
USENIX Association

Proceedings of
LISA 2002:

16th Systems Administration
Conference

Philadelphia, Pennsylvania, USA
November 3–8, 2002

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Application Aware Management of
Internet Data Center Software

Pp. 33-46 of the Proceedings of LISA ’02: Sixteenth Systems Administration Conference
(Berkeley, CA: USENIX Association, 2002).

Alain Mayer – CenterRun, Inc.

ABSTRACT

We have built a comprehensive solution to address the management aspects of deployment and
analysis of applications in Internet Data Centers. Our work was motivated by the high total cost of
ownership of operating such centers, largely due to the variety of applications and their distinctive
management requirements. We have chosen an approach that encapsulates application specific
knowledge (is application aware) and deployed it in a number of corporate Internet Data Centers.
Operations staff found substantial cost reduction in managing applications using our approach.

Introduction

A corporate Internet Data Center consists mostly
of Web server farms, application server farms, and
database servers. Frequently there is a heterogeneous
server environment running Windows 2000, Solaris,
Linux, and AIX platforms, often due to corporate merg-
ers and acquisitions. Acquired third-party software can
include (1) Web servers such as Apache, iPlanet
(SunONE), Microsoft IIS, (2) application servers, such
as BEA WebLogic, IBM WebSphere, Microsoft MTS,
iPlanet (SUNOne), and (3) database servers such as
Oracle and Microsoft SQL servers. In addition, enter-
prises have a large quantity of in-house developed soft-
ware (J2EE applications, ASP/JSP pages, COM(+)
components, etc.) which need to be deployed and con-
figured on top of the third party software.

There has been excellent prior work on infras-
tructure deployment and management (see the pio-
neering paper [TH98] and references therein, such as
[R97], or books, such as [LH02], [B00]). These solu-
tions (and some of their tools, e.g., JumpStart, Kick-
Start, Ghost, SUP, etc.) mostly focus on more generic,
lower level aspects of the infrastructure, such as OS
and standard network servers (DNS, mail, etc.). We
advocate building on these existing solutions and at
the same time creating new management technologies,
which are application aware. By this we mean that
instead of operating only on the level of files and
directories, such solutions capture knowledge about an
application such as its configuration methods, require-
ments, and more. Operations personnel can use such
knowledge to define methods to deploy, install,
upgrade, and start applications. Once defined, these
methods can be executed repeatedly and reliably
through a ‘‘push’’ method or through a ‘‘pull’’ method
(what might be done today using tools such as ‘‘rdist’’
or ‘‘cfengine’’ [CF02], respectively).

It is important to note that the approach of appli-
cation-aware management technologies extends well
beyond the realm of the Web applications in Internet

Data Centers. However, for the sake of concreteness
and because of the importance of Web applications,
this paper focuses on our efforts to create solutions for
Internet Data Centers.

In the next section, we introduce Application
Management as an emerging and important field of
system administration and then motivate our approach
of application-aware management. Subsequently, we
present the required building blocks of our approach
and shows how they interact with each other to form a
comprehensive solution. The next section shows some
of the technologies needed to realize the building
blocks. After that, we quantify some of the benefits
seen by operations people using application-aware
technology and finally conclude.

Importance of Web Application Management

In every industry, business is moving online. After
migrating business information to databases in the eight-
ies and setting up e-commerce applications in the
nineties, organizations of all sizes are relying on web
applications for core business operations. With the advent
of Web services, this trend will only be reinforced.

Application management today operates on file,
directory, and configuration parameter levels. As most
operations managers can attest, application changes are
frequently hectic ordeals, involving custom-built scripts
(sometimes written only moments before they are first
used), best guesses about hardware and software con-
figurations, remote locations, late hours, and over-
worked staff. Changes can involve complex combina-
tions of commercial software, in-house applications,
and custom scripts. Operations staff is responsible for
understanding the requirements for all these compo-
nents, deploying them quickly and flawlessly, and
remembering what they have done at a detailed level.

Apart from the actual deployment, application
management includes other substantial challenges. It
is often important to detect what has changed and by
whom in deployed applications (e.g., the administrator
on duty at the time of an emergency made a quick fix

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 33

Application Aware Management of Internet Data Center Software Mayer

to some Web server configuration file/database, which
is not consistent with the overall policy). Similarly,
operations staff needs to quickly pinpoint deployment
and configuration differences among two servers.
Severe reliability problems often lead operations staff
to undo and rollback application deployments (we
note that not every application can be cleanly rolled-
back due to its possible side effects, such as changing
the OS state).
Cost of Managing Web Applications

Below are the summary points of a representa-
tive Internet Data Center environment. The associated
cost of managing application deployments and analy-
sis in such an environment is discussed later.

• 120 servers, 26 applications
• Applications are all running on top of Apache

Web servers and either Weblogic or WebSphere
application servers.

• Collecting application changes and deploying
them once a week.

• IBM consulting project to document manual
change processes did not result in any improve-
ments in quality or in cost.

• Costly, time-consuming errors, such as running
out of disk space during an application deploy-
ment or forgetting to add required database
tables during an n-tier application update.

• Pain Manifestation: ‘‘My team of seven spent
16 hours on one WebSphere deployment’’

Motivating Application Awareness

Here we present some typical workflows involving
applications both on the UNIX and Windows platform.
J2EE Applications

J2EE application servers, such as Weblogic,
WebSphere, and iPlanet (SunOne) implement their
own ‘‘logical topology’’ on top of the network of
physical server machines. A ‘‘server instance’’ is a
software component that makes one or more J2EE
applications available on a physical machine. Each
physical machine may host one or more server
instances. Each product has its own way of creating,
grouping, and managing its server instances.

J2EE applications (e.g., Enterprise Java Beans,
EJB’s) implement the core business logic (second tier
in an n-tier architecture) of most Web-enabled applica-
tions. These applications are typically packaged in
archive formats, such as EAR (Enterprise Archive) or
WAR (Web Archive). These archives contain configu-
ration information in XML. Each vendor extends the
basic XML configuration, affecting the way the J2EE
application is deployed to the application server. Oper-
ations personnel often get these archives from the
development organization and might have to open the
archive to edit configuration values. The deployment
of these applications to a server instance always has to
be effected via the responsible administrative console
server. Details of the deployment commands differ

among vendors and even among versions from the
same vendor. For example, the configuration informa-
tion for each J2EE application running on WebSphere
is stored in a centralized database, which is read and
written by the administrative console during each
deployment, upgrade, or other change.

Closely coupled with J2EE business logic are the
Web applications, the first tier in an n-tier architecture.
These applications are deployed onto Web servers
(Apache, iPlanet, etc.) and contain JSP pages, static
content, and more. They are often deployed together
with the second tier as a single logical software com-
ponent, forming cross-machine dependencies. Further-
more, the Web servers need to be configured to con-
nect to the appropriate application server instances.

Windows Applications
On the Windows platform, IIS is the dominant

Web server platform and MTS is the dominant plat-
form for the business logic applications. Deployment
of applications (ASP pages, ISAPI filters, etc.) onto
IIS (versions 5.x) require each configuration to be
reflected in the ‘‘metabase,’’ a registry like database
resident on each Windows 2000 server. Any configu-
ration information about IIS itself also has to be
reflected in the metabase. On the Windows .Net server
and IIS version 6.x, the metabase is realized as an
XML file. Business logic and transactional compo-
nents are typically packaged as COM or COM+ com-
ponents. Deployments onto MTS require the registra-
tion of these components with the Windows registry
database. Any Web or business logic application might
require additional manipulation of the registry
database. Within the .Net framework, applications are
packaged as assemblies, which have yet another
deployment philosophy.

Database Dependencies
Most applications require access to database

servers running Oracle, SQL, or similar. While
deploying and configuring such servers might not be a
frequent operation (relative to changes to applica-
tions), the deployment of an application typically does
require some manipulation of the database (e.g.,
tables, stored procedures).

Need for Application Awareness
Given the description of Internet Data Center

software above and the illustration of Figure 1, it
becomes evident that deploying and managing appli-
cations requires a lot of application specific knowl-
edge. This is unlike basic infrastructure management
of UNIX-based machines, which has been pioneered
and described in [TH98] and the corresponding tools
for UNIX or Windows (JumpStart, Ghost, isconf
[TH98], cfengine [CF02], etc.). There is an unmet
need for technology and solutions to automate the
deployment and management process beyond host and
OS management, and beyond pushing or pulling files
and directories of applications.

34 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

Mayer Application Aware Management of Internet Data Center Software

Application Aware Management

Application aware management requires technol-
ogy that can (1) capture knowledge about an applica-
tion, such as its installation, registration, configuration
methods and its dependency management and (2)
automate processes based on this knowledge. In the
following, we present some of the key components of
such an approach, building upon known technologies
of [TH98], such as central version control, Gold
Server, and basic server (host and OS) set-up tools.
See also Figure &2, which summarizes the building
blocks described below, some of the building blocks
introduced in [TH98], and their dependencies. Some
of the building blocks in [TH98] have been merged
under ‘‘Host&OS’’ management, which can be argued
is a pre-condition for application management as a
whole. The building blocks above the fat line were
introduced in [TH98]; we created the blocks below
that line. Lines between building blocks denote that
the block below depends on the block above being
realized in the system. The system we built includes
all building blocks except the ‘‘Host&OS’’ block.

Figure 1: The deployment and configuration of web applications is a complex process, where most steps are appli-
cation dependent, meaning they differ from application to application (‘‘QA’’ = quality assurance).

• An Application Model is a data-driven repre-
sentation of an application (including executa-
bles and configuration files, content, etc.) and
associated methods to deploy, configure, and
analyze the application. A model has to be
reusable, so that it can be applied to different
server environments (e.g., staging vs produc-
tion), which might require different deployment
or configuration choices. Rather than capturing

‘‘hard-coded’’ configuration settings of the
application, the model contains variables for
such settings which the user can instantiate dur-
ing the deployment process.

• The Model Builder automates the creation of
application models. It captures deployed appli-
cations from a Baseline Server (e.g., a machine
in the QA environment), checks them into a
central version-controlled repository (‘‘Gold
Server ’’ approach), and at the same time creates
a base model of the application. The model
builder associates the type of the captured
application (e.g., J2EE application on Web-
Sphere, Web application on IIS) with an appro-
priate base model, including methods for
deployment, analysis, and discovery (see subse-
quent building blocks). The model builder then
allows customizing the base model by adding
dependencies and configuration customizations
(see subsequent building blocks) to the model.
An illustration of workflow enabled by this
building block is shown later.

• The Deployment Manager automates the
deployment process of an application end-to-
end. For each checked-in and modeled applica-
tion, this process assures that the application
will be correctly installed on the desired server
machines. In other words, the deployment man-
agement module forms the runtime system for
the modeled methods.

• The Configuration Manager determines the
desired configuration of an application according

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 35

Application Aware Management of Internet Data Center Software Mayer

to the environment (e.g., number of CPUs,
database connector, and thread-pool of the target
server). It then generates the configuration by
setting values in appropriate text files, XML
files, or modeled methods of the application. In
this way, the configuration manager can even
write to database-like structures on the target
servers, such as Windows registry, IIS
metabase, WebSphere data stores, etc.

Version Control

Host & OS

Model Builder

Application Model

Configuration

Deployment Analysis Dependency Discovery

Gold Server

Figure 2: Building blocks for application management.

• The Dependency Manager ensures that all
modeled requirements for a successful deploy-
ment are met (including across different
machines). This occurs before the deployment
manager makes any changes to the target server.

• Automated Analysis pinpoints configuration,
version, and other differences between data
center servers. This detects the ‘‘out-of-band’’
changes, that are difficult to suppress in most
Internet data centers, such as when an opera-
tions person changes a configuration value not
using any sanctioned tools, but rather by hand,
for example during an emergency server recov-
ery procedure.

• Application Discovery collects information on
what applications are already deployed on
which server in the Internet data center. The
application model guides the discovery process,
as it knows what features indicate the presence

of an application on a server. See [MDEGGH00]
for a good introduction to model-driven applica-
tion discovery.

Figure 3 summarizes how the above components
map onto the deployment and analysis process.

Figure 4 illustrates how these technologies fit
into a system solution (which we call ‘‘CenterRun’’).
The architecture consists of a master server and
remote agents. This solution offers a centralized con-
sole to the operations personnel. From this console
(command line or Web GUI), applications can be cap-
tured from Baseline Servers, application models can
be created, and deployments can be executed as cap-
tured in the application model. Every action is logged
and archived. Installed applications can be analyzed
and compared across servers. Below we describe the
workflow as offered by the centralized console. We
use two concrete and very different applications, a
J2EE application on WebLogic (following the sample
application ‘‘petstore,’’ one of Sun’s Java blueprint
applications) and an n-tier Web application on Win-
dows (following the Microsoft sample application
‘‘FMStocks,’’ see http://www.fmstocks.com).

Workflows Enabled by Application Awareness
Workflow 1: Deploy a J2EE Application on WebLogic

1. The Model Builder captures the J2EE applica-
tion on a Baseline Server:

36 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

Mayer Application Aware Management of Internet Data Center Software

a. Recognizes the application as a J2EE
application on Weblogic.

b. Creates an application model, capturing
and describing all the relevant files and
archives, such as EAR and WAR.

c. Checks these resources into the master
server ’s repository, where they are versioned.

d. Captures the relevant configuration infor-
mation from the Weblogic XML file,
‘‘config.xml.’’

e. Uses predefined models to add all the nec-
essary methods to install and uninstall the
application to the newly created applica-
tion model.

Application
on Baseline
Server

Figure 3: Application aware components can automate the configuration and deployment process from end-to-end,
using appropriate application-specific knowledge for each step.

2. The Dependency Engine executes checks, such
as whether Weblogic 6.0 or higher is actually
installed and running, and whether the corre-
sponding Web servers are configured to connect
the Weblogic server instances. It does so by
querying the remote agent on the target servers.

3. The Deployment Engine parses the modeled
methods for the J2EE application. It then
understands which server is the target of the
deployment (server hosting the administrative
console) and which command-line calls need to
be made to the administrative console. It trans-
mits the resources to the agent on the target and
has that agent execute the command-line calls.

4. The Configuration Engine determines the con-
figuration values of the J2EE application. For
example, the path of the application’s home
directory on the WebLogic administrative con-
sole depends on the WebLogic domain. This
install path is modeled as a variable. The Con-
figuration Engine generates the value for this
variable by examining the configuration state of
the previously installed J2EE server instance.

It is worthwhile noting that Step 1 in the above
workflow is typically executed once for each applica-
tion. As a result, the application and the model is
stored and version-controlled on the master server.
Steps 2 and 4 are typically executed many times for
many different WebLogic target servers. Also, it is
very likely that different people within the operations
staff execute Step 1 and Steps 2-4. No knowledge
about Step 1 is required to kick off the sequence of
automated Steps 2-4.
Workflow 2: Compare Two Deployed Instances of the

Above J2EE Application
1. The Analysis Engine parses the analysis meth-

ods of the model for the J2EE application,
which guide it to identify all the relevant con-
figuration settings of the application in the con-
fig.xml files of both servers. It then transforms
these two files into two new, smaller XML
files, containing only this relevant information.

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 37

Application Aware Management of Internet Data Center Software Mayer

2. The Analysis Engine parses this captured infor-
mation, compares the two XML files to each
other and then presents any differences in a
structured way to the user (e.g., the full name of
the Weblogic parameter is presented with each
differing configuration value).

users hosts

model model
builder

deployment comparison

configuration dependency

baseline serverbaseline server

data center 2data center 2

Remote Agent:

carries out deployments,

diagnostics, and reporting

Remote Agent:

carries out deployments,

diagnostics, and reporting

HTML
Client

CLI
Client

RA

RA

RA RA
RA RA

RA RA

RA RA
RA RA

RA RA

RA RA
RA RA

RA RA

RA RA
RA RA

RA RA

Figure 4: The Master Server (our version of a Gold Server) connects to Remote Agents in different data centers that
reside on each managed server.

It is worthwhile noting that the steps in the above
workflow use the methods created in Step 1 of Work-
flow 1. The operations person does not need any
knowledge about Step 1 of Workflow 1 in order to
execute the above two steps.

Workflow 3: Deploy an N-Tier Web Application on
Windows, Consisting of an IIS Virtual Directory,
COM+ Components, and a Database

1. Guided by the user, the model builder captures
the Web application on a Baseline Server:
a. Recognizes the application as a Web appli-

cation on IIS;
b. Creates an application model of the virtual

directory, capturing and describing all the
relevant content, ASP pages, and ISAPI
filters. Figure 5 shows the screen, which
lets a user select a virtual directory from
the Baseline Server machine (which in
Figure 5 is called ‘‘win_qa’’).

c. Creates an application model for the
COM+ components.

d. Creates an application model for the SQL
scripts.

e. Checks the resources of b), c) and d) into
the master server’s repository, where they
are versioned.

f. Captures the relevant configuration infor-
mation from the IIS metabase database and
the COM+ catalog and stores them in
XML format.

g. Uses predefined models for each resource
type (virtual directory, COM+ component
and SQL script) to add to the newly cre-
ated model all the necessary steps to install
and uninstall the application. Figure 6
shows the resources of the completely
checked-in FMStocks application. The
selection of the virtual directory in Figure
5 resulted in two resources, the virtual
directory tree (FMStocks) containing con-
tent, ASP pages, etc. and the correspond-
ing configuration data (FMStocks.xml),
which is a resource containing the relevant
part of the IIS metabase in XML format.
Each resource is listed together with its
type. As we will see in the next section,
this type determines how the application
model is built.

2. The Dependency Engine executes checks, such
as whether IIS 5.1 is actually installed and run-
ning on the target server or a global ISAPI filter
implementing application security is registered

38 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

Mayer Application Aware Management of Internet Data Center Software

in the metabase. It does so by querying the
remote agent on the target server.

Figure 5: Capture of the IIS virtual directory for FMStocks.

3. The Deployment Engine parses the modeled
methods for the IIS Web application. It then
understands how to install the files and ISAPI
filters on the target IIS server and which IIS
services to shut down at the beginning and re-
start at the end of the deployment. It also under-
stands how to register the COM+ components
and how and on which server to run the SQL
scripts. It transmits the resources to the agent
on the target server and has that agent execute
the installation by making calls into the ADSI
API for IIS and COM+ API. The agent also
runs the SQL scripts with the appropriate SQL
server as target.

4. The Configuration Engine inserts all the captured
configuration data from the XML files into the
metabase of IIS on the target server and into the
COM+ catalog. It executes the configuration by
making calls into the ADSI and COM+ APIs.

Workflow 4: Analyze the Above N-Tier Web Applica-
tion on Windows for ‘‘Out-of-band Changes’’

1. The Analysis Engine parses the analysis meth-
ods of the model for the IIS virtual directory,
which guide it to do the following: (1) identify
all the relevant configuration settings of the
given application in the metabase of the IIS
server and then extract these settings into an
XML file; (2) capture all file metadata from the
relevant virtual directories and all local ISAPI
filter version and configuration data of the
given application.

2. The Analysis Engine parses the analysis meth-
ods of the model for the COM+ components,
which guide it to query the COM+ catalog and
capture the resulting configuration settings.

3. The Analysis Engine parses this captured infor-
mation, compares it to the corresponding infor-
mation in the master server’s repository (where
the information relevant at the time of the last
deployment is stored), and then presents any

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 39

Application Aware Management of Internet Data Center Software Mayer

differences in a structured way to the user (e.g.,
the full name of the metabase field is presented
with each difference in the Web application
configuration).

Application Aware Technology

In this section, we discuss some of the technol-
ogy behind the building blocks and functions pre-
sented in the last section.

Figure 6: FMStocks application is checked-in and modeled.

Application Model and Infrastructure

A model needs to capture all aspects of an appli-
cation: the software features (directories, files, binaries,
content, etc.) and the execution steps to deploy, config-
ure, discover, and analyze the application. The model
also needs to express the relationships among objects of
interest, such as grouping (e.g., software features into
an application, target servers into clusters) and

dependencies of one application on other applications
being deployed, or dependencies on OS environments
on the target server. Consequently, the model is respon-
sible for all of the capturing, storing, and manipulating
of application knowledge in the system. At the same
time, for a user (system administrator, operations per-
sonnel), the model is simply the means to an end,
which is the automation of processes. That is why we
decided that for common cases, the modeling task
should be done by the system. The workflow, intro-
duced in the previous section, allows a user to simply
pick resources from a Baseline Server, group them into
a modeled and checked-in application and then deploy
such application with the ‘‘click of a button.’’ In order
to achieve such a workflow, we put the following
infrastructure in place:

• A Component is a modeled application object,
consisting of all the resources and methods

40 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

Mayer Application Aware Management of Internet Data Center Software

(install, uninstall, discover, analyze) of an
application.

<?xml version="1.0" encoding="UTF-8" ?>
- <component name="complusHandler" description="Installs com+ objects">

- <resourceList defaultInstallPath=":[install_path]">
<resource installName="complus" resourceName="ComPlusScripts" />

</resourceList>
- - <controlList>

- <control name="install" description="Installs a com+ object">
- <paramList>

<param name="rsrcDescription" />
</paramList>

- <execNative>
- <exec cmd="cscript">

<arg value="/Job:comPlusInstallApp" />
<arg value=":[install_path]\complus\ComPlus.wsf" />
<arg value="":[rsrcDescription]"" />

</exec>
</execNative>

</control>
</controlList>

</component>

Listing 1: Fragment of the handler for COM+ resources.

• A Resource Type is a first class object in the
system. Each time a user checks a resource into
the repository, a resource type name (COM_
PLUS, WAR_WebLogic, IIS_Web_Site, etc.) is
associated with the resource. The resource type
associates the corresponding type name with a
set of behaviors for deployment, configuration,
discovery, and analysis.

• A Resource Handler defines the actual behav-
ior. It captures the methods to install, uninstall,
discover, and analyze resources of a given type.
A resource handler is implemented as a compo-
nent itself. These components (‘‘system compo-
nents’’) come bundled with the system, as
opposed to application components built by the
user. A system component might have its own
resources, which are implementations (scripts,
Java classes) of modeled methods for the sup-
ported resource type. Its methods are accessible
by other components being deployed onto the
same target server and when calling these meth-
ods parameters can be passed. Consequently,
the resource type really associates a resource
type name with a resource handler. These sys-
tem components are deployed onto target
servers transparently to the user, so that they
are available to application components at the
time of a user initiated deployment or analysis.

• The Model Language defines the syntax in
which each component is expressed. We chose
XML, which is sufficiently readable so that
advanced users can manipulate the model
directly if needed for customization, rather than
just using the model builder.

In the following we illustrate these concepts with
some model fragments.

First, we show a fragment of the handler (see
Listing 1) for resources of type COM+. This is a sys-
tem component, bundled with the system and thus
never has to be manipulated by the user. As depicted
below, it consists of a few Windows Scripting Host
scripts, which are bundled, in a resource called ‘‘Com-
PlusScripts.’’ Those scripts are deployed to each target
server ahead of time, transparently to the user. The
fragment only shows one modeled method, which is
the ‘‘install’’ method, responsible for installing any
resource of type COM+. This method takes an input
parameter (rsrcDescription), which determines the
COM+ object for the handler. The method then
invokes one of the WSH scripts (Complus.wsf) via the
cscript command shell, passing the input parameter as
argument.

Next, we show an application component frag-
ment, which corresponds to the FMStocks sample
application, mentioned in the previous section. The
model builder generates this component during the
workflow steps 1a-1g, as described in the previous
section.

The (complete) component contains a reference
to each resource selected by the user in Steps 1b-1d of
the workflow. The first two resources (FMStocks2000
and FMStocks2000.xml) are the result of the user
selecting the virtual directory. The first resource repre-
sents all the content and ASP files, whereas the second
resource represents the configuration data of the vir-
tual directory on IIS, as it was set on the Baseline
Server. The model builder transparently exports all
relevant configuration data from the IIS metabase on
the Baseline Server into the FMStocks2000.xml file.
The third resource represents a COM+ resource. The
model builder transparently exports the COM+ object
from the Baseline Server into an MSI (Windows
Installer) file.

The installList XML block (see Listing 2) repre-
sents the installation method. The deployResources tag

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 41

Application Aware Management of Internet Data Center Software Mayer

causes for each resource a call to the appropriate
resource handler installation method. For the COM+
resource, this causes the installation method in the pre-
vious model fragment to be called, with parameters set
to appropriate values obtained when the resource was
captured. The installList XML block contains one step
before and one step after the deployResources step.
These steps stop and re-start IIS on the target server.
They are calls to another system component, which
models Windows services. The model builder gener-
ates these calls explicitly, rather than implicitly
through deployResources. These two steps are not
attached to the installation of a single resource, but
rather represent global behavior of the deployment of
an n-tier Windows application.

<?xml version="1.0" encoding="UTF-8" ?>
<component name="fmstocks" description="FMStocks sample application">
- -<resourceList defaultInstallPath=":[install_path]">

<resource installName="FMStocks2000" resourceName="FMStocks2000" />
<resource installName="FMStocks.xml" resourceName="FMStocks.xml" />
<resource installName="FMStocks2000Core.msi"

resourceName="FMStocks2000Core.msi" />
</resourceList>

- <installList>
- <controlService actionName="stop" componentName="servicesHandler">

- <argList>
<arg name="serviceName" value="IISADMIN" />

</argList>
</controlService>
<deployResources />

- <controlService actionName="start" componentName="servicesHandler">
- <argList>

<arg name="serviceName" value="W3SVC" />
</argList>

</controlService>
</installList>

</component>

Listing 2: The installation method.

In the description above, we introduced our mod-
eling infrastructure. We largely created our own solu-
tion. Modeling frameworks in the application manage-
ment space do exist, among them the following two:

• CIM: The common information model
[BSTWW00] is a hierarchical, object-oriented
modeling paradigm with relationship capabilities.
The core schema of CIM contains objects model-
ing both basic notions of system management
and their relationships. There is an extension
schema for applications, containing objects mod-
eling (1) basic notions of software products, fea-
tures, elements, and actions on these objects (2)
their relationships. CIM has been used to model
a large part of the Windows platform (the CIM
derived model is called WMI) and the Solaris
platform (see Solaris WBEM at [DMTF]). CIM
is also being investigated for run-time application
management in [KKS01].

• JSR77 ([JSR77]): A Java Specification Request,
which proposes a standard management model
for exposing and accessing the management

information, operations, and parameters of the
Java 2 Platform, Enterprise Edition components.
This proposal covers modeling the basic J2EE
notions of J2EEServer, J2EEModule, EJBMod-
ule, WebModule, etc., their relationships, and
event management. The proposal also discusses
mappings of this (specific) model into (the more
generic) CIM. JSR77 encapsulates a lot of
knowledge about the J2EE world. As pointed
out in [FK02], JSR77 lacks expressiveness for
describing runtime entities and for representing
versions and dependencies.

We found that the above models, while inspiring
in many ways were not a good fit for us for an initial
implementation. While CIM is a very expressive and
extensible modeling framework, it comes with a rela-
tively complex implementation and representation
price. It also lacks two key ingredients for us: parame-
ter passing and configuration management. Parameter
passing appears to be required for implementing the
notion of re s o u rc e handler. Configuration management
addresses the issue that the same application will be
deployed with different configuration settings depend-
ing on the environment and that a model must therefore
allow such values to be generated dynamically at
deployment time. See the subsequent section for more
details. Furthermore, it is important that the model can
be conveniently represented to advanced users, who
desire to customize the deployment or analysis behav-
ior. CIM does not offer a simple solution for this.
Configuration Management

We decided that configuration management is an
area in which we needed to innovate. We designed an
extension to our model, which allows the inclusion of
variables, and an algorithm (see also Figure 7) which
runs at deploy time to instantiate these variables. We
also allowed users to replace actual values with

42 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

Mayer Application Aware Management of Internet Data Center Software

variables in configuration files associated with an
application. The algorithm determines the configura-
tion data by looking at least at the following environ-
ment characteristics:

Configuration
Algorithm

For each target server:
-- Instructions for deploying A
-- Application configuration for A

Target Servers
Characteristics

Application Models of
Deployed Applications

User Input

Set of Target ServersApplication A Model

Application A Conf Files

Figure 7: Configuration management algorithm.

• The characteristics of the server machine (IP
address, hostname, network connectivity, pro-
cessors, etc.).

• The characteristics of the operating system of
the server machine (OS type and version, patch
level, etc.).

• The characteristics of other software already on
the server.

• The characteristics chosen by a user (system
administrator) at run-time of the deployment
process.

The algorithm reads the model as its first input.
Depending on the content of the model, the algorithm
then determines the environment characteristics by col-
lecting the relevant data from each target server, from
models of other applications provisioned on the target
server, and from user generated input. The algorithm
uses the collected information to generate values for
settings within configuration files of the application and
to transform the methods of the model into concrete
execution steps, to be executed on each server to install
and deploy the application, taking into account all the
characteristics collected as described above.

Let us revisit the petstore application introduced
earlier (see Listing 3). Assume that petstore is to be
deployed onto WebLogic 6.1. The path of petstore’s
home directory on the Weblogic administrative

console depends on the Weblogic domain of the J2EE
server, onto which petstore is deployed. Below is a
fragment of an application component modeling this
fact. The varList XML block contains declarations of
variables used in this component. The domain_dir
variable is used to hold the value of the home direc-
tory path. The declaration allows defining a default
value of a variable. In this case, the default value is a
path with a fixed prefix (/opt/bea/wlserver6.1/config)
and a suffix, which refers to another variable
domain_name in another application component called
WL61Server. That component models the WebLogic
server instance on the same target server and that vari-
able contains the domain name of the server. The algo-
rithm above instantiates the variable domain_dir by
examining the configuration state of the installed J2EE
We b L o g i c server.

Deployment Management
The Deployment Manager handles all aspects of

the deployment of a modeled application; including
efficient WAN distribution of potentially large
amounts of data and executing the modeled deploy-
ment methods on each target server. This is why we
decided to use a local cache (local distributor) on
LANs, so that a single master and console can control
multiple data centers. Another issue is security of the
communication. However, none of these issues relate
to the main theme of this paper, application awareness.

From an implementation point of view, it is
worthwhile to note that JSR 88 (see [JSR88]) is a pro-
posed standard API for the deployment of J2EE

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 43

Application Aware Management of Internet Data Center Software Mayer

applications. The specification aims at defining the
contracts that enable solutions from multiple providers
to configure and deploy applications on any J2EE
platform (e.g., Weblogic, WeSphere, iPlanet, etc.). We
need to do deployment across platforms (UNIX, Win-
dows) and well beyond the scope of J2EE applica-
tions; still, standardization of this form is a welcome
simplification for management tools like ours.

<varList>
<var name="domain_dir"

default="/opt/bea/wlserver6.1/config/:[component:WL61Server:domain_name]" />
</varList>

<resourceList defaultInstallPath=":[domain_dir]">
<resource installName="petstore.ear" resourceName="wl61-petstore/petStore61.ear"

installPath="applications" />
</resourceList>

Listing 3: Enhanced petstore application.

Dependency Management
Dependency information is expressed within our

model as relationships among applications. For exam-
ple, a J2EE application might only be deployable onto
WebSphere V4 or newer; WebSphere itself might
require the JDK x.y already installed, which in turn
requires a certain patch-level of the Solaris OS. On the
Windows side, an IIS-based application might require
IIS V5 or newer, etc. In CIM, relationships are
expressed as objects themselves. We decided to model
relationships simply as object attributes, which is a
simpler implementation at the cost of some flexibility
(e.g., modeling a relationship both directions) and
extensibility (e.g., adding a relationship without
changing the object in the relationship itself).

An application can consist of several software
features. These features might get installed on separate
machines (Web server, app server, console for app
server). Also yet another set of machines (e.g.,
database server) might require configuration changes.
Our model captures these inter-machine dependencies
in the deployment methods and their target servers.
Such dependencies are a simplified form of the ones
considered in [EK01]. Our approach therefore could
greatly benefit from integration with a solution, such
as presented in that paper.

Automated Analysis
The remote agent does the analysis of the installed
application with parsers and tools, which have appli-
cation knowledge. For example, in order to analyze
the configuration state of an IIS / WebSphere /
Weblogic application, the remote agent needs to (1)
determine which values are relevant in the correspond-
ing configuration store (metabase / centralized
database / XML store) and (2) export these values to
the master server. Analyzing Apache Web server con-
figuration data requires a parser understanding the
‘‘httpd.conf ’’ file.

We implement analysis in a very analogous fash-
ion to deployment. Each resource handler has a

method, which models the steps to obtain the appro-
priate configuration data. Analysis consequently
implements the runtime environment to that model
aspect, which results in the master server obtaining all
the relevant data in a well-defined XML format, ready
to be analyzed.

Cost Benefits

The organization depicted in the case study of
the second section has been spending the following
dollar amounts on application management per year:

• $450K in staff cost for writing deployment
scripts, documentation on deployment methods
and best practices, etc.

• $1.1M in staff cost for executing manual
changes, deployments, etc. on the servers.

• $500K in staff cost for emergency response to
application failures, deployment failures, etc.

→ This organization spends roughly $2,050K on total
cost of ownership or $17K on each of their 120
servers.

The organization has now adopted our technol-
ogy in their extranet production environment. Using
our technology, they were able to automate the appli-
cation deployment process from end-to-end. System
reliability has improved, both due to shorter mainte-
nance windows and due to less unplanned down time.
They were able to free up resources dedicated to appli-
cation deployment, lowering operating costs. Specifi-
cally, they have experienced the following benefits:

1. Drastically reduced time to deploy applications
(Apache, WebSphere, and Weblogic base
infrastructure and J2EE applications residing
on this base infrastructure) through our automa-
tion technology (early indications show the
quantitative gain to amount to an 80% reduc-
tion).

2. Eliminated most errors that typically occurred
during deployment (where the remaining issues
are mostly around process issues among the
operations staff).

3. Significantly reduced firefighting and server
rebuilds by using our analysis technology to
track ‘‘out-of-band’’ changes (i.e., changes to
installed applications made ad-hoc by opera-
tions personnel).

4. Increased number of applications supported
while eliminating reliance on external consul-
tants.

44 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

Mayer Application Aware Management of Internet Data Center Software

5. Leveraged reusability of the technology to con-
sistently deploy applications across five differ-
ent environments.

6. Automatically extracted application builds from
Rational ClearCase into our version-controlled
repository, reducing errors associated with
application builds.

As a result, they could reduce the management
costs to the following amounts:

• $50K in staff cost for authoring and fine-tuning
models for their applications.

• $260K in staff cost for running deployments,
upgrades etc.

• $190K in staff cost for using analysis tools to
investigate failures, etc.

→ Cost of ownership has dropped to roughly
$500K per year, a 75 percent drop from the ‘‘before
picture,’’ totaling $4.2K per server.

Conclusions

In this paper, we have presented our management
approach to deployment and analysis of Web applica-
tions. We have argued that an effective solution needs
to be application aware and have shown what technol-
ogy makes up such a solution. Finally, we have
described some quantitative implications on the total
cost of ownership (TCO) of an Internet Data Center.
We believe that application aware management is a
new space, with a lot of potential for creating new and
exciting technology and solutions.

Acknowledgements

We would like to thank Steve Traugott (Infras-
tructure Architect par excellence!) for many inspiring
discussions. We also acknowledge Avishai Wool (of
Lumeta) and Charles Beadnall (of Verisign) for feed-
back on an earlier draft. Alexander Keller (of IBM)
and Steve Traugott were great ‘‘shepherds’’ whose
work substantially improved this paper.

Author Information

Alain Mayer has a PhD in Computer Science
from Columbia University. After over four years at
Bell Labs, Lucent Technologies, he has joined the
start-up world. He is currently Chief Technology Offi-
cer at CenterRun, Inc, where he guides the research
and development of data center management software.
He can be reached at alain@centerrun.com .

References

[B00] Burgess, M., Principles of Network and System
Administration, Wiley, 2000.

[BSTWW00] Bumpus, W., et al., Common Informa-
tion Model (CIM), Wiley, 2000.

[CF02] cfengine Web site, http://www.cfengine.org .
[DMTF] The Distributed Management Task Force,

http://www.dmtf.org .

[EK01] Ensel, C. and A. Keller, ‘‘Managing Applica-
tion Service Dependencies with XML and the
Resource Description Framework,’’ Seventh
International IFIP/IEEE Symposium on Inte-
grated Management (IM 2001), IEEE Press,
May, 2001.

[FK02] Frey, G. and R. Kauzleben, ‘‘Configuration
and Change Management of Java Components
Using WBEM and JMX,’’ JavaOne Conference
Talk, 2002.

[JSR77] The Java 2 Platform, Enterprise Edition Man-
agement Specification, http://jcp.org/jsr/detail/077.
jsp .

[JSR88] J2EE Application Deployment Specification,
http://jcp.org/jsr/detail/088.jsp .

[KKS01] Keller, A., H. Kreger, and K. Schopmeyer,
‘‘Towards a CIM Schema for RunTime Applica-
tion Management,’’ Proceedings of the Twelfth
IFIP/IEEE International Workshop on Dis-
tributed Systems: Operations and Management
(DSOM 2001), October, 2001.

[LH02] Limoncelli, T. and C. Hogan, The Practice of
System and Network Administration, Addison-
Wesley, 2002.

[MDEGGH00] Machiraju, V., M. Dekhil, K. Wurster,
P. Garg, M. Griss, and J. Holland, ‘‘Towards
Generic Application Auto-discovery,’’ IEEE/
IFIP Network Operations and Management Sym-
posium (NOMS), 2000.

[R97] Rudorfer, G., ‘‘Managing PC Operating Sys-
tems with a Revision Control System,’’ Eleventh
Systems Administration Conference, LISA XI,
1997.

[TH98] Traugott, S. and J. Huddleston, ‘‘Bootstrap-
ping an Infrastructure,’’ Twelfth System Adminis-
tration Conference, LISA XII, 1998.

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 45

46 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

