
USENIX Association

Proceedings of
LISA 2002:

16th Systems Administration
Conference

Philadelphia, Pennsylvania, USA
November 3–8, 2002

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Process Monitor: Detecting
Events That Didn’t Happen

Pp. 145-154 of the Proceedings of LISA ’02: Sixteenth Systems Administration Conference
(Berkeley, CA: USENIX Association, 2002).

Jon Finke – Rensselaer Polytechnic Institute

ABSTRACT

The successful operation of a large scale enterprise information system relies, in part, on the
regular and successful completion of many different tasks. Some of these tasks may be fully
automated, while others are done manually. One of the challenges we face is detecting when one
of these tasks fails (often silently) or is forgotten. While you will eventually learn of these
omissions, it is much better to have the system detect them rather than your users! This paper
discusses how we implemented a system that watches what we do and reminds us when we (or our
computers) forgot to do something.

Introduction

Inspector Gregory: ‘‘Is there any other point to
which you would wish to draw my attention?’’

Holmes: ‘‘To the curious incident of the dog in
the night-time.’’

‘‘The dog did nothing in the night-time.’’
‘‘That was the curious incident,’’ remarked Sher-

lock Holmes.
From The Adventure of Silver Blaze by Arthur

Conan Doyle.

At Rensselaer, we manage many of our system
and site administration tasks1 with an Oracle database.
For example, we take a data feed from Human
Resources to automatically create and expire
Unix/email and Windows 2000/Exchange accounts.
One aspect of this is that we have many tasks, some
run via cron and other scheduling mechanisms, and
others run by hand on a regular basis. These tasks gen-
erate configuration files [7], [3], web pages (phone
directory) [5], process accounting and billing records,
update the Active Directory server, and many other
things.

One of the problems that we face is knowing
when something that is supposed to happen did not.
This may be due to a transient file server failure, con-
figuration problems, the failure of a daemon, or sim-
ply someone forgetting to do some periodic, yet infre-
quent task. There are a number of monitoring and log-
ging tools available, from those built into systems
such as syslog and programs to help process logs such
as Swatch [10]. There are also tools that monitor net-
work traffic and system activity such as Peep [9] and
others. In general, however, all of these systems are
looking for things that are happening but, like Sher-
lock Holmes, we are interested in those things that did
1Originally, I was calling tasks ‘‘processes,’’ but this was

causing some confusion on the part of some readers with
Unix (or other system) processes. There are still many refer-
ences to ‘‘process’’ in table and function names, but the in-
tention is to refer to a ‘‘task.’’

not happen. An earlier project to monitor workstation
usage patterns [4] briefly discussed detecting failed
workstations by a lack of usage data, but was not pur-
sued. Some other projects to measure system perfor-
mance via statistical analysis [11, 2] don’t really apply
to very low frequency events.

One of the things that I wanted to avoid was
writing and maintaining lots of configuration files.
Instead, I wanted tasks to report in to a central server
when they completed successfully, and then have a
nice interface to identify new tasks and quickly set the
frequency at which they should reoccur. After that, I
don’t want to have to think about that particular task
again. Given our heavy use of Oracle in maintaining
our system, and that many of the things I was inter-
ested in monitoring were already accessing Oracle, an
obvious approach for me was to use the database for
all of the heavy lifting.

Task Monitor

With that, the Task Monitor project was born.
When I use the term ‘‘process,’’ I am not referring to a
Unix process, but rather a specific task such as ‘‘load
printer accounting records,’’ ‘‘update online directory
files,’’ ‘‘propagate password changes to Windows,’’
[8], etc. These may actually be an Oracle job, or part
of a job, or a script run out of cron, or even something
running on a Windows server.

The information on a task is stored in an Oracle
table with the name Process_Monitor. The description
of this table is broken up into several parts and is
included in the appropriate section of the paper. In
Figure 1, we have the rough architecture of the Task
Monitor system. At the center of things is the
Task_Monitor package, which acts as an interface
between the different tasks and the Process_Monitor
database table (labeled Task_Monitor in the diagram).
Tasks communicate via a number of different meth-
ods. Some, such as the Student Upd package, are run-
ning on the oracle server and communicate directly.

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 145

Process Monitor: Detecting Events That Didn’t Happen Finke

Others, such as the Generate_File based modules, con-
nect via SQL*NET. We may also add other interfaces
such as syslog or SNMP.

Figure 2: Main web page.

Figure 1: Task monitor architecture.

We also have different ways of getting informa-
tion out of the Task Monitor system. A program on the

database machine generates email notifications and
sends them to interested parties. We also connect via a
secure web server for administrative purposes.

Administrative Interface

One of the key parts of this system is the admin-
istrative interface, which allows us to set the options
for each task. This is implemented via a secure web
server.

In Figure two, we have a screen capture of the
main web page for the Task Monitor system. This
allows you to display different sets of tasks. You select
the things you are looking for, and press the ‘‘LIST’’
button. All of the attributes are combined, so the more
you select, the more restricted the selection. The first
option is to find late or ‘‘not late’’ tasks. Next, you can
select the family from the pull down list. There is a
also a special ‘‘NONE’’ entry that will limit the results
to those tasks that are not in a family. You can also
select based on those tasks with or without a run delta
or schedule, and those tasks that are marked as inac-
tive. Finally, you can restrict the tasks to just those
owned by you. (This is run as an administrator; less

146 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

Finke Process Monitor: Detecting Events That Didn’t Happen

privileged users will just get their own tasks.) A sam-
ple of this list can be seen in Figure seven.

Figure 3: Sample task web page.

In Figure three, we have a sample web page of
the ‘‘Logins-Oracle IDs’’ task. The objective of this
task is to create Oracle accounts based on changes in
the Logins table. This task is considered part of the
‘‘daily run,’’ a set of activities performed by our User
Services staff. From this page, we could move the task
to another family using the pull down list, or create a
new family by entering the name in the ‘‘New Fam-
ily’’ box. (This box does not appear if you are not an
administrator; you are limited to existing families.) In
this case, we don’t care what system this task runs on,
only that it is run; so we leave the ‘‘System’’ box
empty. The person who normally does this task is Judy
Shea, so we have listed her as the owner. If we wanted
to let other folks know if this task was late, we could
provide a list of email addresses in the ‘‘Contact List’’
box. The next thing we can specify is the ‘‘Run
Delta,’’ which is specified as DAYS HOURS:MINS:SEC.
In this case, we want this to be run every 28 hours
(one day and four hours). This gives Judy a little bit of
flexibility in when she does the actual run. The
‘‘Notify Delta’’ is like specified like the ‘‘Run Delta’’
and controls how frequently we report a missed task.
Lastly, we can mark as task as inactive, which turns
off all notification.

The next part of the page reports on information
collected at the last run. The ‘‘Next Run’’ is the time

and date when we next expect this task to be run. If
that time was passed, this would be in bold face and
be marked as late. (This is only set if there is a ‘‘Run
Delta’’ set.) The ‘‘Last Run,’’ which is always avail-
able lists the time and date of the most recent run. Cur-
rently, the only way to get a task into the system is to
run it, so there is always a ‘‘Last Run’’ entry. Next up
is when we last notified someone about a late process,
and when we expect to send the next notification
(assuming a run has not been completed.) There is
also space for a free format comment on the task.

When a run is recorded, the system attempts to
capture the host OS username and the hostname.
There is also an option when recording a task to
include a comment; this is task specific. We also
record the Oracle user and what Oracle package made
the call.

Identifying a Task

A lot of the tasks we are interested in monitoring
are site wide. For example, the process that regener-
ates the directory web pages only needs to run on a
single system and write a file into our central file
server. There is no need to run it on each of our pro-
duction web servers, as they all use the same central
file server. In other cases, however, we want to be sure
that each server is reporting in. An example of this
would be the process that collects the printer account-
ing logs. We want to ensure that each print server is

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 147

Process Monitor: Detecting Events That Didn’t Happen Finke

reporting its activity on a regular basis. It may also be
useful to identify the user that is running the process.

For the purposes of this project we identify a pro-
cess by a process name and the system on which it
runs. In this way, if the same process runs on two dif-
ferent machines, it will be considered two different
tasks for the purposes of monitoring. This has not been
a problem with the site wide tasks, as they are generally
run via cron or some other trigger on a single desig-
nated machine and by the same user (daemon or equiva-
lent). Since most of the testing and development takes
place on a different machine, this isolates the develop-
ment and test runs from the production runs. We also
record the name of the person who ran the task, but this
is currently not used to distinguish tasks.

Name Type Size Description
Entry_Id Number A unique key to identify this record.
Name varchar2 32 The name or external identifier for this process.
System_Id Number The unique identifier of this system in the hostmaster and service

database.
Run_Host varchar2 128 The hostname where this last ran. Useful when the System_Id can not

be determined.
Run_User varchar2 32 The name of the host system user who ran the process (if available).

Table 1: Process_Monitor table – identification.

Name Type Size Description
Family varchar2 32 An identifier used to group tasks for display and reporting.
Owner Number The internal identifier of the person who ‘‘owns’’ this process.
Service_Id Number The internal identifier of the service (see ServiceTrak) that this process

supports.
Run_Delta Number The maximum allowable time in seconds between the last run and the

next run of this process.
Run_Schedule varchar2 128 A crontab format schedule.
Inactive varchar2 1 A flag indicating that the current entry is inactive and should be ig-

nored.

Table 2: Process_Monitor table – parenting.

Name Type Size Description
Oracle_User varchar2 32 The name of the oracle user. This is always available.
Proc_Name variable 65 The name of the oracle procedure that logged this run.
Last_Run_Time Date The time and date when this process last ran.
Next_To_Last_Run_Time Date The previous value. Useful in calculating the spacing between runs.
Next_Run_Time Date The date and time when we next expect to see this run. This is the key

trigger for notification.
Run_Comment varchar2 255 An optional comment set by the caller that will be displayed in status

messages. Unlike the Error_Flag, this does not trigger notifications.

Table 3: Process_Monitor table – reporting.

Parenting a Process

In order to help with sorting and grouping, each
process can be assigned to a ‘‘Family.’’ These are gen-
eral categories such as ‘‘Accounting,’’ ‘‘Daily Run,’’
‘‘File Gen,’’ etc. When a new process is entered, it
will not have a family assigned to it. This works well,
as the administrative web tool can display all tasks in

a family, or those without a family. This provides a
quick and easy way to identify new tasks.

When we encounter a new process, we assign it
an owner and a family. We can also link it to a service
in our ServiceTrak [6] so a the page displaying service
information can also include details on some of these
tasks. Once a process has an owner, that owner can
use the same web tool to finish the setup by assigning
a run delta or schedule, or just marking it as inactive.

Reporting a Task

The first challenge of this project was to find
ways for tasks to report that they ran. When a process
reports in via one of the methods described below, we
first see if we have an existing process record. If not,
we create a new one; otherwise, we update some of
the information and, if there is a run schedule or delta,
we then calculate the next run time and save the
record. If there were previous error conditions, we
clear them as well.
Direct PL/SQL Procedure Call

A number of the tasks that we want to watch are
written entirely in PL/SQL and are run on the database

148 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

Finke Process Monitor: Detecting Events That Didn’t Happen

machine. For example, we have a routine that we run
daily to compare the Simon Banner_Students table with
the student base table (SGBSTDN) on our administra-
tive machine. This is typical of many similar routines,
and it has two optional parameters, a Target_PIDM
which allows us to update a record for a specific per-
son, and a StopCount which stops the update after a set
number of records (this is handy for debugging).
When neither parameter is set, we want to record the
fact that the routine ran to completion.

procedure Sgbstdn_Full(Target_Pidm in number,
stop_count in number)

is
Banner Sgbstdn_Scan_Curs%RowType;
Simon Simon_Scan_Curs%RowType;
Act_Cnt number := 0;

is
Open Sgbstdn_Scan_Curs(Target_Pidm); -- Full scan if NULL
Open Simon_Scan_Curs(Target_Pidm); -- Ditto
loop

... (Details of processing omitted)

exit when Act_Cnt > Stop_Count;
end loop;
close Sgbstdn_Scan_Curs;
close By_Pidm_Curs;

if Act_Cnt > Stop_Count
then

dbms_output.put_line(’Stopped due to stop_count’);
elsif Target_Pidm is null
then

Record.Mark_Proc(Target_Name => ’Student-Sgbstdn’,
Procedure_Name => ’BStudent_Maint’);

end if;
end Sgbstdn_Full;

Figure 4: Recording run from a PL/SQL procedure.

In Figure four, we have a code segment of the
routine that checks the student base table on Banner
(our student record system) and updates the Simon
student table. The two cursors are written so that if
they are opened with a value for the PIDM, they will
return just the single record for that person; otherwise,
they will return a full set of records. There is also an
option to stop after a set number of rows. Once the
loop is complete, and if we did not exit due to the stop
count, and we were not doing the check on behalf of a
specific individual, we will record this run using the
Process_Monitor_Record.Mark_Proc procedure. This pro-
cedure will obtain the user, hostname, and other infor-
mation from the database environment. The only thing
we need to give it is the task name (Target_Name) and
the name of the current package. In this way, when-
ever we do the general update, it will record the fact
that it ran; it doesn’t matter how we did it.

Generate_File Definition

A number of the tasks that we want to watch are
run via our Generate_File system (described in the
LISA 2000 Proceedings). These tasks are generally
reading or writing files, using stored procedures in the

database. When we develop a new file target, we store
the PL/SQL source code in a file, and read that into
the database using SQL*PLUS.2 At the end of this file,
we include a block of PL/SQL to register the new tar-
gets with the system. This is done with a procedure
called Add_Target_Simple or Add_Target_Complex.3

In Figure five, we have a fragment of the file
used to generate some web pages documenting our
network routers and subnets. In the package, we
define some entry points that will be called by the
Generate_File system. At the end of the sample, we
register three things: a simple target (web_routers) that
will call the Get_Router_Html routine to generate a list
our our routers into the primary_routers.html file, a com-
plex target that will generate a set of files based on
Get_Network_List routine, and, finally, a special target,
Add_Process_Record, that will record the fact that the
first two entries have been executed and have com-
pleted. This last routine makes it trivial to record the
completion of any Generate_File run by simply adding
the Generate_File.Add_Process_Record to the end of the
registration statements.4 This has the added advantage
of not having to modify the source code that doing the
direct PL/SQL call would require.

The Add_Process_Record routine actually calls
the Add_Target_Simple routine to register a special
2SQL*PLUS is a command line interface to Oracle. One of

the options is to read from a file and pass the information to
Oracle for processing.
3Since the original paper, we have added several other

kinds of targets in addition to these.
4The Generate_File registration routines will default to the

target name specified in earlier calls if not provided on later
calls.

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 149

Process Monitor: Detecting Events That Didn’t Happen Finke

target that just records the fact it was called, and exits
after writing a few lines to stdout. Since it is called
from within the Generate_File environment, it can get
all of the information it needs for recording from that,
and we don’t need to pass in any parameters. It also
prepends GENERATE_FILE- to the target name to come
up with the name to record.

define name=GENERATE_NETWORK_LIST
prompt Create Package &NAME
Create or Replace Package &NAME as
--
-- Generate web pages documenting our network.
-- Define the standard interface
procedure Get_Network_List(Fname out varchar2, Dbmsout out varchar2);
Procedure Get_Router_Html(result out varchar2, p1 in varchar2, p2 in varchar2);
Procedure Get_Subnet_Html(result out varchar2, p1 in varchar2, p2 in varchar2);

... Package definition omitted

end &NAME;
/
begin
Generate_File.Add_Target_Simple(

target => ’web_routers’,
filename => ’primary_routers.html’,
get_data_rtn => ’&name..Get_Router_Html’);

Generate_File.Add_Target_Complex(
get_attr_rtn =>’&NAME..Get_Network_List’,
get_data_rtn =>’&NAME..Get_Subnet_Html’);

Generate_File.Add_Process_Record;
end;
/

Figure 5: Recording Run from a Generate_File target.

#!/bin/sh
#
Script to Generate /etc/printcap
#
FILE_GEN=/campus/rpi/simon/directory/2.0/@sys/bin/Generate_File
PCAP_GEN=/campus/rpi/simon/printmaster/1.0/@sys/bin/etcprintcap
#
if [-x $PCAP_GEN]; then

$PCAP_GEN
if [$? -ne 0]
then

echo "Error in printcap generation!!!!!"
exit 1

fi
$FILE_GEN -target Record_Process -par2 Printcap

fi

Figure 6: Recording run from a generic Generate_File target.

Special Generate_File Target
We still have tasks that we are interested in watch-

ing that are not written in PL/SQL or using Gener-
ate_File. These might be older file generation programs,
or just shell scripts run out of cron. The Generate_File
program has the ability to pass a parameter to the pro-
cessing routine. We combined this, with a variant of the
previous routine to have a new Generate_File target that
will record anything, with a prefix of MANUAL-.

In Figure six, we have a simple shell script that is
run from cron to generate the /etc/printcap file for our

system. Assuming that the program exists, and runs
successfully, we then call Generate_File with the target
Record_Process to record the completion of the task
MANUAL-Printcap.

Notifications

Although it is all well and good for the database
to know when a process is overdue, we really need
some way of letting the appropriate people know
about this. It is important, however, that the mecha-
nism used is appropriate for the type of failure and the
urgency of the process. For example, when the process
feeding password changes into our Active Directory
server fails, we want to get the service restored within
minutes. But if the billing run for our backup service
is a day late, it isn’t a major problem; we normally run
this two or three times a year.

Most of the tasks we are monitoring run once or
twice a day. As a result, we are currently only

150 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

Finke Process Monitor: Detecting Events That Didn’t Happen

checking for ‘‘late’’ tasks a few times a day, generat-
ing a report, and mailing it to interested parties. At
present, we don’t have anything in place to escalate a
problem that has not been repaired in a timely fashion.
So far, the notifications are unique and infrequent
enough that they are not ignored.

Name Type Size Description
Contact_List varchar2 128 A list of email addresses to contact when problems are detected.
Error_Flag varchar2 128 An optional error message set by the process. Results in immediate no-

tification.
Notify_Delta Number The minimum time in seconds between notifications when an error has

been detected.
Last_Notify_Time Date The time and date when notification was last attempted.
Next_Notify_Time Date The time and date when notification will next be attempted if a success-

ful run has not occurred.

Table 4: Process_Monitor table – notifications.

Figure 7: Sample ‘‘late’’ message.

In Figure seven, we have a notification email
from the system. This is actually sent as an HTML
page, instead of a plain text message. While this might
be annoying to some, I already had the code to gener-
ate the late list as a web page in the administrative
tool, and I just had to wrap it in a call for Gener-
ate_File. This has the added advantage that the buttons
visible on the email message are fully functional, in
that I can press one and see the detailed information
for that task. In this case, I have three tasks that are
late, printing and disk billing (that was desired actu-
ally, as we were deferring some revenue to the new
fiscal year) and the Generate_File run that produces our
Building Directory web pages. In this case, the normal
run had failed due to the administrative database being
down for a backup.

Conclusions

The Task Monitor tool has proven to be very useful
in detecting things that should be happening and failed
for some reason. This is especially useful for the infre-
quent jobs that are easy to forget. Because it is so easy
to add monitoring to existing tasks, the number of
things that we watch has grown quickly.

Existing Limitations
Not all aspects of the original design have been

implemented. At present, we are only checking for
‘‘late’’ processes twice a day. Before we can make this
a more frequent occurrence, we need to implement the
notification limits. While it may be useful to check for
late processes every two minutes, I don’t want to get
an email every two minutes when a monthly task is a
day late.

Another part we have not implemented is dealing
with non regular, but recurring schedules. A number of
our business applications do not run on the weekends.
The intention to handle these would be to support cron
style schedules, and figure the next run time based on the

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 151

Process Monitor: Detecting Events That Didn’t Happen Finke

cron format schedule plus the run delta. This would also
make it easier to handle manual operations that we
expect to be done each business day. This still does not
handle holidays; this needs some more thought.

Future Directions
All of the tasks we are currently monitoring with

this system are either directly accessing the database,
or have the Generate_File program available. However,
in order to help track activity on other (Unix) systems,
a syslog or SNMP interface to allow other things to
occasionally report in might be very useful.

As the number of system specific tasks, such as
the last run of CFEngine [1] on a machine, grows, some
automatic classification and run delta assignment would
remove the bottleneck of having to assign an owner,
family, and schedule information for each new service.
The ability to designate a particular task entry as a
‘‘ p r o t o t y p e ’’ for new tasks of the same name and differ-
ent system identifier would make this very easy.

Other notification methods need to be explored.
The ability to generate syslog or SNMP messages and
direct them to other monitoring tools could be very
useful. This could in turn generate pages, or be
directly incorporated into this system.

Another extension to this project is as basic
reminder system. This would just require a tool to
manually enter a new process, and directly set the
Next_Run_Time value. This might be used to remind
people to reset annual allocations or renew licenses
and service contracts.

We also have a number of tasks that are started
on response to some user request, such as a quota
change request. One approach would be to have the
request also set the ‘‘next run’’ time for the quota
change task. However, this approach might run into
problems if people keep making new requests before
the timeout is detected. A different approach is to be
able to make periodic ‘‘empty’’ requests that will
require that the task finish all queued work. Both
options need some consideration.

Several of our file generation scripts are run out
of cron. These are basically shell scripts that run the
Generate_File program with different targets. Some-
times one or more of these will fail, possibly due to a
server being down, or PL/SQL packages that need to
be recompiled. One possible approach would be to add
a ‘‘rerun’’ flag to the shell script that would be passed
to the Generate_File program. If set, another special
target could be added that would have Generate_File
skip the run if the target was not late. With this, if
there were some problems, a person could just run the
shell script with the ‘‘rerun’’ flag, and only those tar-
gets that were late would get regenerated.

References and Availability

All source code for the Simon system is avail-
able on the web. Please refer to the following URL for

details: http://www.rpi.edu/campus/rpi/simon/README.
simon .

In addition, all of the Oracle table definitions as
well as PL/SQL package source are available at http://
www.rpi.edu/campus/rpi/simon/misc/Tables/simon.
Index.html .

Although this is implemented in Oracle as part of
the Simon system, there is very little that requires
Simon or even Oracle. Just about any relational
database would be able to handle the moderate pro-
cessing and database needs for this system. Given our
starting point, most of our examples are deeply tied to
Simon, but with alternate interfaces such as syslog and
snmp, there is no reason why this could not be
deployed without Simon or Oracle.
Acknowledgments

I would like to thank Marcus Ranum for is shep-
herding of this paper, as well as Deb Wentorf for her
proofreading and editing. I also want to thank Rob
Kolstad for his excellent (as usual) job of typesetting
this paper.
Author Biography

Jon Finke graduated from Rensselaer in 1983,
where he had provided microcomputer support and
communications programming, with a BS-ECSE. He
continued as a full time staff member in the computer
center. From PC communications, he moved into
mainframe communications and networking, and then
on to Unix support, including a stint in the Nysernet
Network Information Center. A charter member of the
Workstation Support Group he took over printing
development and support and later inherited the Simon
project, which has been his primary focus for the past
11 years. He is currently a Senior Systems Program-
mer in the Networking and Telecommunications
department at Rensselaer, where he continues integrat-
ing Simon with the rest of the Institute information
systems. When not playing with computers, you can
often find him building or renovating houses for Habi-
tat for Humanity, as well as his own home.

Reach him via U. S. Mail at RPI; VCC 319; 110
8th St; Troy, NY 12180-3590. Reach him electroni-
cally at finkej@rpi.edu. Find out more via http://www.
rpi.edu/˜finkej.

References

[1] Burgess, M. ‘‘A Site Configuration Engine,’’
Computing Systems, 8(1):309, MIT Press, Winter
1995.

[2] Burgess, M., ‘‘Theoretical System Administra-
tion,’’ The Fourteenth Systems Administration
Conference (LISA 2000), p. 1, USENIX, Decem-
ber 2000.

[3] Finke, Jon, ‘Automating Printing Configura-
tion,’’ USENIX Systems Administration (LISA
VIII) Conference Proceedings, pp. 175-184,
USENIX, September 1994.

152 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

Finke Process Monitor: Detecting Events That Didn’t Happen

[4] Finke, Jon, ‘‘Monitoring Usage of Workstations
With a Relational Database,’’ USENIX Systems
Administration (LISA VIII) Conference Proceed-
ings, pp. 149-158, USENIX, September 1994.

[5] Finke, Jon, ‘‘Institute White Pages as a System
Administration Problem,’’ The Tenth Systems
Administration Conference (LISA 96) Proceed-
ings, pp. 233-240, USENIX, October 1996.

[6] Finke, Jon, ‘‘Automation of Site Configuration
Management,’’ The Eleventh Systems Adminis-
tration Conference (LISA 97) Proceedings, pp.
155-168, USENIX, October 1997.

[7] Finke, Jon, ‘‘An Improved Approach to Generat-
ing Configuration Files from a Database,’’ The
Fourteenth Systems Administration Conference
(LISA 2000), pp. 29-38, USENIX, December
2000.

[8] Finke, Jon, ‘‘Embracing and Extending Windows
2000,’’ The Sixteenth Systems Administration
Conference (LISA 2002), USENIX, November
2002.

[9] Gilfax, M. and Alva Couch, ‘‘Peep (The Net-
work Auralizer): Monitoring Your Network with
Sound,’’ The Fourteenth Systems Administration
Conference (LISA 2000), p. 109, USENIX,
December 2000.

[10] Hansen, Stephen E. and E. Todd Atkins, ‘‘Auto-
mated System Monitoring and Notification with
Swatch,’’ USENIX Systems Administration (LISA
VII) Conference Proceedings, pp. 145-156,
USENIX, November 1993.

[11] Hoogenboom, P. and J. Lepreau. ‘‘Computer
System Performance Problem Detection Using
Time Series Models,’’ USENIX Systems Admin-
istration (LISA VII) Conference Proceedings, p.
15. USENIX, November 1993.

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 153

154 2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA

