
USENIX Association

Proceedings of
LISA 2002:

16th Systems Administration
Conference

Philadelphia, Pennsylvania, USA
November 3–8, 2002

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Defining and Monitoring Service Level
Agreements for Dynamic e-Business

Pp. 189-204 of the Proceedings of LISA ’02: Sixteenth Systems Administration Conference
(Berkeley, CA: USENIX Association, 2002).

Alexander Keller and Heiko Ludwig – IBM T. J. Watson Research Center

ABSTRACT

Fueled by the growing acceptance of the Web Services Architecture, an emerging trend in
application service delivery is to move away from tightly coupled systems towards structures of
loosely coupled, dynamically bound systems to support both long and short business relationships.
It appears highly likely that the next generation of e-Business systems will consist of an
interconnection of services, each provided by a possibly different service provider, that are put
together on an ‘‘on demand’’ basis to offer an end to end service to a customer.

Such an environment, which we call Dynamic e-Business (DeB), will be administered and
managed according to dynamically negotiated Service Level Agreements (SLA) between service
providers and customers. Consequently, system administration will increasingly become SLA-
driven and needs to address challenges such as dynamically determining whether enough spare
capacity is available to accommodate additional SLAs, the negotiation of SLA terms and
conditions, the continuous monitoring of a multitude of agreed-upon SLA parameters and the
troubleshooting of systems, based on their importance for achieving business objectives.

A key prerequisite for meeting these goals is to understand the relationship between the cost
of the systems an administrator is responsible for and the revenue they are able to generate, i.e., a
model needs to be in place to express system resources in financial terms. Today, this is usually
not the case.

In order to address some of these problems, this paper presents the Web Service Level
Agreement (WSLA) framework for defining and monitoring SLAs in inter-domain environments.
The framework consists of a flexible and extensible language based on the XML schema and a
runtime architecture based on several SLA monitoring services, which may be outsourced to third
parties to ensure a maximum of accuracy.

WSLA enables service customers and providers to unambiguously define a wide variety of
SLAs, specify the SLA parameters and the way how they are measured, and tie them to managed
resource instrumentations. A Java-based implementation of this framework, termed SLA
Compliance Monitor, is publicly available as part of the IBM Web Services Toolkit.

Introduction and Motivation

The pervasiveness of the Internet provides a plat-
form for businesses to offer and buy electronic ser-
vices, such as financial information, hosted services,
or even applications, that can be integrated in a cus-
tomer ’s application architecture. Upcoming standards
for the description and advertisement of, as well as the
interaction with, online services promise that organi-
zations can integrate their systems in a seamless man-
ner. The Web Services framework [16] provides such
an integration platform, based on the WSDL service
interface description language, the UDDI directory
service [31] and, for example, SOAP over HTTP as a
communication mechanism. Web Services provide the
opportunity to dynamically bind to services at run-
time, i.e., to enter (and dismiss) a business relationship
with a service provider on a case-by-case basis, thus
creating an infrastructure for dynamic e-Business [14].

Dynamic e-Business implies dynamics several
orders of magnitude higher than found in traditional

corporate networks. Moreover, a service relationship
also constitutes a business relationship between inde-
pendent organizations, defined in a contract.

An important aspect of a contract for IT services
is the set of Quality of Service (QoS) guarantees a ser-
vice provider gives. This is commonly referred to as a
service level agreement (SLA) [32, 17]. Today, SLAs
between organizations are used in all areas of IT ser-
vices – in many cases for hosting and communication
services but also for help desks and problem resolution.

Furthermore, the IT parameters for which Service
Level Objectives (SLO) are defined come from a vari-
ety of disciplines, such as business process manage-
ment, service and application management, and tradi-
tional systems and network management. In addition,
different organizations have different definitions for
crucial IT parameters such as Availability, Throughput,
Downtime, Bandwidth, Response Time, etc. Today’s
SLAs are plain natural language documents. Conse-
quently, they must be manually provisioned and moni-
tored, which is very expensive and slow.

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 189



Defining and Monitoring Service Level Agreements for Dynamic e-Business Keller & Ludwig

The definition, negotiation, deployment, moni-
toring and enforcement of SLAs must become – in
contrast to today’s state of the art – an automated pro-
cess. This poses several challenges for the administra-
tion of shared distributed systems, as found in Internet
Data Centers, because administrative tasks become
increasingly dynamic and SLA-driven.

The objective of this paper is to present the Web
Service Level Agreement (WSLA) framework as an
approach to deal with these problems; it provides a
flexible, formal language and a set of elementary ser-
vices for defining and monitoring SLAs in dynamic e-
Business environments.

The paper is structured as follows: In the next
section, we describe the underlying principles of our
work, analyze the requirements of dynamic e-Business
on system administration tasks and on the WSLA
framework. We also describe the relationships of our
work to the existing state of the art. The WSLA run-
time architecture, described later, provides mecha-
nisms for accessing resource metrics of managed sys-
tems and for defining, monitoring and evaluating SLA
parameters according to an SLA specification. We
subsequently introduce the WSLA language by means
of several examples. It is based on the XML Schema
and allows parties to define QoS guarantees for elec-
tronic services and the processes for monitoring them.
Finally, the last section concludes the paper and gives
an overview of our current work.

Principles of the WSLA Framework

Service level management has been the subject
of intense research for several years now and has
reached a certain degree of maturity. However, despite
initial work in the field (see, e.g., [2]), the problem of
establishing a generic framework for service level
management in cross-organizational environments
remains unsolved yet. In this section, we introduce the
terminology and describe the fundamental principles,
which will be used throughout this paper. Subse-
quently, focusing on SLA-driven system administra-
tion, we derive the requirements of the WSLA lan-
guage and its runtime architecture.
Terminology

There are various degrees to which extent a ser-
vice customer is willing to accept the parameters
offered by the service provider. Metric- and SLA-
related information appears at various tiers of a dis-
tributed system, as depicted in Figure 1.

• Resource Metrics are retrieved directly from
the managed resources residing in the service
provider ’s tier, such as routers, servers, middle-
ware and instrumented applications. Typical
examples are the well-known MIB variables of
the IETF Structure of Management Information
(SMI) [21], such as counters and gauges.

• Composite Metrics are created by aggregating
several resource (or other composite) metrics

according to a specific algorithm, such as aver-
aging one or more metrics over a specific
amount of time or by breaking them down
according to specific criteria (e.g., top 5%, min-
imum, maximum etc.). This is usually being
done within the service providers’ domain but
can be outsourced to a third-party measurement
service as well. Composite metrics are exposed
by a service provider by means of a well-
defined (usually HTTP or SOAP based) inter-
face for further processing.

Customer-defined

Provider-defined

Resource MetricsSLA Parameters Composite MetricsBusiness Metrics

Measurement Function

Direct Mapping

Figure 1: Aggregating business metrics, SLA param-
eters and metrics across different organizations.

• SLA Parameters put the metrics available
from a service provider into the context of a
specific customer and are therefore the core
part of an SLA. In contrast to the previous met-
rics, every SLA parameter is associated with
high/low watermarks, which enables the cus-
tomer, provider, or a designated third party to
evaluate the retrieved metrics whether they
meet/exceed/fall below defined service level
objectives. Consequently, every SLA parameter
and its permitted range are defined in the SLA.
It makes sense to delegate the evaluation of
SLA parameters against the SLOs to an inde-
pendent third party; this ensures that the evalu-
ation is objective and accurate.

• Business Metrics relate SLA parameters to
financial terms specific to a service customer
(and thus are usually kept confidential by him).
They form the basis of a customer’s risk man-
agement strategy and exist only within the ser-
vice customer’s domain. It should be noted that
a service provider needs to perform a similar
mapping to make sure the SLAs he is willing to
satisfy are in accordance with his business goals.

The WSLA framework presented in this paper is
capable of handling all four different parameter types;
apart from the latter, they relate directly to systems
management tasks and are our main focus. However,
the flexible mechanism for composing SLAs can be
easily extended to accommodate business metrics.

Scenarios for SLA Establishment

Often, it is not obvious to draw a line between
the aforementioned parameter types, in particular

190 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA



Keller & Ludwig Defining and Monitoring Service Level Agreements for Dynamic e-Business

between Composite Metrics and SLA Parameters.
Therefore, we assume that every parameter related to a
customer and associated with a guaranteed value range
is considered an SLA parameter, which is supposed to
be part of an SLA. However, this distinction is also
highly dependent on the extent a customer requires the
customization of metrics exposed by the service
provider (or a third-party measurement service) – and
how much he is willing to pay for it. This, in turn,
depends on the degree of customization the provider is
willing to apply to its metrics. The following scenarios
describe various scenarios how SLAs may be defined:

1. A customer adopts the data exposed by a
service provider without further refinement
This is often done when the metrics reflect
good common practice, cannot be modified by
the customer or are of small(er) importance to
him. In this case, the selected metrics become
the SLA parameters and thus integral parts of
the SLA. Examples are: length of maintenance
intervals or backup frequency.

2. The customer requests that collected data is
put into a meaningful context A customer is
probably not interested in the overall availabil-
ity of a provider’s data center, but needs to
know the availability of the specific cluster
within the data center on which his applications
and data are hosted. A provider’s data collec-
tion algorithm therefore needs – at least – to
take into account for which customer the data is
actually collected. A provider may decide to
offer such preprocessed data, such as: Avail-
ability of the server cluster hosting customer
X’s web application.

3. The customer requests customized data that
is collected according to his specific require-
ments While a solution to item 2 can still be
reasonably static (changes tend to happen rarely
and the nature of the modifiable parameters can
be anticipated reasonably well), the degree of
choice for the customer can be taken a step fur-
ther by allowing him to specify arbitrary
parameters, e.g., the input parameters of a data
collection algorithm.

This implies that a service provider needs to have
a mechanism in place that allows a customer to
provide these input parameters – preferably at
runtime, e.g., The average load of a server host-
ing the customer’s website should be sampled
every 30 seconds and collected over 24 hours.
Note that a change of these parameters may
result in a change of the terms and conditions of
an SLA, e.g., when a customer chooses sampling
intervals that are likely to impact the perfor-
mance of the monitored system; eventually, this
may entail the violation of SLAs the service
provider has with other customers.

4. The customer specifies how data is collected
This means that he defines – in addition to the

metrics and input parameters – the data collec-
tion algorithm itself. This is obviously the most
extreme case and seems fairly unlikely. How-
ever, large customers may insist of getting
access to very specific data that is not part of
the standard set, e.g., a customer may want to
know which employees of a service provider
had physical access to the systems hosting his
data and would like to receive a daily log of the
badge reader.

This means that – in addition to the aforemen-
tioned extension mechanisms – a service
provider needs to have a mechanism in place
that allows him to introduce new data collection
mechanisms without interrupting his manage-
ment and production systems.

While the last case poses the highest challenge
on the programmability of the monitoring system, a
service provider benefits greatly from a management
system being capable of handling such flexible SLAs
because all the former situations are special cases of
the latter. It also addresses the extreme variability of
today’s SLAs. Sample SLAs we analyzed clearly indi-
cate that there is a need for defining a mechanism that
allows to unambiguously specify the data collection
algorithm. Also, it should be noted that the different
possibilities of specifying service level objectives are
not mutually exclusive and may all be specified within
the same SLA.

SLA-driven System Administration
Now that we have introduced the concepts of

SLA management in a dynamic e-Business environ-
ment, we are able to derive its implications on systems
administration and management. While it is clear that
the very high dynamics of the establishment/dismissal
of business relationships and the resulting alloca-
tion/deallocation of system resources to different users
alone is a challenge on its own, we have found several
other issues that are likely to impact how system
administration is done in such an environment. The
way we see the tasks of a system administrator evolve
are described in the following subsections.

Express System Resources in Financial Terms

While system administrators usually have an
awareness of the costs of the systems they are admin-
istering, the need to assign prices to the various
resources on a very fine-grained basis will certainly
increase. For quite some time, it has been common
practice in well-run multi-customer data centers to
account for CPU time, memory usage and disk space
usage on a per-user basis. What will become increas-
ingly important in SLA-driven system administration
is the monitoring, accounting and billing of aggre-
gated QoS parameters such as response time, through-
put and bandwidth, which need to be collected across
a variety of different systems that are involved in a
multi-tiered server environment.

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 191



Defining and Monitoring Service Level Agreements for Dynamic e-Business Keller & Ludwig

Having such a fine-grained accounting scheme in
place is the prerequisite for defining SLOs, together
with associated penalties or bonuses. In addition, the
business impact of an outage or delay on the customer
needs to be assessed. While the latter is mainly rele-
vant to a service customer, a system administrator on
the service provider side will need an even better
understanding of the cost/benefit model behind the
services offered to a customer. As a sidenote, the abil-
ity to offer measurement facilities for fine-grained ser-
vice parameters is likely to become a distinguishing
factor among service providers.

Involvement in SLA Negotiation

The technical expertise of a system administrator
is likely to play an increasing role in an area that is cur-
rently confined to business managers and lawyers: The
negotiation of SLAs terms. While current SLAs are
dominated by legal terms and conditions, it will become
necessary in an environment where resources are shared
among different customers (under a variety of SLAs) to
evaluate whether enough spare capacity is available to
accommodate an additional SLA that asks for a specific
amount of resources without running into the risk that
the resources become overallocated if a customer’s
demand increases. While complex resource allocation
schemes will probably not be deployed in the near
future, an administrator nevertheless needs to have an
understanding of the safety margins he must take into
account when accepting new customers.

A related problem is to evaluate whether addi-
tional load due to SLA measurements is acceptable or
not: While it may well be the case that enough capac-
ity is available to accommodate the workload resulting
from the service usage, overly aggressive SLA mea-
surement algorithms may have a detrimental impact
on the overall workload a system can handle. An
extreme example for this is a customer whose applica-
tion resides on a shared server and who would like to
have the availability of the system being probed every
few seconds. In this case, an SLA may either need to
be rejected due to the additional workload, or the price
for carrying out the measurements will need to be
adjusted accordingly.

Classify Customers According to Revenue

The previous discussions make it clear that a ser-
vice provider’s approach to SLA-driven management
entails the definition of enterprise policies that classify
customers, e.g., according to the profit margins or
their degree of contribution to a service provider’s
overall revenue stream. The involvement of system
administrators in the process of policy definition and
enforcement is a consequence of having both a high
degree of technical understanding and insight into the
business: First, this expertise is needed to determine
which policies are reasonable and enforceable.

Second, once the policies are defined, it is up to
the administrator to enforce them, e.g., if the resource

capacity becomes insufficient because of increased
workload of a high-paying customer, lower-paying
customers may be starved out if the penalties associ-
ated with their SLAs can be offset by the increased
gains from providing additional capacity to a higher-
paying customer. Third, it should be noted that such a
behavior adds an interesting twist to the problem
determination schemes an administrator uses: The
non-functioning of a customer’s system may not nec-
essarily be due to a technical failure, but may well be
the consequence of a business decision.

Fix Outages According to Classification

The establishment of policies and the classifica-
tion of customers also has implications on how system
outages are addressed. Traditionally, system adminis-
trators are trained to address the most severe outages
first. This may change if a customer classification
scheme is in place, because then the system whose
downtime or decreased level of service is the most
expensive for the service provider will need to be
fixed first. Outages are likely going to be classified
not according to their technical severity, but rather
based on their business impact.

Lessons Learned From Real-Life SLAs
A suitable SLA framework for Web Services

must not constrain the parties in the way they formu-
late their clauses but instead allow for a high degree of
flexibility. A management tool that implements only a
non-modifiable textbook definition of availability
would not be considered helpful by today’s service
providers and their customers.

Our studies of close to three dozen SLAs cur-
rently used throughout the industry in the areas of
application service provisioning (ASP) [1], web host-
ing and information technology (IT) outsourcing have
revealed that even if seemingly identical SLA parame-
ters are being defined, their semantics vary greatly.

While some service providers confine their defi-
nition of ‘‘application availability’’ to the network
level of the hosting system (‘‘user(s) being able to
establish a TCP connection to the appropriate
server ’’), others refer to the application that imple-
ments the service (‘‘Customer ’s ability to access the
software application on the server’’). Still others rely
on the results obtained from monitoring tools (‘‘the
application is accessible if the server is responding to
HTTP requests issued by a specific monitoring soft-
ware’’), while another approach uses elaborate formu-
las consisting of various metrics, which are sampled
over fixed time intervals.

These base clauses are then usually annotated
with exceptions, such as maintenance intervals, week-
end/holiday schedules, or even the business impact of
an outage (‘‘An outage has been detected by the ASP
but no material, detrimental impact on the customer
has occurred as a result‘‘). The latter example, in par-
ticular, illustrates the disconnect between the people

192 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA



Keller & Ludwig Defining and Monitoring Service Level Agreements for Dynamic e-Business

involved in the negotiation and establishment of an
SLA (usually business managers and lawyers) and the
ones who are supposed to enforce it (system adminis-
trators). One way of closing this gap is to enable sys-
tem administrators to become involved in the negotia-
tion of an SLA by providing them with a tool able to
create a legal document, namely the SLA.

It is important to keep in mind that, while the
nature of the clauses may differ considerably among
different SLAs, the general structure of all the different
SLAs remains the same: Every analyzed SLA contains

• the involved parties,
• the SLA parameters,
• the metrics used as input to compute the SLA

parameters,
• the algorithms for computing the SLA parame-

ters,
• the service level objectives and the appropriate

actions to be taken if a violation of these SLOs
has been detected.

This implies that there is a way to come up with
an SLA language that can be applied to a multitude of
bilateral customer/provider relationships.

WSLA Design Goals
In this section, we will derive – based on the

above discussions – the requirements the WSLA
framework needs to address.

Ability to Accommodate a Wide Variety of SLAs

In the introduction of this paper, we have
stressed the point that SLAs, their parameters and the
SLOs defined for them are extremely diverse. One
approach to deal with this problem (e.g., as it is done
today for simple consumer Web hosting services) is to
narrow down the ‘‘universe of discourse’’ to a few
well-understood terms and to limit the possibilities of
choosing arbitrary QoS parameters through the use of
SLA templates [24]. SLA templates include several
automatically processed fields in an otherwise natural
language-written SLA. However, the flexibility of this
approach is limited and only suitable for a small set of
variants of the same type of service using the same
QoS parameters and a service offering that is not
likely to undergo changes over time. In situations
where service providers must address different SLA
requirements of their customers, they need a more
flexible formal language to express service level
agreements and a runtime architecture comprising a
set of services being able to interpret this language.

Leverage Work in the B2B Area for SLA Negotiation
and Creation

Architectural components and language elements
related to SLA negotiation, creation and deployment
should leverage existing concepts developed in the
electronic commerce and B2B area. In particular, the
applicability of automated negotiation mechanisms,
e.g., currently being developed within the scope of
the OASIS/ebXML [6] Collaboration Profiles and

Agreements initiative [7], should be applicable to the
negotiation of SLAs as well. A vast amount of work
on electronic contracts [25, 22], contract languages
[12] and contract negotiation has been carried out in
the electronic commerce and B2B arena [4]. We later
describe our usage of obligations, a concept widely
used in e-commerce, for monitoring SLAs.

Apply the ‘‘Need to Know’’ Principle to SLA Deployment

For each service provider and customer relation-
ship, several instances of a service may exist. The
functionality of computing SLA parameters or evalu-
ating contract obligations may be split, e.g., among
multiple measurement or SLO evaluation services,
each provided by a different organization. It is there-
fore important that every service instance receives
only the part of the contract it needs to know to carry
out its task. Since it may be possible that a contractual
party delegates the same task (such as measurements)
to several different third party services (in order to be
able to cross-check their results), different service
instances may not be aware of other instances. This
implies that every party involved in the SLA monitor-
ing process receives only the part of the SLA that is
relevant for him. We present our approach for dealing
with this problem later.

Another major issue that underlines the importance
of this ‘‘Need to know’’ principle are the privacy con-
cerns of the various parties involved in an inter-domain
management scenario: A service provider is, in general,
neither interested in disclosing which of his business pro-
cesses have been outsourced to other providers, nor the
names of these providers. On the other hand, customers
of a dynamic e-Business will not necessarily see a need
anymore to know the exact reason of performance degra-
dations as long as a service provider is able to take
appropriate remedies (or compensate its customers for
the incurred service level violation).

Traditionally, end-to-end performance manage-
ment has been the goal of traditional enterprise man-
agement efforts and is often explicitly listed as a
requirement (see, e.g., [26]). However, the aforemen-
tioned privacy concerns of service providers and the
service customers’ need for transparency make that an
end-to-end view becomes unachievable (and irrele-
vant!) in a dynamic e-Business environment spanning
multiple organizational domains.

Delegate Monitoring Tasks to Third Parties

Traditionally, an SLA is a bilateral agreement
between a service customer and a service provider:
The enhanced Telecom Operations Map (eTOM) [29],
for example, defines various roles services providers
can play; however, this work does not provide the del-
egation of management functionality to further service
providers. We refer to the parties that establish and
sign the SLA as signatory parties. In addition, SLA
monitoring may require the involvement of third par-
ties: They come into play when either a function needs

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 193



Defining and Monitoring Service Level Agreements for Dynamic e-Business Keller & Ludwig

to be carried out that neither service provider nor cus-
tomer wants to do, or if one signatory party does not
trust the other to perform a function correctly. Third
parties act then in a supporting role and are spon-
sored by either one or both signatory parties.

The targeted environment of our work is a typi-
cal service provider environment (Internet storefronts,
B2B marketplaces, web hosting, ASP), which consists
of multiple, independent parties that collaborate
according to the terms and conditions specified in the
SLA. Consequently, the services of our architecture
are supposed to be distributed among the various par-
ties and need to interact across organizational
domains. Despite the focus on cross-organizational
entities, WSLA can be applied to environments in
which several (or even all of the) services reside
within the boundaries of a single organizational
domain, such as in a traditional corporate network.

The work of the IST Project FORM [8] is highly
relevant for our work, since it focuses on SLAs in an
inter-domain environment. FORM also deals with the
important issue of federated accounting [3], which we
do not address in this paper. An approach for a generic
service model suitable for customer service manage-
ment is presented in [9].

SLA-driven Resource Configuration

Since the terms and conditions of an SLA may
entail setting configuration parameters on a potentially
wide range of managed resources, an SLA manage-
ment framework must accommodate the definition of
SLAs that go beyond electronic/web services and
relate to the supporting infrastructure. On the one
hand, it needs to tie the SLA to the monitoring param-
eters exposed by the managed resources so that an
SLA monitoring infrastructure is able to retrieve
important metrics from the resources. [33] defines a
MIB for SLA performance monitoring in an SNMP
environment, whereas the SLA handbook from Tele-
Management Forum [27] proposes guidelines for
defining SLAs for telecom service providers.

An approach for the performance instrumenta-
tion of EJB-base distributed applications is described
in [5]. The capability of mapping resource metrics to
SLA parameters is crucial because a service provider
must be able to answer the following questions before
signing an SLA:

• Is it possible to accept an SLA for a specific
service class given the fact that the capacity is
limited?

• Can additional workload be accommodated?

On the other hand, it is desirable to derive configu-
ration settings directly from SLAs. However, the hetero-
geneity and complexity of the management infrastruc-
ture makes configuration management a challenge. Suc-
cessful work in this area often focuses on the network
level: [10] describes a network configuration language;
the Policy Core Information Model (PCIM) of the IETF

[23] provides a generic framework for defining policies
to facilitate configuration management.

Existing work in the e-commerce area may be
applied here as well since the concept of contract-driven
configuration in e-commerce environments [11] and vir-
tual enterprises [20, 13] has similarities to the SLA-
driven configuration of managed resources.

WSLA Runtime Architecture

In this section, we describe the WSLA runtime
architecture by breaking it down into its atomic building
blocks, namely the elementary services needed to enable
the management of an SLA throughout the phases of its
lifecycle. The first part describes the information flows
and interactions between the different services. The next
section demonstrates how the SLA management ser-
vices identified earlier cooperate in an inter-domain
environment, where the task of SLA management itself
is dynamically delegated to an arbitrary number of man-
agement service providers.

WSLA Services and their Interactions

The components described in this section are
designed to address the ‘‘need to know’’ principle and
constitute the atomic building blocks of the WSLA
monitoring framework. The components are intended to
interact across multiple domains; however, it is possible
that some components may be co-located within a single
domain and not necessarily exposed to objects residing
within another domain.

Web Service

AppServer Monitoring/Management Interfaces

Measurement

Management

Condition
Evaluation

SLA WSDL

Service ProviderS
ervlet

E
n

g
in

e

Deployment

AdminConsole

Business
Entity

2. deploy 3. report

4. act

Service Customer

1. negotiate/signEstablishment 5. terminate

references

SLA Compliance Monitor

Figure 2: Interactions between the WSLA services.

Figure 2 gives an overview of the SLA manage-
ment lifecycle, which consists of five distinct phases. We
assume that an SLA is defined for a web service, which
is running in the servlet engine of a web application
server. The web application server exposes a variety of
management information either through the graphical
user interface of an administration console or at its moni-
toring and management interfaces, which are accessed
by the various services of the WSLA framework.

The interface of the web service is defined by an
XML document in the Web Services Description

194 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA



Keller & Ludwig Defining and Monitoring Service Level Agreements for Dynamic e-Business

Language (WSDL). The SLA references this WSDL
document and extends the service definition with SLA
management information. Typically, an SLA defines
several SLA parameters, each referring to an operation
of the web service. However, an SLA may also refer-
ence the service as a whole, or even compositions of
multiple web services [30]. The phases and the ser-
vices that implement the functionality needed during
the various phases are as follows.

Phase 1: SLA Negotiation and Establishment

The SLA is being negotiated and signed by both
signatory parties. This is done by means of an SLA
Establishment Service, i.e., an SLA authoring tool
that lets both signatory party establish, price and sign
an SLA for a given service offering. This tool allows a
customer to retrieve the metrics offered by a service
provider, aggregate and combine them into various
SLA parameters, request approval from both parties,
define secondary parties and their tasks, and make the
SLA document available for deployment to the
involved parties (dotted arrows in Figure 2).

Phase 2: SLA Deployment

Deployment Service: The deployment service is
responsible for checking the validity of the SLA and
distributing it either in full or in appropriate parts to
the involved components (dashed arrows in Figure 2).
Since two signatory parties negotiate the SLA, they
must inform the supporting parties about their respec-
tive roles and duties. Two issues must be addressed:

1. Signatory parties do not want to share the
whole SLA with their supporting parties but
restrict the information to the relevant informa-
tion such that they can configure their compo-
nents. Signatory parties must analyze the SLA
and extract relevant information for each party.
In the case of a measurement service, this is
primarily the definition of SLA parameters and
metrics. SLO evaluation services get the SLOs
they need to verify. All parties need to know
the definitions of the interfaces they must
expose, as well as the interfaces of the partners
they interact with.

2. Components of different parties cannot be
assumed to be configurable in the same way,
i.e., they may have heterogeneous configuration
interfaces.

Thus, the deployment process contains two steps.
In the first step, the SLA deployment system of a signa-
tory party generates and sends configuration information
in the Service Deployment Information (SDI) format
(omitted for the sake of brevity), a subset of the lan-
guage described later, to its supporting parties. In the
second step, deployment systems of supporting parties
configure their own implementations in a suitable way.

Phase 3: Measurement and Reporting

This phase deals with configuring the runtime
system in order to meet one or a set of SLOs, and with

carrying out the computation of SLA parameters by
retrieving resource metrics from the managed
resources and executing the management functions
(solid arrows in Figure 2). The following services
implement the functionality needed during this phase:

Measurement Service: The Measurement Ser-
vice maintains information on the current system con-
figuration, and run-time information on the metrics that
are part of the SLA. It measures SLA parameters such
as availability or response time either from inside, by
retrieving resource metrics directly from managed
resources, or outside the service provider’s domain,
e.g., by probing or intercepting client invocations. A
Measurement Service may measure all or a subset of
the SLA parameters. Multiple measurement services
may simultaneously measure the same metrics.

Condition Evaluation Service: This service is
responsible for comparing measured SLA parameters
against the thresholds defined in the SLA and notify-
ing the management system. It obtains measured val-
ues of SLA parameters from the Measurement Service
and tests them against the guarantees given in the
SLA. This can be done each time a new value is avail-
able, or periodically.
Phase 4: Corrective Management Actions

Once the Condition Evaluation Service has deter-
mined that an SLO has been violated, corrective man-
agement actions need to be carried out. The function-
ality that needs to be provided in this phase spans two
different services:

Management Service: Upon receipt of a notifi-
cation, the management service (usually implemented
as part of a traditional management platform) will
retrieve the appropriate actions to correct the problem,
as specified in the SLA. Before acting upon the man-
aged system, it consults the business entity (see
below) to verify if the proposed actions are allowable.
After receiving approval, it applies the action(s) to the
managed system.

It should be noted that the management compo-
nent seeks approval for every proposed action from
the business entity. The main purpose of the manage-
ment service is to execute corrective actions on behalf
of the managed environment if a Condition Evaluation
Service discovers that a term of an SLA has been vio-
lated. While such corrective actions are limited today
to opening a trouble ticket or sending an event to the
provider ’s management system, we envision this com-
ponent playing a crucial role in the future by acting as
an automated mediator between the customer and
provider, according to the terms of the SLA. This
includes the submission of proposals to the manage-
ment system of a service provider on how a perfor-
mance problem could be resolved (e.g., proposing to
assign a different traffic category to a customer if sev-
eral categories have been defined in the SLA).

Our implementation addresses very simple cor-
rective actions; finding a generic, flexible and

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 195



Defining and Monitoring Service Level Agreements for Dynamic e-Business Keller & Ludwig

automatically executable mechanism for corrective
management actions remains an open issue yet.

Business Entity: It embodies the business know-
ledge, goals and policies of a signatory party (here:
service provider), which are usually kept confidential.
Such knowledge enables the business entity to verify
if the actions specified in the SLA (eventually some
time ago) are still compatible with the actual business
targets. If this is the case, the business entity will send
a positive acknowledgement to the request of the
Management Service; in case the proposed actions are
in conflict with the actual goals of the service
provider, its business entity will decline the request
and the management service will refrain from carrying
them out. It should be noted that declining prior
agreed-upon actions may be regarded by another party
as a breach of the SLA entailing, in an severe case,
termination of the business relationship. Since it is
unlikely that decisions of this importance will be left
to the discretion of an automated system, we assume
that the decision of the business entity requires human
intervention. While we have implemented the afore-
mentioned services, we have postponed an implemen-
tation of a business entity component until appropriate
mechanisms for specifying and enforcing business
policies are available.

Our experience shows that the tasks covered by
these two services become extremely complicated as
soon as sophisticated management actions need to be
specified: First, a service provider would need to
expose what management operations he is able to exe-
cute, which is very specific to the management plat-
forms (products, architectures, protocols) he uses. Sec-
ond, these management actions may become very com-
plicated and may require human interaction (such as
deploying new servers). Finally, due to the fact that the
provider ’s managed resources are shared among vari-
ous customers, management actions that satisfy an SLA
with one customer are likely to impact the SLAs the
provider has with other customers. The decision
whether to satisfy the SLA (or deliberately break it)
therefore is not a technical decision anymore, but rather
a matter of the provider’s business policies and, thus,
lies beyond the scope of the work discussed in this
paper. Consequently, only a few elements of the WSLA
language address this phase of the service lifecycle.

Phase 5: SLA Termination

The SLA may specify the conditions under
which it may be terminated or the penalties a party
will incur by breaking one or more SLA clauses.
Negotiations for terminating an SLA may be carried
out between the parties in the same way as the SLA
establishment is being done. Alternatively, an expira-
tion date for the SLA may be specified in the SLA.

SLA Compliance Monitor Implementation

Figure 2 shows which WSLA services have been
implemented. Because of their major importance and

their excellent suitability for automated processing,
the Deployment, Measurement and Condition Eval-
uation services have been implemented by us. These
services are implemented as Web Services themselves
and are jointly referred to as SLA Compliance Moni-
tor, which acts as a wrapper for the three services. For
information where to download the implementation,
the reader is referred to the ‘Availability’ section. Our
ongoing implementation efforts, aimed at completing
the WSLA framework, are described in ‘Conclusions
and Outlook.’

Signatory and Supporting Parties
Figure 3 gives an overview of a configuration

where two signatory parties and two supporting parties
collaborate in the monitoring of an SLA.

In bilateral SLAs, it is usually straightforward to
define for each commitment who is the obliged and
who is the beneficiary of the commitment. However,
in an SLA containing more than two parties, it is not
obvious which party guarantees what to whom. A
clear definition of responsibilities is required. The
WSLA environment involves multiple parties to enact
an SLA instance. As mentioned above, a part of the
monitoring and supervision activities can be assigned
to parties other than the service provider and customer.

Measurement

YMeasurement

ZAuditing

Condition
Evaluation

Availability
Probe

Offered Service

ACMEProvider

Service Operation

Management

Aggregate
Response Time,

Throughput

Violation
Notifications

Measurement

Response Time,
Operation Counter

Violation
Notifications

Client
Application

Management

XInc

Figure 3: Signatory and supporting parties.

We approach the issue of responsibility by defin-
ing two classes of parties: Service provider (ACME-
Provider in Figure 3) and service customer (XInc) are
the signatory parties to the SLA. They are ultimately
responsible for all obligations, mainly in the case of
the service provider, and the ultimate beneficiary of
obligations. Supporting parties are sponsored either by
one or both of the signatory parties to perform one or
more of a particular set of roles: A measurement ser-
vice (YMeasurement) implements a part or all of the
measurement and computation activities defined
within an SLA. A condition evaluation service (ZAudit-
ing) implements violation detection and other state
checking functionality that covers all or a part of the
guarantees of an SLA. A management service imple-
ments corrective actions.

There can be multiple supporting parties having
a similar role, e.g., a measurement service may be

196 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA



Keller & Ludwig Defining and Monitoring Service Level Agreements for Dynamic e-Business

located in the provider’s domain while another mea-
surement service probes the service offered by the
provider across the Internet from various locations.
Keynote Systems, Inc. [15] is an example of such an
external measurement service provider.

Despite the fact that a multitude of parties may
be involved in providing a service, these interactions
may be broken down into chained customer/provider
relationships. Every interaction therefore involves
only two roles, a sender and a recipient. During our
work, we have not encountered a need for multi-party
SLAs, i.e., SLAs that are simultaneously negotiated
and signed by more than two parties. Multi-party con-
tracts do not seem to provide enough value to justify
their added complexity.

Parties:
Signatory Parties
Supporting Parties

Service Description:
Service Operations

Bindings

SLA Parameters
Metrics

Measurement Directives

Functions
Evaluation Period

Obligations:

Validity Period
Predicate
Actions

Involved Parties:
IDs and interfaces of signatory parties
IDs and interfaces of supporting parties
Service Characteristics & Parameters:
Operations offered by service
Transport encoding for messages
Agreed-upon SLA parameters (output)

Metrics used as input
How/where to access input metrics

Measurement algorithm
Measurement duration, sampling rate
Guarantees & Constraints:
When is SLA parameter guaranteed?
How to detect violation (formula)
Corrective actions to be carried out

Figure 4: General structure of an SLA.

The WSLA Language

The WSLA language, specified in [19], defines a
type system for the various SLA artifacts and is based
on the XML Schema [34, 35]. We give an overview of
the general structure of an SLA and motivate the vari-
ous constructs of the WSLA language that will be
described by means of examples in the subsequent
sections: The information that needs to be processed
by a Measurement Service is described later; then, we
focus on the parts of the language a Condition Evalua-
tion Service needs to understand for evaluating if a
service level objective has been violated.

WSLA in a Nutshell

Figure 4 illustrates the typical elements of a SLA
with signatory and supporting parties. Clearly, there
are many variations of what types of information and
which rules are to be included and, hence, enforced in
a specific SLA.

The Parties section, consisting of the signatory
parties and supporting parties fields identify all the
contractual parties. Signatory Party descriptions con-
tain the identification and the technical properties of a
party, i.e., their interface definition and their
addresses. The definitions of the Supporting Parties
contain, in addition to the information contained in the
signatory party descriptions, an attribute indicating the
sponsor(s) of the party.

The Service Description section of the SLA
specifies the characteristics of the service and its
observable parameters as follows:

• For every Service Operation, one or more
Bindings, i.e., the transport encoding for the
messages to be exchanged, may be specified.
Examples of such bindings are SOAP (Simple
Object Access Protocol), MIME (Multipurpose
Internet Mail Extensions) or HTTP (HyperText
Transfer Protocol).

• In addition, one or more SLA Parameters of
the service may be specified. Examples of such
SLA parameters are service availability,
throughput, or response time.

• As mentioned earlier, every SLA parameter
refers to one (composite) Metric, which, in
turn, aggregates one or more other (composite
or resource) metrics, according to a measure-
ment directive or a function. Examples of com-
posite metrics are maximum response time of a
service, average availability of a service, or
minimum throughput of a service. Examples of
resource metrics are: system uptime, service
outage period, number of service invocations.
• Measurement Directives specify how an

individual metric can be accessed. Typical

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 197



Defining and Monitoring Service Level Agreements for Dynamic e-Business Keller & Ludwig

examples of measurement directives are
the uniform resource identifier of a hosted
computer program, a protocol message, or
the command for invoking scripts or com-
piled programs.

• Functions are the measurement algorithm,
or formula, that specifies how a composite
metric is computed. Examples of functions
are formulas of arbitrary length containing
average, sum, minimum, maximum, and
various other arithmetic operators, or time
series constructors.

• For every function, an Evaluation Period
is specified. It defines the time intervals
during which the functions are executed to
compute the metrics. These time intervals
are specified by means of start time, dura-
tion, and frequency. Examples of the latter
are weekly, daily, hourly, or every minute.

ServiceObject
WSDL:getQuote

has has

Metric
Downtime

Function
Add Down Events

Metric
Probes Time Series

Function
Create Time Series

Metric
Service Probe

Measurement Directive
Probe: acme.com/getQuote

defined by

defined by

defined by

SLAParameter
Downtime

SLAParameter
Throughput

Metric
Response Time

Function
Divide

Metric
Transactions

Measurement Directive
Read: TXcount

Metric
Time Spent

Measurement Directive
Read: Timecount

defined by

defined bydefined by

Figure 5: Sample elements of a service description.

Obligations, the last section of an SLA, define
various guarantees and constraints that may be
imposed on the SLA parameters:

• First, the Validity Period is specified; it indi-
cates the time intervals for which a given SLA
parameter is valid, i.e., when the SLO may be
applied. Examples of validity periods are busi-
ness days, regular working hours or mainte-
nance periods.

• The Predicate specifies the threshold and the
comparison operator (greater than, equal, less
than, etc.) against which a computed SLA
parameter is to be compared. The result of the
predicate is either true or false.

• Actions, finally, are triggered whenever a pred-
icate evaluates to true, i.e., a violation of an
SLO has occurred. Actions are e.g., sending an
event to one or more signatory and supporting
parties, opening a trouble ticket or problem
report, payment of penalty, or payment of pre-
mium. Note that, as stated in the latter case, a
service provider may very well receive addi-
tional compensation from a customer for
exceeding an obligation, i.e., obligations reflect
constraints that may trigger the payment of
credits from any signatory party to another sig-
natory or supporting party. Also note that zero
or more actions may be specified for every
SLA parameter.

Service Description: Associating SLA Parameters
with a Service

The purpose of the service description is the clar-
ification of three issues: To which service do SLA
parameters relate? What are the SLA parameters?
How are the SLA parameters measured or computed?
This is the information a Measurement Service
requires to carry out its tasks. A sample service
description is depicted in Figure 5.

Service Objects and Operations

The service object, depicted at the top of Figure
5, provides an abstraction for all conceptual elements
for which SLA parameters and the corresponding met-
rics can be defined. In the context of Web Services,
the most detailed concept whose quality aspect can be
described separately is the individual operation (in a
binding) described in a WSDL specification. In our

198 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA



Keller & Ludwig Defining and Monitoring Service Level Agreements for Dynamic e-Business

example, the operation getQuote is the service object.
In addition, quality properties of groups of WSDL
operations can be defined – the operation group being
the service object in this case. Outside the scope of
Web Services, business processes, or parts thereof, can
be service objects (e.g., defined in WSFL [18]). Ser-
vice objects have a set of SLA parameters, a set of
metrics that describe how SLA parameters are com-
puted or measured and a reference to the service itself
that is the subject of the service object abstraction.

While the format for SLA parameters and met-
rics is the same for all services (though not their indi-
vidual content), the reference to the service depends
on the particular way in which the service is
described. For example, service objects may contain
references to operations in a WSDL file.

<Metric name="UpTimeRatioMetric" type="double" unit="">
<Source>YMeasurement</Source>
<Function xsi:type="Minus" resultType="double">

<Operand>
<LongScalar>1</LongScalar>

</Operand>
<Operand>
<Function xsi:type="Divide" resultType="long">
<Operand>
<Function xsi:type="ValueOccurs" resultType="long">
<Metric>StatusTimeSeries</Metric>
<Value>
<LongScalar>0</LongScalar>

</Value>
</Function>

</Operand>
<Operand>
<LongScalar>1440</LongScalar>

</Operand>
</Function>

</Operand>
</Function>

</Metric>

Figure 7: Defining a Metric UpTimeRatioMetric.

SLA Parameters and Metrics
SLA parameters are properties of a service

object; each SLA parameter has a name, type and unit.
SLA parameters are computed from metrics, which
either define how a value is to be computed from other
metrics or describe how it is measured. For this pur-
pose, a metric either defines a function that can use
other metrics as operands or it has a measurement
directive that describes how the metric’s value should
be measured. Since SLA parameters are the entities
that are surfaced by a Measurement Service to a Con-
dition Evaluation Service, it is important to define
which party is supposed to provide the value (Source)
and which parties can receive it, either event-driven
(Push) or through polling (Pull). Note that one of our
design choices is that SLA parameters are always the
result of a computation, i.e., no SLA parameters can
be defined as input parameters for computing other
SLA parameters. In Figure 5, one metric is retrieved
by probing an interface (Service Probe) while the other

ones (TXcount, Timecount) are directly retrieved from
the service provider’s management system.

<SLAParameter name="UpTimeRatio"
type="float" unit="downEvents/hour">

<Metric>UpTimeRatioMetric</Metric>
<Communication>
<Source>ACMEProvider</Source>
<Pull>ZAuditing</Pull>
<Push>ZAuditing</Push>

</Communication>
</SLAParameter>

Figure 6: Defining an SLA Parameter UpTimeRatio.

Figure 6 depicts how an SLA parameter UpTi-
meRatio is defined. It is assigned the metric UpTimeRa-
tioMetric, which is defined independently of the SLA
parameter for being used potentially multiple times.
ACMEProvider promises to send (push) new values to
ZAuditing, which is also allowed to retrieve new val-
ues on its own initiative (pull). The purpose of a metric
is to define how to measure or compute a value.
Besides a name, a type and a unit, it contains either a
function or a measurement directive and a definition
of the party that is in charge of computing this value.

Figure 7 shows an example composite metric
containing a function. UpTimeRatioMetric is of type
double and has no unit. YMeasurement is in charge of
computing this value. The example illustrates the con-
cept of a function: The number of occurrences of ‘‘0’’
in a time series of the metric StatusTimeSeries – assum-
ing this represents a down event in time series of
probes once per minute – is divided by 1440 (the num-
ber of minutes of a day) to yield the downtime ratio.
This value is subtracted from 1 to obtain the UpTimeR-
atio. Specific functions, such as Minus, Plus or Val-
ueOccurs are extensions of the common function type.

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 199



Defining and Monitoring Service Level Agreements for Dynamic e-Business Keller & Ludwig

Operands of functions can be metrics, scalars and
other functions. It is expected that a measurement ser-
vice, provided either by a signatory or a supporting
party, is able to compute functions. Specific functions
can be added to the language as needed.

<Metric name="ServiceProbe" type="integer" unit="">
<Source>YMeasurement</Source>
<MeasurementDirective xsi:type="StatusRequest" resultType="integer">

<RequestURL>http://ymeasurement.com/StatusRequest/GetQuote</RequestURL>
</MeasurementDirective>

</Metric>

Figure 8: Defining a Measurement Directive StatusRequest.

A Measurement Directive, depicted in Figure 8,
specifies how the metric is retrieved from the source
(either by means of a well-defined query interface
offered by the Service Provider, or directly from the
instrumentation of a managed resource by means of a
management protocol operation). A specific type of
measurement directive is used in the example above:
StatusRequest. It contains a URL that is used for prob-
ing whether the getQuote operation is available. Appar-
ently, other ways to measure values require an entirely
different set of information items, e.g., an SNMP port,
an object identifier (OID) and an instance identifier to
retrieve a counter.
Obligations: SLOs and Action Guarantees

Based on the common ontology established in
the service definition part of the SLA, the parties can
unambiguously define the respective guarantees that
they give each other. The WSLA language provides
two types of obligations:

• Service level objectives represent promises
with respect to the state of SLA parameters.

• Action guarantees are promises of a signatory
party to perform an action. This may include
notifications of service level objective viola-
tions or invocation of management operations.

Important for both types of obligations is the def-
inition of the obliged party and the definition of when
the obligations need to be evaluated. Both have a simi-
lar syntactical structure (as previously depicted in Fig-
ure 4). However, their semantics are different. The
content of an obligation is refined in a service level
objective or an action guarantee.
Service Level Objectives

A service level objective expresses a commitment
to maintain a particular state of the service in a given
period. Any party can take the obliged part of this guar-
antee; however, this is typically the service provider.

A service level objective has the following ele-
ments: Obliged is the name of a party that is in charge of
delivering what is promised in this guarantee. One or
many ValidityPeriods define when the SLO is applicable.

A logic Expression defines the actual content of
the guarantee, i.e., what is asserted by the service
provider to the service customer. Expressions follow
first order logic and contain the usual operators and,

or, not, etc., which connect either predicates or, again,
expressions. Predicates can have SLA parameters and
scalar values as parameters. By extending an abstract
predicate type, new domain-specific predicates can be
introduced as needed. Similarly, expressions could be
extended, e.g., to contain variables and quantifiers.
This provides the expressiveness to define complex
states of the service.

A service level objective may also have an Evalua-
tionEvent, which defines when the expression of the ser-
vice level objective should be evaluated. The most com-
mon evaluation event is NewValue, each time a new
value for an SLA parameter used in a predicate is avail-
able. Alternatively, the expression may be evaluated
according to a Schedule. A schedule is a sequence of
regularly occurring events. It can be defined within a
guarantee or may refer to a commonly used schedule.

The example in Figure 9 illustrates a service level
objective given by ACMEProvider and valid for a full
month in the year 2001. It guarantees that the SLA
parameter ThroughPutRatio must be greater than 1000 if
the SLA parameter UpTimeRatio is less than 0.9, i.e., the
ThroughPutRatio must be above 1000 transactions per
minute even if the overall availability is below 90%.
This condition should be evaluated each time a new
value for the SLA parameter is available. Note that we
deliberately chose that validity periods are always speci-
fied with respect to a single SLA parameter, and thus
only indirectly applicable to the scope of the overall
SLA. Alternatively, validity periods to the overall SLA
(possibly in addition to the validity periods for each
SLA parameter) could be possible, but we found that
this granularity is too coarse.

Action Guarantees

An action guarantee expresses a commitment to
perform a particular activity if a given precondition is
met. Any party can be the obliged of this kind of guar-
antee. This particularly includes also the supporting
parties of the SLA.

An action guarantee comprises the following ele-
ments and attributes: Obliged is the name of a party
that must perform an action as defined in this guaran-
tee. A logic Expression defines the precondition of the
action. The format of this expression is the same as the
format of expression in service level objectives. An
important predicate for action guarantees is the Viola-
tion predicate that determines whether another guaran-
tee, in particular a service level objective, has been
violated. An EvaluationEvent or an evaluation Schedule
defines when the precondition is evaluated.

200 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA



Keller & Ludwig Defining and Monitoring Service Level Agreements for Dynamic e-Business

QualifiedAction contains a definition of the action
to be invoked at a particular party. The concept of a
qualified action definition is similar to the invocation
of an object method in a programming language,
replacing the object name with a party name. The
party of the qualified action can be the obliged or
another party. The action must be defined in the corre-
sponding party specification. In addition, the specifi-
cation of the action includes the marshalling of its
parameters. One or more qualified actions can be part
of an action guarantee.

<ServiceLevelObjective name="SLO_For_ThroughPut_and_UpTime">
<Obliged>ACMEProvider</Obliged>
<Validity>

<Start>2001-11-30T14:00:00.000-05:00</Start>
<End>2001-12-31T14:00:00.000-05:00</End>

</Validity>
<Expression>
<Implies>
<Expression>
<Predicate xsi:type="Less">
<SLAParameter>UpTimeRatio</SLAParameter>
<Value>0.9</Value>

</Predicate>
</Expression>
<Expression>
<Predicate xsi:type="Greater">
<SLAParameter>ThroughPutRatio</SLAParameter>
<Value>1000</Value>

</Predicate>
</Expression>

</Implies>
</Expression>
<EvaluationEvent>NewValue</EvaluationEvent>

</ServiceLevelObjective>

Figure 9: Defining a Service Level Objective SLO_For_ThroughPut_and_UpTime.

<ActionGuarantee name="Must_Send_Notification_Guarantee">
<Obliged>ZAuditing</Obliged>
<Expression>
<Predicate xsi:type="Violation">

<ServiceLevelObjective>
SLO_For_ThroughPut_and_UpTime

</ServiceLevelObjective>
</Predicate>

</Expression>
<EvaluationEvent>NewValue</EvaluationEvent>
<QualifiedAction>
<Party>XInc</Party>
<Action actionName="notification" xsi:type="Notification">
<NotificationType>Violation</NotificationType>
<CausingGuarantee>

Must_Send_Notification_Guarantee
</CausingGuarantee>
<SLAParameter>ThroughPutRatio UpTimeRatio</SLAParameter>

</Action>
</QualifiedAction>
<ExecutionModality>Always</ExecutionModality>

</ActionGuarantee>

Figure 10: Defining an ActionGuarantee Must_Send_Notification_Guarantee.

ExecutionModality is an additional means to control
the execution of the action. It can be defined whether the

action should be executed if a particular evaluation of the
expression yields true. The purpose is to reduce, for
example, the execution of a notification action to a nec-
essary level if the associated expression is evaluated very
frequently. Execution modality can be either: always, on
entering a condition or on entering and leaving a condi-
tion. The example depicted in Figure 10 illustrates an
action guarantee.

In the example, ZAuditing is obliged to invoke the
notification action of the service customer XInc if a
violation of the service level objective SLO_For_
ThroughPut_and_UpTime (cf. Figure 9) occurs. The pre-
condition should be evaluated every time the

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 201



Defining and Monitoring Service Level Agreements for Dynamic e-Business Keller & Ludwig

evaluation of the SLO Must_Send_Notification_Guaran-
tee returns a new value. The action has three parame-
ters: the type of notification, the guarantee that caused
it to be sent, and the SLA parameters relevant for
understanding the reason of the notification. The noti-
fication should always be executed.

Conclusions and Outlook

This paper has introduced the novel WSLA
framework for electronic services, in particular Web
Services. The WSLA language allows a service
provider and its customer to define the quality of ser-
vice aspects of the service. The concept of supporting
parties allows signatory parties to include third parties
into the process of measuring the SLA parameters and
monitoring the obligations associated with them. In
order to avoid the potential ambiguity of high-level
SLA parameters, parties can define precisely how
resource metrics are measured and how composite
metrics are computed from others. The WSLA lan-
guage is extensible and allows us to derive new
domain-specific or technology-specific elements from
existing language elements. The explicit representa-
tion of service level objectives and action guarantees
provides a very flexible mechanism to define obliga-
tions on a case-by-case basis. Finally, the detachment
from the service description itself makes the WSLA
language and its associated services applicable to a
wide range of electronic services.

We have developed a prototype that implements
a total of three different WSLA services: First, a
deployment service to provide the measurement and
condition evaluation services with the SLA elements
they need to know; second, a measurement service
that can interpret measurement directives for the
instrumentation of a Web services gateway and can
aggregate high-level metrics using a rich set of func-
tions for arithmetic and time series. Third, a general-
purpose condition evaluation service has been imple-
mented that supports a wide range of predicates. Cur-
rently, we provide extensions to the WSLA language
that apply to quality aspects of business processes and
a template format for advertising SLAs in service reg-
istries such as UDDI. In addition, we are working on
an SLA editing environment. The integration with
existing resource management systems and architec-
tures is currently underway, with a special focus on
the Common Information Model (CIM).

Availability

The SLA Compliance Monitor is included in the
current version 3.2 of the IBM Web Services Toolkit
and can be downloaded from http://www.alphaworks.
ibm.com/tech/webservicestoolkit.

Acknowledgments

The authors would like to express their gratitude
to Asit Dan, Richard Franck and Richard P. King for
their contribution. The authors are also indebted to

Steve Traugott of TerraLuna, LLC. for his constructive
suggestions for improving the quality of this paper.

Biography

Alexander Keller is a Research Staff Member at
the IBM Thomas J. Watson Research Center in York-
town Heights, NY, USA. He received his M.Sc. and a
Ph.D. in Computer Science from Technische Univer-
sität München, Germany, in 1994 and 1998, respec-
tively and has published more than 30 refereed papers
in the area of distributed systems management. He
does research on service and application management,
information modeling for e-business systems, and ser-
vice level agreements. He is a member of GI, IEEE
and the DMTF CIM Applications Working Group.

Heiko Ludwig is a visiting scientist at the IBM
Thomas J. Watson Research Center since June 2001.
As a member of the Distributed Systems and Services
department he works in the field of electronic con-
tracts, both contract representation and architectures
for contract-based systems. He holds a Master’s
degree (1992) and a Ph.D. (1997) in computer science
and business administration from Otto-Friedrich Uni-
versity Bamberg, Germany.

References

[1] ASP Industry Consortium, White Paper on Ser-
vice Level Agreements, 2000.

[2] Bhoj, P., S. Singhal, and S. Chutani, ‘‘SLA Man-
agement in Federated Environments,’’ Proceed-
ings of the Sixth IFIP/IEEE Symposium on Inte-
grated Network Management (IM’99), Boston,
MA, IEEE Publishing, pp. 293-308, May 1999.

[3] Bhushan, B., M. Tschichholz, E. Leray, and W.
Donnelly, ‘‘Federated Accounting: Service
Charging and Billing in a Business-To-Business
Environment,’’ Proceedings of the 7th
IFIP/IEEE International Symposium on Inte-
grated Network Management, (N. Anerousis, G.
Pavlou, and A. Liotta, editors), Seattle, WA,
USA, IEEE Publishing, pp. 107-121, May 2001.

[4] Dan, A., D. Dias, R. Kearney, T. Lau, T. Nguyen,
F. Parr, M. Sachs, and H. Shaikh, ‘‘Business-to-
Business Integration with tpaML and a B2B Pro-
tocol Framework,’’ IBM Systems Journal, Vol.
40, No. 1, February 2001.

[5] Debusmann, M., M. Schmidt, and R. Kroeger,
‘‘Generic Performance Instrumentation of EJB
Applications for Service Level Management,’’
Stadler and Ulema [28].

[6] ebXML – Creating a Single Global Electronic
Market, http://www.ebxml.org .

[7] ebXML Trading-Partners Team, Collaboration-
Protocol Profile and Agreement Specification,
Version 1.0, UN/CEFACT and OASIS, May
2001.

[8] FORM Consortium, Final Inter-Enterprise Man-
agement System Model, Deliverable 11, IST

202 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA



Keller & Ludwig Defining and Monitoring Service Level Agreements for Dynamic e-Business

Project FORM: Engineering a Co-operative Inter-
Enterprise Framework Supporting Dynamic Feder-
ated Organisations Management, http://www.ist-
form.org, February 2002.

[9] Garschhammer, M., R. Hauck, H.-G. Hegering, B.
Kempter, M. Langer, M. Nerb, I. Radisic, H.
Roelle, and H. Schmidt, ‘‘Towards Generic Ser-
vice Management Concepts: A Service Model
Based Approach,’’ Proceedings of the 7th
IFIP/IEEE International Symposium on Inte-
grated Network Management, pp. 719-732.

[10] Gopal, R., ‘‘Unifying Network Configuration
and Service Assurance with a Service Modeling
Language,’’ In Stadler and Ulema [28], pp.
711-725.

[11] Griffel, F., M. Boger, H. Weinreich, W. Lamers-
dorf, and M. Merz, ‘‘Electronic contracting with
COSMOS – How to establish, Negotiate and
Execute Electronic Contracts on the Internet,’’
Proceedings of the Second International Enter-
prise Distributed Object Computing Workshop
(EDOC ’98), La Jolla, CA, USA, October 1998.

[12] Grosof, B. and Y. Labrou, ‘‘An Approach to
using XML and a Rule-based Content Language
with an Agent Communication Language,’’ Pro-
ceedings of the IJCAI-99 Workshop on Agent
Communication Languages (ACL-99), 1999.

[13] Hoffner, Y., S. Field, P. Grefen, and H. Ludwig,
‘‘Contract-driven Creation and Operation of Vir-
tual Enterprises,’’ Computer Networks, Vol. 37,
pp. 111-136, 2001.

[14] Keller, A., G. Kar, H. Ludwig, A. Dan, and J. L.
Hellerstein, ‘‘Managing Dynamic Services: A
Contract based Approach to a Conceptual Archi-
tecture,’’ In Stadler and Ulema [28], pp.
513-528.

[15] Keynote – The Internet Performance Authority,
http:// www.keynote.com .

[16] Kreger, H., Web Services Conceptual Architec-
ture 1.0, IBM Software Group, May 2001.

[17] Lewis, L., Managing Business and Service Net-
works, Kluwer Academic Publishers, 2001.

[18] Leymann, F., Web Services Flow Language
(WSFL) 1.0, IBM Software Group, May 2001.

[19] Ludwig, H., A. Dan, R. Franck, A. Keller, and R.
P. King, Web Service Level Agreement (WSLA)
Language Specification, IBM Corporation, July
2002.

[20] Ludwig, H. and Y. Hoffner, ‘‘The Role of Con-
tract and Component Semantics in Dynamic E-
Contract Enactment Configuration,’’ Proceed-
ings of the 9th IFIP Workshop on Data Seman-
tics (DS9), pp. 26-40, 2001.

[21] McCloghrie, K., D. Perkins, and J. Schoen-
waelder, Structure of Management Information –
Version 2 (SMIv2), RFC 2578, IETF, April 1999.

[22] Merz, M., F. Griffel, T. Tu, S. Müller-Wilken, H.
Weinreich, M. Boger, and W. Lamersdorf, ‘‘Sup-
porting Electronic Commerce Transactions with

contracting Services,’’ International Journal of
Cooperative Information Systems, Vol. 7, No. 4,
pp. 249-274, 1998.

[23] Moore, B., E. Ellesson, J. Strassner, and A. Wes-
terinen, Policy Core Information Model – Ver-
sion 1 Specification, RFC 3060, IETF, February
2001.

[24] Rodosek, G. Dreo and L. Lewis, ‘‘Dynamic Ser-
vice Provisioning: A User-Centric Approach,’’
Proceedings of the 12th Annual IFIP/IEEE Inter-
national Workshop on Distributed Systems:
Operations & Management (DSOM 2001), O.
Festor and A. Pras, editors, Nancy, France,
IFIP/IEEE, INRIA Press, pp. 37-48, October
2001.

[25] Schopp, B., A. Runge, and K. Stanoevska-
Slabeva, ‘‘The Management of Business Trans-
actions through Electronic Contracts,’’ Proceed-
ings for the Tenth International Workshop on
Database and Expert Systems Applications, A.
Camelli, A. Min Tjoa, and R. R. Wagner, editors,
Florence, Italy, IEEE Computer Society Press,
pp. 824-831, 1999.

[26] SLA and QoS Management Team, Service
Provider to Customer Performance Reporting:
Information Agreement, Member Draft Version
1.5 TMF 602, TeleManagement Forum, June
1999.

[27] SLA Management Team, SLA Management
Handbook, Public Evaluation Version 1.5 GB
917, TeleManagement Forum, June 2001.

[28] Stadler, R. and M. Ulema, editors, Proceedings
of the IEEE/IFIP Network Operations and Man-
agement Symposium, Florence, Italy, IEEE Press,
April 2002.

[29] Enhanced Telecom Operations Map: The Busi-
ness Process Framework, Member Evaluation
Version 2.7 GB 921, TeleManagement Forum,
April 2002.

[30] Tosic, V., B. Pagurek, B. Esfandiari, and K.
Patel, ‘‘Management of Compositions of E- and
M-Business Web Services with multiple Classes
of Service,’’ Stadler and Ulema [28], pp.
935-937.

[31] UDDI Version 2.0 API Specification, Universal
Description, Discovery and Integration,
http://uddi. org, June 2001.

[32] Verma, D., Supporting Service Level Agreements
on IP Networks, Macmillan Technical Publish-
ing, 1999.

[33] White, K., Definition of Managed Objects for
Service Level Agreements Performance Monitor-
ing, RFC 2758, IETF, February 2000.

[34] XML Schema Part 1: Structures, W3C Recom-
mendation, W3 Consortium, May 2001.

[35] XML Schema Part 2: Datatypes, W3C Recom-
mendation, W3 Consortium, May 2001.

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 203



Defining and Monitoring Service Level Agreements for Dynamic e-Business Keller & Ludwig

204 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA


