
USENIX Association

Proceedings of
LISA 2002:

16th Systems Administration
Conference

Philadelphia, Pennsylvania, USA
November 3–8, 2002

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Stem: The System
Administration Enabler

Pp. 75-82 of the Proceedings of LISA ’02: Sixteenth Systems Administration Conference
(Berkeley, CA: USENIX Association, 2002).

Uri Guttman – Stem Systems, Inc.

ABSTRACT

Stem is a system administration ‘‘enabler.’’ It is not an administrative tool, but rather a
general-purpose development framework that allows an administrator to craft tools to perform a
wide variety of tasks in a distributed environment easily and quickly. Many common tasks can be
performed with Stem scripts involving a few lines of declarations. Current example applications
include log file collating and service load balancing. Using Stem, a non-programmer can craft
reliable network software in a few lines of declarations that would require hundreds or thousands
of lines of code in a traditional programming language such as C.

Introduction

It is a bit difficult to begin describing something
that is rather unique. Stem is not an administrative
tool, nor does it support a particular kind of adminis-
trative practice. It is instead a ‘‘framework’’ for
declarative construction of networked software for a
variety of purposes. Its intent is to make network soft-
ware that is as easy to create as it is to describe. In
many cases, Stem allows a system administrator to
create such tools without learning to program by bas-
ing them upon a few templates that describe common
network applications.

Stem’s components include:
• A declarative configuration language by which

one can define application components, known
as ‘‘Cells.’’ Stem is written in Perl, and the cur-
rent configuration directives use Perl syntax.

• A runtime daemon that creates and executes
components (cells) based on the defined config-
uration.

• A set of modules that implement useful, com-
monly used cells.

• Additional utility modules and command tools.

While it remains a general-purpose programming
framework, Stem’s primary goal is to help system and
network administrators solve their problems with less
work. The is the concept of ‘‘enabling’’ which will be
a theme throughout this paper. Stem enables system
administrators to easily glue existing systems together
with network connections, create new networked
applications with much less coding than before, and
configure solutions to many common problems with-
out any coding at all.

Stem is a general purpose system that can be
used in many situations and problem spaces. By using
the existing Stem modules and example configurations
you can focus on your own problem space and issues
and ignore many common network programming
problems such as event handling and client-server and

other interprocess communication. If your problem
space is large, Stem enables you to cover that entire
space under one architecture, thereby simplifying your
design, coding and maintenance.

To Code or Not to Code
While most administrators write at least the

occasional script, many (perhaps even most) do not
have the time or skills to develop full-blown network
applications from scratch. Stem enables both groups
of administrators equally. Non-programmers can cre-
ate Stem configurations or modify the supplied exam-
ples without any coding needed to solve their specific
problems, simple or complex. Administrators who
know Perl can create modules for functions not pro-
vided by existing Stem modules and still take advan-
tage of the infrastructure and network services that
Stem offers, allowing them to limit their programming
to just their specific task. The advantages of this
approach, with respect to simplifying and speeding up
application creation, are obvious. A site can even split
up the work, with a developer creating new Stem
modules, and an administrator creating the configura-
tion to drive and deploy them.

Stem Networking
Gluing together disparate existing applications is

a common and difficult problem when attempting to
automate system administration tasks. Applications
can have command line interfaces (CLI), be
client/server based, or use common protocols (HTTP,
SMTP, etc.). Stem enables an elegant solution to this
task. Stem can be used to wrap each existing applica-
tion in a module along with a new, message-based
interface (essentially, an API). However, there is no
need to predefine message queues or compile parame-
ters as you do in many other message-passing or RPC
type systems. Once this is done, Stem declarations
invoke the module under conditions you specify.

This approach allows the task of gluing together
applications to be divided into two phases: first, creat-
ing a wrapper with a message-passing interface and

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 75

Stem: The System Administration Enabler Guttman

second, using the new module within Stem, allowing
the cells to communicate automatically with one
another. The first task is performed only once, and the
resulting module is reusable, and generic, while the
second task allows the module to be quickly put to
work on a specific task.

Related Work

Stem is a unique integration of several kinds of
technology, but has its roots in several other tools that
contain part, but not all, of its capabilities.
Message-passing Systems

First, Stem is a ‘‘message-passing system,’’ but
applying that name implicitly limits it more than is
appropriate. For a programmer, the term ‘‘message-
passing’’ generally refers to parallel programming
libraries such as PVM and MPI [mpi]. Stem differs
from such facilities in that it allows network applica-
tions to be created at a conceptually ‘‘higher ’’ level and
handles all of the lowest level message-passing func-
tionality transparently to the application creator. Also
Stem’s messages can be sent to any cell in the current
application, whether in the same hub (process), system
or to a remote site. In fact, changing where a message is
sent usually amounts to simply editing an address in a
configuration file with no coding involved.

Another common use of the term ‘‘message-pass-
ing’’ is to refer to a class of commercial products com-
monly called Message Oriented Middleware (MOM).
These products include guaranteed message delivery
among their capabilities, which also typically include
access to databases and transaction systems and other
related services. Such products are usually targeted to
the financial and business community and are rarely
used by administrators and network developers. A few
of the more well known MOM products include IBM’s
We b S p h e r e MQ Family and Microsoft’s MSMQ [mom].

Stem differs from MOM applications in several
ways. First of all, MOM systems are designed for use
by professional application programmers and usually
require substantial programming expertise to use. In
contrast, Stem is designed for use by administrators
for administrative tasks while minimizing required
programming. Secondly, traditional MOM systems are
extremely large and entail considerable overhead,
from both a computing and a staffing point of view.
MOM systems typically need a database system to
function, and some MOM vendors (e.g., IBM) recom-
mend at least one full time staff person dedicated to
running them. Stem is at the other extreme in that it is
extremely lightweight. Finally, while Stem is Open
Source, existing MOM applications are commercial
products which are both expensive and proprietary.
Administrative Tools

Second, Stem is intended as an ‘‘administrative
tool’’ but has almost nothing in common with existing
administrative tools such as Cfengine [cfengine].
These tools are intended primarily to control the

configuration of hosts within a network. Stem is
instead intended to allow flexible interoperation
between tools within a network. While Cfengine pro-
vides network communications layers so that hosts can
exchange information, this information is limited to
facts relative to host configuration. It cannot, for
example, hand off a service request from one host to
another, an operation that is trivial in Stem.

The Swatch package [swatch] overlaps to some
extent with one of Stem’s modules. This package
monitors log file contents and searches for specified
patterns set in its configuration file. The Stem::Log-
Tail module performs a very similar function.
Monitoring Tools

Stem is also not a monitoring tool. It is better to
say that Stem is a framework that makes it easier than
ever to create applications which collect any desired
system and network data. Thus, it can subsume many
of the data collection capabilities of these tools. Stem
could also be used to feed data to existing monitoring
tools like RRDTool [rrdtool] or Cricket [cricket],
enabling the administrator to extend their capabilities
while continuing to take advantages of these tools’
mature visualization capabilities.
Other Facets

Stem has something in common with many other
tools and approaches. Stem’s ability to function as an
application wrapper has its roots in many other mes-
sage-passing and ‘‘screen-scraping’’ systems. Its basic
philosophy of creating a distributed configuration
engine that responds to flexible events was first docu-
mented in Distr [distr], though this mechanism was
intended solely for file distribution.

Stem Architecture

To encompass so many facets of other work,
Stem has evolved a unique architecture based upon a
biological metaphor of ‘‘Stem Cells.’’ A Cell is the
fundamental building block for a network application.
In a running Stem application, one or more cells exist
as objects in a Stem ‘‘hub’’; a hub corresponds to a
single daemon process. Multiple hubs can run simulta-
neously, and they communicate with one another via
constructs called ‘‘portals’’ that use TCP/IP sockets.
Hubs can communicate with other hubs running on the
same system or any network-accessible host, with
Stem handling all of the interprocess communication.

Stem is a fully event driven system. Events can
be any of the common network operations such as
socket connections, I/O on character devices (termi-
nals, sockets, pipes, etc.), and timers. Stem uses a con-
sistent technique for the delivery of messages based
on all kinds of events.
Cells

Stem cells are addressable objects which can send
and receive messages. Cells are registered at creation
time by name. There are three kinds of Stem Cells:

76 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

Guttman Stem: The System Administration Enabler

• Class Cells correspond to a Stem hub-wide
(process) resource. These Cells are usually self-
registering and generally use the class name as
their identifier but more intuitive aliases may
also be defined.

• Object Cells are application global objects.
Most often, they are created and registered by
the configuration which the Stem system is run-
ning, but they can also be loaded or created at
runtime. They are generally long lived and last
as long as the Stem hub is running.

• Cloned Cells are additional instances copied
from an existing parent object cell. They share
the parent’s Cell name but are additionally
given a unique target name which assigns them
a unique address. Cloned cells are similar to
what other systems would call sessions. They
are dynamically created upon request and last
only as long as needed.

The heart of Stem is the messaging subsystem
and the heart of that is the registry. This is where all
knowledge of how to address cells is located. Each
cell is registered by its name and if it is a cloned cell,
also by its target name, and messages are directed to it
via these names.

Messages
Stem Messages are how Cells communicate with

each other. Messages are simple data structures with
two major sections, the address and the content. The
address contains the Cell name that the message is
directed to and which Cell sent it. The content has the
message type, command and data.

Message addresses are name triplets of Hub/
Cell/Target. The Cell name is required and the Hub
and Target are optional. These triplets form globally
unique addresses with the overall Stem system.

The Message address section has multiple
address fields. The two primary fields correspond to
the common email headers and are called ‘to’ and
‘from’. The ‘to’ address designates which Cell will get
this message, and the ‘from’ address says which Cell
sent this message.

The Message content has information about this
message and any data being sent to the destination
Cell. The primary attribute is ‘type’ which can be set
to any string, but common types are data, cmd (com-
mand), response and status. Stem modules and Cells
can create any Message types they want. The other
major attribute of the content is the data, which holds
a reference to the message data.

Modules
The various Cells classes are implemented as Perl

modules, and many useful Cell types are included with
the Stem package. These are among the most important:

• Stem::SockMsg: Cells that connect to/accepts
connections from sockets. These cells function
as a socket-to-Stem message gateway.

• Stem::Switch: Multiplexes Stem messages to
multiple destinations according to maps which
can be dynamically modified.

• Stem::Portal: Manages connections between
Stem hubs, facilitating message transmission
across the network (including authentication
and security functions).

• Stem::TtyMsg: Provides a TTY interface to a
Stem hub.

• Stem::Proc: Creates Cells that fork external pro-
cesses and manages them.

• Stem::Log: Writes and manages Stem logs
(which may be associated with external files).

• Stem::Log::Tail: Monitors active external files
(typically log files), sending newly acquired
data into the Stem logging subsystems on either
a periodic basis or on demand.

• Stem::Cron: Creates and manages scheduled
message submissions. Such messages can be
sent anywhere in a Stem network and can trig-
ger any Stem operation. If the message is
addressed to a Stem::Switch Cell, it can then be
sent to multiple destinations and trigger events
across the network from a centralized schedule.

In addition, Stem includes other utility modules
which provide services to active Cells. These services
include asynchronous I/O, cloning of cells, flow con-
trol or local and remote method calls and logical
pipes.

Configurations

Stem differs from all other networking toolkits
by being architected around configuration rather than
software. A configuration file instructs the Stem
engine which Stem cells to construct and register.
When you invoke Stem, it interprets this configuration
and creates cells as needed without any need to com-
pile networking code.

Configuration files are structured using Perl
objects. Each desired cell is specified as a Perl object
with a list of attributes. Several examples are dis-
cussed in the next section.

Example Application: An inetd-like Server

We will consider a few versions of a small Stem
application, chosen for its use of typical Stem compo-
nents as well as in response to the space limitations
imposed on this paper. None of them require any pro-
gramming on the part of the system administrator.

A Simple First Version

This version of the application serves as a good
starting point for understanding Stem. It uses only
existing Stem modules to create an application which
can execute a process on a local or remote system. As
such, the only task required to create the application is
to set up a file containing the Stem configuration. The
simplest version is given in Listing 1.

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 77

Stem: The System Administration Enabler Guttman

This configuration uses three cells:
• A Stem:TtyMsg Cell. This Cell is used to enable

commands for the hub to be typed in at the key-
board. In this configuration the default attributes
are used.

Figure 1: A simple Stem application.

• A Stem::Proc Cell named ‘‘mon’’. This section
of the configuration file will create a Cell that
starts a process on demand. Here we specify a
list of arguments for the Cell: the path to the
command to be run, and some generic Cell
attributes. The latter specify that the cell is to
be cloned and that it will only send the data
from its process when it exits.

uptime.stem

[
class => ’Stem::TtyMsg’,
args => [],

],
[

class => ’Stem::Proc’,
name => ’mon’,
args => [

path => ’/usr/bin/uptime’,
cell_attr => [

’data_addr’ => ’A’,
’send_data_on_close’ => 1,

],
],

],
[

class => ’Stem::SockMsg’,
name => ’A’,
args => [

port => 6666,
server => 1,
cell_attr => [

’data_addr’ => ’A’,
],

],
],

Listing 1: Simplest configuration file.

• A Stem::SockMsg Cell named ‘‘A’’. This Cell
will listen on a socket (the port address is speci-
fied by the port attribute). When a connection
request is accepted, it will create a logical pipe
to the ‘mon’ cell as specified in the ‘pipe_addr’
attribute.

In this example when a socket connection is
made, the logical pipe to ‘mon’ is created, which causes
the ‘mon’ cell to clone and fork the uptime program. Its
output is collected and then sent back to the ‘A’ send
and then on to the socket. Stem will take care of creat-
ing and sending all of those messages automatically.

Running this configuration requires the follow-
ing commands:
$ xterm -T Stem -n Stem \

-e run_stem uptime
$ xterm -T Monitor -n Monitor \

-e telnet localhost 6666

We use two xterm commands to make Stem’s
operations visible. The first command starts the Stem
hub daemon process and attaches the Stem::TtyMsg
Cell to it so commands can be entered. The second
command attaches a second window to port 6666, the
Stem::SockMsg Cell, using a telnet command. Figure 1
illustrates the resulting windows.

In the ‘‘Stem’’ window, we send the cell_trigger
command to the mon Cell. This causes the Stem::Proc
Cell to execute its command. Note that the output
appears in the ‘‘Monitor ’’ window attached to port
6666 each time the cell is triggered.

A Piped Version

The problem with the example above is that you
must enter a ‘cell_trigger’ command to make the pro-
cess execute and only one telnet session can be used.
This new version (see Listing 2) will make the process
execute when the telnet connects to the socket. Note it
uses the ‘pipe_addr’ attribute which will create a logi-
cal pipe between the cell ‘A’ and the ‘mon’ cell. Actu-
ally the ‘mon’ cell will be cloned when a pipe to it is
created and that cloned cell will run the process.

To run this example, name the configuration file
up3.stem and run this command:
$ xterm -T Stem -n Stem \

-e run_stem uptime2

Then, in another window run the telnet command:
$ telnet localhost 6666

Each time you run telnet you will invoke the uptime
command and see its output from telnet which will
then exit.

78 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

Guttman Stem: The System Administration Enabler

A Multi-Hub Version
The previous two Stem applications were

extremely simple, but their potential functionality is
very powerful. They can be extended in several ways:

• The process can be executed on a different host
than the triggering host.

• The process can be executed on multiple
remote systems.

• The output can be sent to more than one desti-
nation: multiple sockets on different systems, a
log file, another Stem cell for further process-
ing, and so on.

• A different command or program can be run.
The uptime command merely serves as a proof-
of-concept here. Any command that is needed
could be executed.

#uptime2.stem

[
class => ’Stem::TtyMsg’,
args => [],

],
[

class => ’Stem::Proc’,
name => ’mon’,
args => [

path => ’/usr/bin/uptime’,
cell_attr => [

’cloneable’ => 1,
’send_data_on_close’ => 1,

],
],

],
[

class => ’Stem::SockMsg’,
name => ’A’,
args => [

port => 6666,
server => 1,
cell_attr => [

pipe_addr => ’mon’,
],

],
],

Listing 2: Improved with concurrent sockets.

• More than one command can be supported by
defining multiple Stem::Proc cells. In this way,
the application can function in a similar way to
inetd in that it can start any one of a number of
preconfigured servers upon demand.

• The process can be triggered other ways than
by manually entering a command or by con-
necting to a socket: by a different Stem cell,
according to a schedule (using Stem::Cron), etc.
The triggering can come from the server hub,
the client hub, or elsewhere in the Stem system.

Listings 3 and 4 illustrate a multi-hub version of
this application. Notice how easy it is to split the sim-
ple version into an implementation which can be run
across the network.

To run this application, start processes like these
(as before):
$ xterm -T Server -n Server \

-e run_stem uptime_server
$ xterm -T Client -n Client \

-e run_stem uptime_client

Then, in another window run this command:
$ telnet localhost 6666

This will behave the same as the uptime2 example but
it is split over two hubs. Notice that other than adding
the Hub and Portal cells, the only change to the con-
figuration was adding a hub name to the ‘pipe_addr’
attribute in the uptime_client configuration. This illus-
trates how easy it is to distribute applications written
in Stem across a network. Sending messages to local
or remote cells is done the same way – typically only
the address will need to be changed.

This example application and its variations pro-
vide some insight into Stem’s flexibility and capabili-
ties. The Stem distribution comes with several other
example applications and a cookbook that shows you
how to create your own cells.

#uptime_server.stem

Name the hub so the client can
refer to it.

[
class => ’Stem::Hub’,
name => ’uptime_server’,
args => [],

],

[
class => ’Stem::TtyMsg’,
args => [],

],

Set the portal to be a server:
listen for portal connections from
any host the port defaults to 10000
but can be set here

[
class => ’Stem::Portal’,
name => ’listener’,
args => [

’server’ => 1,
’host’ => ’’,

],
],

[
class => ’Stem::Proc’,
name => ’mon’,
args => [

path => ’/usr/bin/uptime’,
cell_attr => [

’cloneable’ => 1,
’send_data_on_close’ => 1,

],
],

],

Listing 3: Multi-hub server.

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 79

Stem: The System Administration Enabler Guttman

Critique and Analysis

The major infrastructure work of creating Stem
has been completed, and the package is working well
where it has been deployed. The design has proven to
be as flexible as was intended, and Stem applications
have been created by administrators unfamiliar with
the package after just a few hours.

Stem’s planned extensibility has also been veri-
fied in that administrators have successfully written
additional Stem modules in Perl and integrated them
with those that the package provides.

Stem’s highly modular design has been proven to
be instrumental in extending it. New modules can eas-
ily be created and integrated. Internal services have
been developed and quickly used by other modules
and cells. Its simple message-passing API allows
almost any external application, service or protocol to
interact with any other.

#uptime_client.stem

Name the hub so server can refer to it.

[
class => ’Stem::Hub’,
name => ’uptime_client’,
args => [],

],

[
class => ’Stem::TtyMsg’,
args => [],

],

Create a client portal.
this will connect to the portal
in the ’monitoring’ hub the default
host is ’localhost’ but it can be
set here the port defaults to
10000 but can be set here
[

class => ’Stem::Portal’,
name => ’server’,
args => [],

],

[
class => ’Stem::SockMsg’,
name => ’A’,
args => [

port => 6666,
server => 1,
cell_attr => [

cloneable => 1,
pipe_addr => ’uptime_server:mon’,

],
],

],

Listing 4: Multi-hub client.

Stem’s configuration file format currently takes
the form of Perl data structures. This has performance
implications and security issues as well as presenting a
somewhat eccentric interface to non-Perl literate

system administrators. In the future, we plan to sup-
port multiple configurations formats including XML.

Similarly the format of Stem’s message (when
serialized over a pipe) also needs to support other for-
mats. But as with the configuration formats, it is just a
matter of having modules that can convert the internal
message structure to/from an external format. This
will allow other systems to be more easily integrate as
they can then send/receive Stem messages.

Stem’s security support currently is weak. We
have demonstrated to ourselves that we can use ssh for
message-passing between Stem processes but the
design was not good enough for production. We have
plans to redesign it to be integrated with Stem’s socket
module so that any IPC (not just message-passing) can
use it. Also the design would allow a choice of secure
transport (ssh, SSL etc.) by using the same modular
plug-in design as mentioned above.

Future Work

Stem is extremely modular in design and can be
extended easily in many directions. Here is a short list
of some items that are in our development queue now:

• State Machine: A text based state machine that
will take input from multiple sources: socket,
processes and messages. It will have many fea-
tures including state callbacks, input and output
buffers, regular expression matching, and the
like.

• Flow Control: A module that will allow a Stem
Cell to control the logic flow of method calls,
regardless of whether they are local or remote.
It manages a combination of synchronous
(local) and asynchronous (remote via mes-
sages) object method calls in a simple mini-lan-
guage that will have the common flow control
operations such as IF/ELSE, WHILE, etc. This
greatly simplifies the task of coordinating dis-
tributed operations upon an object (a Stem
Cell) such as accessing a database or using sub-
processes and remote protocols.

• Network Protocols: When the State Machine is
finished, it will be used in various protocol
modules which will enable Stem to communi-
cate with programs which use the popular pro-
tocols such as HTTP, FTP, SMTP, etc.

• GUI-based Configuration Tool: A longer term
goal is to integrate Stem with a GUI toolkit
such as Tk or Qt in order to develop a tool for
creating and visualizing Stem configurations.
Doing so will also make it possible to create a
wide range of GUI front ends for Stem based
applications.

Availability

Stem is Open Source software, it is licensed under
the GPL and is available without charge from Stem
Systems. Our website is http://www.stemsystems.com .

80 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

Guttman Stem: The System Administration Enabler

Acknowledgments

I wish to thank Aeleen Frisch, Alva Couch, and
Will Partain for their help with this paper.

Author biography

Uri Guttman graduated from MIT in 1983 with a
B.S. CSE. He has been developing software for 25
years. Stem is the result of his extensive experience in
systems architecture, networking, communications, API
design and Perl. He is currently president of Stem Sys-
tems and can be reached at uri@stemsystems.com .

References

[cfengine] Burgess, Mark, ‘‘Cfengine: A Site Configu-
ration Engine,’’ USENIX Computing Systems,
USENIX, 1995.

[cricket] Allen, Jeff R., ‘‘Driving by the Rear-View
Mirror: Managing a Network with Cricket,’’ Pro-
ceedings First Conference on Network Adminis-
tration, USENIX 1999.

[distr] Couch, Alva L., ‘‘Chaos Out of Order: A File
Distribution Facility For ‘Intentionally Heteroge-
neous’ Networks,’’ Proceedings LISA 1997,
USENIX, 1997.

[mom] http://www-3.ibm.com/software/ts/mqseries/
and http://www.microsoft.com/msmq/default.htm .

[mpi] The Message Passing Interface Forum, ‘‘MPI: A
Message-Passing Interface Standard’’ and
‘‘MPI-2: Extensions to the Message-Passing
Interface,’’ http://www.mpi-forum.org .

[rrdtool] Oetiker, Tobias, ‘‘RRDTool,’’ http://people.
ee.ethz.ch/˜oetiker/webtools/rrdtool/manual/index.
html .

[swatch] Hansen, Stephen E., and E. Todd Atkins,
‘‘Centralized System Monitoring With Swatch,’’
Proceedings LISA 1993, USENIX, 1993.

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 81

82 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

