low capacity tape
drives for three primary reasons. First, it gives us a
second layer of parallelism, allowing us to increase
our overall throughput. Second, it limits our loss if a
single backup tape is damaged — instead of losing 35
gigabytes or more, as we might if we used DLT drives,
we can only lose four gigabytes or so. Third, it is inex-
pensive to replace the drives if they fail.

Obviously we cannot fully backup everything
every night. Instead, we use a two week “epoch
cycle”. Each night, we peform a full (BSD dump level
0) backup of a portion of the data, and incrementally
backup the remainder. This totals roughly 60 giga-
bytes of data each night. This kind of backup policy is
sometimes called compositional backups, and was
easy to implement with Burt and Tcl.

Implementation

Each night a script is run at 1:00 am (via cron(1))
to initiate our incremental backups. These occupy
about 15 of our 30 tape drives for about 90 minutes.
At 3:00 am, the batch processor initiates the epoch
backups that have been selected to run that day, on the
other 15 tape drives. At 9:00 am, an operator verifies
that the nightly backups have completed successfully.
If any require an additional tape, the operator loads a
new tape in the appropriate tape drive. If any of the
nightly backups have failed, which happens occasion-
ally due to media errors, the operator restarts the failed
backup. In addition, if any individual data sources
have failed to be backed up, due to network errors or
problems with the data source, the operator corrects
the problem and runs a special “redo” backup for
those data sources. Once all of the backups have fin-
ished, the operator loads tapes for the next nightly
backup run.

Growth
Since Burt’s introduction, we have significantly

increased the size of our data set, in both total data
size and total number of data sources. Originally, we

1999 LISA XIII — November 7-12, 1999 — Seattle, WA

Burt: The Backup and Recovery Tool

backed up roughly 500 gigabytes every two weeks,
from about 9,000 individual data sources, including
AFS volumes and workstation disk partitions. Now we
backup 900 gigabytes every two weeks, from about
13,000 data sources. We have had no problems scaling
the system to accommodate this growth, although we
did have to add additional tape drives to handle the
increased data size.

Performance

We have had no trouble finishing backups in the
six-hour window allotted to us each night. In fact,
most of our backups finish well within that window,
with the exception of the odd backup that runs over
one tape. Backups that run over one tape do not finish
until an operator comes in to load a second tape, and
lie idle until that time. In general, backup performance
with Burt has been quite good, often at or near the
maximum possible rate for the drives and media we
use. Network bandwidth and the I/O capabilities of the
data sources being backed up seem to be the major
limiting factors on our backup speed; Burt itself is not
the bottleneck.

We do have some performance problems with
our AFS backups, but those are due to the manner in
which we schedule AFS backups. Our choices were
influenced by the desire to be able to provide fast
recovery from catastrophic AFS disk failures. One
way to reduce the time needed to perform such recov-
eries is to minimize the number of tapes from which
we must recover data. Accordingly, we schedule all
the AFS volumes from a single partition on an AFS
server to be backed up to a single tape. This mini-
mizes the number of tapes we have to retrieve data
from if that partition crashes, but it incurs a penalty on
the backup speed. Typically, our AFS backups run at
about half the speed of our workstation backups.

Of course, the purpose of doing backups is to be
able to recover data. We have no significant difficul-
ties recovering data, and have performed an average of
one recovery a day over the past several months. Note
that this number includes recoveries performed due to
system crashes, system upgrades, user error, and tests
to spot check our backups. One incident in particular
stands out: in the summer of 1998, we suffered a com-
plete disk crash on one of our AFS servers. We lost an
entire disk containing over 300 user home volumes
and several gigabytes of data. Thanks to Burt — and
the administrator working on the problem — we had
the server back up and running with all data restored
within 24 hours. The majority of the time was spent
waiting for the AFS servers to process the recovered
data; reading the data off the tapes only required a
couple of hours, and was performed in a single pass.

Overall, Burt has been a great success at our site.

Future Work and Considerations

Even though Burt in its present form has worked
well for us, it is clear that there is still room for

213

Burt: The Backup and Recovery Tool

improvement. In particular, there are a few features
that we would like to add to the engine.

First, we want to add broad support for tape
changers. Many sites use tape changers to further
automate the backup process. In some cases, Burt can
use tape changers, but the support is not explicit, nor
does it extend to the wide variety of tape changers
available. This task is complicated by the fact that tape
changers do not all use the same control interface, and
we do not have any tape changers of our own with
which to experiment. We recently received a source
code contribution to provide tape-changer support for
some kinds of tape changers, and will be working to
integrate that code.

Burt

Engine Data stream 1 3 5 ° e n
Data stream
21416 |"% 2
Figure 3 : Sequence
Burt
Engine Data stream 1 5 3 LA I
Data stream
1|2 (31°*°n

Figure 4: Sequence of writes in mirroring mode.

Burt
Engine Data stream 1 2 3 LB

Data stream | e o o
2n

n+l | n+2 [n+3

Figure 5: Sequence of writes in rollover mode.

Next, we want to add support for the use of mul-
tiple tape drives from a single Burt process. Rather
than writing all output to a single tape drive, the
engine could write the output to multiple tape drives.
Various writing patterns are possible: striping, in
which writes alternate between tape drives (Figure 3);
mirroring, in which all data is written to all tape drives
to produce multiple copies of the backup tape (Figure
4); and rollover, in which the tape drives are used as
sort of a ““poor man’s” tape changer (Figure 5). Each
of these has its own benefits and penalties. Striping
provides increased throughput, especially for slow
tape drives, and increased capacity, but at the cost of
an odd tape format. Mirroring provides additional
backup reliability, because having two copies of a
backup tape guards against media failure, at the cost
of some backup throughput. Rollover provides
increased capacity, with no significant penalty. Such

214

Melski

functionality would be useful in some situations, and
would further distinguish Burt from other backup sys-
tems.

We would also like to add more explicit support
for non tape-like media. In particular, we should bet-
ter support disk-like media, such as ZIP disks, and
various magneto-optical disks. Presently, it is possible
to direct Burt’s output data stream to a file on disk, but
that file is treated like a sequential access construct. It
would be best to exploit the features of the disk that
make it different from a tape, namely its random-
access nature. One simple way to exploit that feature
is to replace the use of filemarks to mark the begin-
ning of data from a particular data source with byte
offsets to mark those beginnings. We have a number
of ideas about how best to implement this and other
uses of disk-like media, but have not yet settled on
one.

Finally we would like to create an online reposi-
tory of backup types into which administrators could
submit backup types they have created, and download
backup types that they may need. We have begun this
repository with the backup types that we have created
for our site, and look forward to receiving submissions
from other administrators.

There is one important consideration that should
be mentioned: Windows NT. Many people ask if Burt
supports backups on Windows NT. The answer to that
question is a qualified yes. Currently, the Burt engine
cannot be run on Windows NT. We do not know what
is involved with porting the engine to NT, so that
capability may be long in coming. However, it is pos-
sible to create a backup type to backup data from Win-
dows NT workstations. We know of two methods for
doing so. First, the backup type could use Samba [14]
to mount the NT volumes on a UNIX system, and
then use SMBTAR or GNUTar to backup the data.
Second, it could use any of the several Windows NT
rsh services available to connect to a remote NT
machine, and use GNUTar or ntdump (a port of BSD
dump to NT that we are developing) to backup the
data. We do not use either of these methods presently
because neither conforms to our security policies. As
soon as we find a way to reconcile that issue, we
intend to begin backing up our NT workstations.

Conclusions and Availability

With regard to the goals previously outlined, we
feel that we have been quite successful in meeting
them. The principal contribution of Burt is that it pro-
vides a powerful I/O engine within the context of a
flexible scripting language. In particular, Burt pro-
vides support for a wide variety of data sources; fast
backups; support for data sources larger than the
capacity of a single tape; support for large aggregate
amounts of data; and extensible interfaces and func-
tionality. Our own experience has shown that Burt
provides all of these. We can backup all of the data in

1999 LISA XIII — November 7-12, 1999 — Seattle, WA

Melski

our department, including data sources larger than the
capacity of a single tape, and we can do so quickly
and reliably. We have been able to easily add support
for new types of data sources. We have been able to
scale our backup system to accommodate our signifi-
cant growth in the past two years. We have been able
to extend and customize our user interface as need and
desired. These are features that all system administra-
tors need from a backup system, and Burt provides
them.

In addition, we feel that the model of creating
software in two layers, one compiled, for performance
reasons, and one scripted, for flexibility and cus-
tomization purposes, is one that can be applied to a
wide variety of problems. As noted, it is a model that
has been used in many modern applications, of which
office software is a particularly well known example.
However, that use has typically been limited to minor
customization and automation tasks. We found that a
significantly larger portion of the application could be
scripted than has been traditionally, and that doing so
afforded us an extremely high degree of flexibility.
We believe that hybrid applications that feature a sub-
stantial scripted component represent the future of
software development, and look forward to seeing
more software that is made more powerful and cus-
tomizable by this approach.

Since October 1998, Burt has been available for
download from the Burt homepage, http://www.cs.
wisc.edu/jmelski/burt. As of mid-April 1999, there
have been about 6,000 visitors to the Burt homepage,
and about 2,000 downloads of the Burt engine. Cur-
rently, we see about 50 downloads of the engine each
week. We see about 30 downloads of the documenta-
tion each week, which is probably a better indication
of the number of people actually interested in using it.

We have begun to receive source code contribu-
tions for the Burt engine source code from other Burt
users. We believe that this bodes well for the future
development of Burt, and look forward to receiving
more such contributions in the future.

Author Information

Eric Melski graduated from the University of
Wisconsin, Madison in 1999 with a BS in Computer
Sciences. While at the university, he worked as a sys-
tem administrator for four years. Following gradua-
tion, he joined Scriptics Corporation in Mountain
View, California, where he is a software engineer.
Reach him via U.S. Mail at Scriptics Corporation;
2593 Coast Avenue; Mountain View, CA 94043.
Reach him electronically at ericm@scriptics.com.

Bibliography
[1] James daSilva and Olafur Gudmundsson, “The
Amanda Network Backup Manager,” In Pro-
ceedings of the Seventh Large Installation Sys-

tems Administration Conference. The Usenix
Association, November 1993.

1999 LISA XIII — November 7-12, 1999 — Seattle, WA

Burt: The Backup and Recovery Tool

[2] James da Silva, Olafur Gudmundsson, and
Daniel Mossé, “Performance of a Parallel Net-
work Backup Manager,” In Proceedings of the
Summer 1992 USENIX Technical Conference,
pages 217-225. The Usenix Association, June,
1992.

[3] John Fletcher, “An arithmetic checksum for
serial transmissions,” [EEE Transactions on
Communications, 30-1:247-252, January, 1982.

[4] John H. Howard, “An Overview of the Andrews
File System,” In Proceedings of the Winter 1988
USENIX Technical Conference, pages 23-26, The
Usenix Association, Winter, 1988.

[5] Legato, Inc., Legato NetWorker Administrators
Guide, UNIX Version (NetWorker for UNIX 5.5),
December, 1998.

[6] Donald Lewine, POSIX Programmer’s Guide:
Writing Portable UNIX Programs, O’Reilly
&Associates, Inc., March, 1994.

[7] Eric Melski, http://www.cs.wisc.edu/jmelski/burt/
lisa99/backup.html .

[8] Eric Melski, http://www.cs.wisc.edu/jmelski/burt/
lisa99/recover.html.

[9] Eric Melski, http://www.cs.wisc.edu/jmelski/burt/
lisa99/search.html.

[10] John Ousterhout, “Tcl: An embeddable com-
mand language,” In Proceedings of the Winter
1990 Usenix Technical Conference. The Usenix
Association, Winter, 1990.

[11] W. Curtis Preston, “Backup Techniques — Dynamic
Parallelism,” SysAdmin, February 1997.

[12] Dan Romike, DK I/O System, March 1987.

[13]J. G. Steiner, B. Clifford Neuman, and J. L
Schiller, “Kerberos: An authentication service
for open network systems.” In Proceedings of
the Winter 1988 Usenix Conference, The Usenix
Association, February, 1988.

[14] The Samba Team, http://samba.org.

215

Burt: The Backup and Recovery Tool

Appendix 1: The Solaris Backup Type

Melski

Following is the University of Wisconsin Department of Computer Sciences (UWCS) Solaris backup type defi-

nition as used with Burt.

###

#f Function definitions for solaris dump

###
THHHHHHHHHHHHHHHHHHHHHHHAHHAAAAHAHAAHERHHHAHHHAAE

F solaris_dump
i The solaris backup type backup proc;
i initiates a backup of the glven atom on the
i given host at the given
###
proc solaris_dump {host atom level} {
global sessionID tmpdir
set hostlogfile Stmpdir/BURTlog.S${sessionID}.Shost

if { [string compare Satom "/"] == 0 } {
append hostlogfile ".root"

} else {
regsub -all {/} Satom "." newatom

append hostlogfile "S$newatom"
}
append hostlogfile ".Slevel.ufs"

set dumpfd [open "|/s/std/bin/rsh S$host -n \
\"/usr/sbin/ufsdump ${level}uf - Satom\"
2> Shostlogfile" {RDONLY NONBLOCK}]

set stderrfd [open Shostlogfile r]
return [list $dumpfd $stderrfd]
}

THHHHHHHHHHHHHHHHHHHHHHHAHHAAAHAAAAAHHHHHAHHHAE

F solaris_cleanup
i The solaris backup type cleanup proc; cleans
i up temporary files created during the backup
i of the specified host, atom and le
###
proc solaris_cleanup {host atom level} {
global sessionID tmpdir
set hostlogfile S$Stmpdir/BURTlog.${sessionID}.S$host

if { [string compare $atom "/"] == 0 } {
append hostlogfile ".root"

} else {
regsub -all {/} Satom "." newatom

append hostlogfile "S$newatom"
}
append hostlogfile ".Slevel.ufs"

catch {file delete Shostlogfile}
}

THHHHHHHHHHHHHHHHHHHHAHHAHAAAAHAAAAARRHHHHHHAAAE

f solaris_monitor

i The solaris backup type monitor proc; checks

i the given line of dialog for keywords that
indicate an err

1
###

proc solaris monitor {(host atom level line} {

return [regexp (error|Unknown|EXITED|ATTENTION|abort|Bad} $line]

}

216 1999 LISA XIII — November 7-12, 1999 — Seattle, WA

Melski Burt: The Backup and Recovery Tool

THHHHHEEHHHHEHERHHHEEHEHHHEEHERHHHEEEERHHHEEERHHHE
} solaris_recover
i The solaris backup type recover proc; performs
l: recoveries of the given host, atom and level
###
proc solaris_recover {host atom level} {

set filename "Shost"

if { [string compare S$atom "/"] == 0 } {
append filename ".root"

} else |
regsub -all {/} Satom "." newatom

append filename "Snewatom"
}
append filename ".Slevel.burt"
return [open "Sfilename" w]

}

This backup type is used to backup disk partitions on Solaris workstations. It includes a backup procedure, a recov-
ery procedure, and monitoring procedure, and a cleanup procedure. Each of these procedures is called by the engine
as needed.

The backup procedure is responsible for connecting to the given host and initiating a backup of the given parti-
tion at the given level. It uses Kerberos V rsh [13] to make the connection, and uses the Solaris program ufsdump(1)
to initiate the backup. The standard error output from ufsdump is redirected to a file, from which is it read and passed
to the engine. File handles for the backup data and for the standard error data are passed back to the engine.

The cleanup procedure is an optional procedure that is used to perform any cleanup that may be required fol-
lowing the completion of the backup of a particular host and atom. When the engine finds that the backup of some-
thing of type solaris has finished, it will call the solaris_cleanup procedure with the particular host and atom that has
finished. In this case, the cleanup procedure simply removes the temporary file that was used to store the standard
error output from the backup of a particular item.

The monitor procedure is responsible for parsing a line of dialog from the standard error output of the backup
of a particular item and determining whether or not the dialog indicates that an error has occurred. If the procedure
determines that an error has occurred, the engine will abort the backup of the item. In this case, the monitor proce-
dure checks the dialog for certain keywords that indicate an error has occurred.

The recover procedure is responsible for initiating a recovery of a particular item. When the engine finds that it
is supposed to recover data from an item of type solaris, it will call the solaris_recover procedure with the particular
host, atom, and level to be recovered. The procedure returns a writable file handle to the engine, and as the engine
reads data from the backup media, if it finds a packet that is from the particular item, it will write the data to the file
handle given by the recover procedure. In this case, the recover procedure just writes the data out to a file; our oper-
ators must then use the Solaris program ufsrecover to extract the required data from the file.

1999 LISA XIII — November 7-12, 1999 — Seattle, WA 217

218 1999 LISA XIII — November 7-12, 1999 — Seattle, WA

