USENIX Association

Proceedings of the
LISA 2001 15" Systems
Administration Conference

San Diego, Cdlifornia, USA
December 2—7, 2001

USENIX
SAGE

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Dynamic Sublists: Scaling
Unmoderated Mailing Lists

Ellen Spertus — Mills College
Robin Jeffries — Sun Microsystems, Inc.
Kiem Sie — Mills College

ABSTRACT

Unmoderated electronic mailing lists suffer from the paradox that the more successful they
are, the more difficult they are to use and administer because of the increasing number of users and
discussions. Traditional solutions to this problem, such as creating static sublists or providing a
Web interface, are not always desirable. We discuss the problems with traditional solutions and
present dynamic sublists, an approach to scaling online communities that increases communication
opportunities without overwhelming users or administrators. We have built a system, Javamlm,
implementing dynamic sublists, and report on its implementation, use, and future.

Motivation

Systers [2] is an unmoderated email list for
women in computer science, originally created in
1987 for 12 women. The list has been tremendously
successful at creating a community for people who
had previously felt isolated and has grown to include
over 2300 members in 38 countries. As Systers has
grown, however, it has lost hundreds of members,
especially senior women, because of the increased
message volume that has come with increased mem-
bership. Additionally, members have felt less free to
post to the entire list, instead responding directly to
the sender of a message or not at all, reducing the
sense of community and the utility of the list. Our goal
is to provide a better format for such a large commu-
nity than an unmoderated email list, while keeping the
features that make Systers successful.

Rejected Alternatives

A common general solution to heavy volume on
mailing lists is moderation, which can be performed
top-down by a small set of administrators or bottom-
up through collaborative filtering. While the most
obvious cost of moderation is the human overhead
required, a more fundamental problem is that modera-
tion schemes limit diversity through the “tyranny of
the majority.” A topic of little interest to the majority
may be of great interest and value to a minority. A bet-
ter scheme (which we describe below) would allow
users to customize which messages they see.

A conventional alternative to moderation is the
creation of static sublists interested in particular
subtopics. For Systers, there could be technical groups
focused on Web design, groups discussing how to best
deal with maternity leave, or support groups for pre-
tenure academics. However, while an individual Sys-
ter may not be interested enough in maternity leave to
join a group that discusses that exclusively, part of
what members find valuable is hearing about other

2001 LISA XV — December 2-7, 2001 — San Diego, CA

women’s issues in a wide range of areas (especially
ones that might affect her in the future). Thus, com-
pletely eliminating the sharing of information about
maternity leave with the broader group lessens the
value of the list. In the limit, there would be no com-
mon discussion among the entire group, just a vast
collection of special interests. For these reasons, we
rejected the idea of relying primarily on static sublists.

The most obvious way to support customized
views is to go to a Web-based, newsgroup-like format,
where Systers can browse the topics that interest them.
Because it is not email-based, this solution would be
unacceptable to many long-time Systers, who have
expressed a preference for email, as well as to mem-
bers in poorer countries with less Internet connectiv-
ity. It also removes the immediacy of the information,
since most Systers would check the website at most
daily or weekly, which would change the feel of the
community.

Our Approach

We have a solution that we believe meets many
of our design goals: dynamic sublists, which are simi-
lar to Usenet threads. Members are able to easily cre-
ate, subscribe to, or unsubscribe from dynamic sub-
lists. The opening message of a dynamic sublist is sent
to all members. When a member signs up for Systers,
she specifies whether she wants to see all messages or
only the first message of each thread (a less precise
but more user-friendly synonym for “dynamic sub-
list””). The default behavior is for users to be sub-
scribed to all threads in order to mimic the behavior of
the current system. Users may also specify whether
they prefer to receive messages as plain text or as
html.

Threads could exist for a limited period of time
or be permanent. Under the current system, a volun-
teer collects job listings and posts them to the list once
per week. She also forwards them immediately to

21

Dynamic Sublists: Scaling Unmoderated Mailing Lists

Systers who are looking for employment. Having a
systers-jobs thread would eliminate the human admin-
istration costs while increasing functionality. An indi-
vidual could specify any of the following behaviors:

¢ Receiving each job posting immediately

e Receiving digests of job listings on a daily,

weekly, or monthly basis

¢ Never seeing job listings
At any time, she could change her preference without
going through a human administrator.

Implementation

We have built a prototype, the Java Mailing List
Manager (Javamlm), which implements dynamic sub-
lists. Figure 1 shows the structure of the system. Infor-
mation about users, threads, and messages is kept in a
relational database. We are currently using Postgres as
our database management system.

Our mail transport agent (MTA) is qmail, which
has support for user-controlled mailing lists. Specifi-
cally, when incoming mail contains a hyphen in the
local portion of the address (e.g., systers-sub-
scribe@javamlm), the string before the hyphen is
interpreted as the username, and the string after the
hyphen is handled as specified by the user. In the case
of Javamlm, qmail the message is piped to a Java pro-
gram, which handles it as appropriate.

We have also built a Web interface to the
database for wusers and administrators using
AOLserver and Tcl. All of these tools are open source,
which will allow us to release the entire package as
open source.

Schema

The database schema is shown in Figure 2. The
Subscriber relation contains information about each indi-
vidual subscriber, such as name, email address, preferred
message format (plain text or html), and whether or not
to be subscribed to new threads. The Thread relation
contains information about each thread, including a

Spertus, Jeffries, and Sie

unique name and a reference to the initial message,
which is represented in the Message relation, which
stores meta-data about each message.

Because the Thread and Message relations refer-
ence the Subscriber relation, we cannot delete a record
from Subscriber if a user unsubscribes. Instead, Sub-
scriber has a boolean field, deleted, which is set to true
if a user unsubscribes, inhibiting message delivery.

When a new thread is begun, the initial message
is sent to all current subscribers. The SQL query is:
SELECT text_format, email
FROM Subscriber
WHERE deleted = FALSE

Subsequent messages within a thread are only
sent to members who have expressed a desire to see
them. A user’s default preference for new threads is
represented in Subscriber.preference. A value of 0
means ‘“‘not subscribed to new threads,” while 1
means ‘“subscribed to new threads.”! To honor a
user’s default preference, the SQL query for subse-
quent messages within a thread would be:

SELECT text_format, email, preference
FROM Subscriber

WHERE deleted = FALSE

AND preference = 1

The Override relation is used when a subscriber
wants to override his or her ordinary preference for a
specific thread. For example, if subscriber 99 ordinar-
ily does not receive subsequent messages in threads
(Subscriber.preference = 0), the following entry in the
Override relation would indicate that she wishes to
receive all messages in thread 157:

subscriber id | thread id | preference
99 157 1

Similarly, an Override.preference value of 0 indicates

"We chose to use an integer, rather than a boolean, repre-
sentation, for expandability.

() Camr
(e

! i aolserver

Diata storage
File systermn
Databasze
mess age
subscriber info by
inf mess age
meszdge info bodv
carners ation info MEess age
brcuihy

Figure 1: The structure of the system. Protocols are shown in arrows, processes in ovals, and store data in the box
on the right. AOLserver and qmail are preexisting software packages. The authors’ contributions are Javamlm,
which provides mail-based access to the system and the tcl code, which is used for http-based access.

212

2001 LISA XV — December 2-7, 2001 — San Diego, CA

Spertus, Jeffries, and Sie

that a subscriber does not want to see further messages
in a thread.

This is the complete SQL query to determine to
whom a subsequent message in thread 37, for exam-
ple, should be sent:

SELECT text_format,
FROM Subscriber
WHERE deleted = FALSE AND
((Subscriber.preference = 1 AND
NOT EXISTS
(SELECT * FROM Override
WHERE Override.subscriber_id =
Subscriber.subscriber_id
AND Override.thread_id = 37
AND Override.preference = 0))
OR

email

Dynamic Sublists: Scaling Unmoderated Mailing Lists

(Subscriber.preference = 0 AND
EXISTS
(SELECT * FROM Override
WHERE Override.subscriber_id =
Subscriber.subscriber_id
AND Override.thread_id = 37
AND Override.preference = 1))

)

Messages

The bodies of messages are stored as regular files
rather than in the database for the following reasons:
e Messages’ highly variable size makes database
storage awkward or inefficient.
¢ Locked access to messages is not needed, because
messages are written once and never modified.

Subscriber
field type notes sample value
subscriber_id INTEGER primary key 10328
email VARCHAR(255) “borg@iwt.org”
firstname VARCHAR(16) “Anita”
lastname VARCHAR(16) “Borg”
preference INT2 Subscribed to new threads? 0 (no) 1 (yes)
format INT2 Format to receive messages 1 (ASCII) 2 (HTML) 3 (both)
password CHAR(16) encrypted FS9 eA%06
deleted BOOLEAN Has user unsubscribed? false
Thread
field type notes sample value
thread_id INTEGER primary key 157
thread name CHAR(16) unique fellowships51
sender id INTEGER Person.subscriber id 10328
base message id | INTEGER Message.message id 12000
subject VARCHAR(255) | Subject of initial message “AAUW fellowships”
0 (new) 2 (closed)
status INT2 Status of thread 1 (in progress) 3 (perpetual)
parent INTEGER Thread.thread id, can be null | null
Message
field type notes sample value
message id INTEGER primary key 12000
sender_id INTEGER Person.subscriber_id 10328
thread id INTEGER Thread.thread id 157
Override
field type notes sample value
subscriber_id INTEGER Person.subscriber id 10328
thread id INTEGER Thread.thread id aauw23
preference INT2 Only used to override default
subscriber preference 0
(subscribed) 1 (unsub-
scribed)

Figure 2: Database schema. The Subscriber relation contains information about each individual subscriber, such as the

email address and whether or not to be subscribed to new threads. The Thread relation contains information about a
given thread. Meta-data about a message is stored in the Message relation; the actual body is stored separately in a file.
The Override relation is used when a subscriber wants to override his or her ordinary preferences for a specific thread.

2001 LISA XV — December 2-7, 2001 — San Diego, CA

213

Dynamic Sublists: Scaling Unmoderated Mailing Lists

¢ The file system provides an easier interface than
the database for separate programs to access
archived messages.

Javamlm accepts messages formatted as plain
text, html, or both (through MIME multipart). Every
message is converted, if necessary, to each of these
formats, so users can receive messages in the format
they prefer. Html is converted to text by the Lynx
browser, which provides a command line option
“-dump” for this purpose. Conversion from plain text
to html is done through a modified version of the Perl
script otxt2html, written by Ola Lundqvist [11]. Once
converted, the messages are stored to disk. For exam-
ple, the body of message 120 to Systers would be
stored in the files:

¢ “systers/javamlm/archive/120.text-plain
¢ “systers/javamlm/archive/120.text-html

MIME-compliant messages are assembled
through calls to the javax.mail package. To accommo-
date all of the users’ preferences, up to six different
messages are created: in each of the three formats
(text/plain, text/html, and multipart) and with two dif-
ferent footers (unsubscription and subscription infor-
mation), which are described more in the next section.

The program iterates through each of the sub-
scribers, choosing the correct message format, speci-
fying the email address, and creating a variable enve-
lope return path (VERP). VERPs, invented by Dan
Bernstein, automate matching bounced emails with
subscriber addresses [2]. For example, a message to
ada@lovelace.com on the Systers list would have a

Spertus, Jeffries, and Sie

VERP of systers-error-ada=lovelace.com@javamlm.
mills.edu. This is placed in the SMTP “From” field
[9], which instructs mail transport agents (MTAs)
where to send error messages. No matter how many
times the message is rerouted through *“.forward™ files
and other mechanisms [15], if it eventually bounces,
the subscriber information will be intact, allowing the
subscriber to be retried or unsubscribed. Note that
message headers [12] are not personalized for each
subscriber, only SMTP headers [9], minimizing the
per-subscriber overhead.

User Interface

Figure 3 shows the Web form for joining a list.
Other forms allow users to change their membership
options and allow the administrator to access and
modify members’ settings. Web access is password-
protected, using cookies. Currently, messages cannot
be sent or viewed through the Web.

Users’ primary method of access is through
email. A member of Systers creates a new thread by
sending the introductory message to systers-
new@javamlm.mills.edu. Alternately, if she wishes to
name the thread “fellowships,” for example, rather
than having a system-assigned name, she would send
her introductory message to systers-new-fellow-
ships@javamlm.mills.edu. All members would then
receive the first message in this new thread. Figure 4
shows a sample message as it appears to the sender
and an html-enabled recipient. Note that a number has
been appended to the thread name, “fellowships,” to
make it unique.

b
w
Add subscribers to systers
Email address: EI
First name: ,I
Family name: il
Password: I
Subscription
preference: " Not subscribed to new threads
What does this & Subscribed to new threads
mean? ||
Text format: & plan
What dees this .r hitral
e’ | € both
Subscribe |
e b 2 Eal | Document: Done (0,201 secs) '

ol

Figure 3: Sign-up screen.

214

2001 LISA XV — December 2-7, 2001 — San Diego, CA

Spertus, Jeffries, and Sie

If a recipient wishes to reply to the sender, she
uses her MUA’s? “reply” function. If she wishes to
contribute to the thread, she uses the “reply-all” func-
tion.

Unless a recipient specifies otherwise, her
default preference (e.g., “view all messages in new
threads’”) would be in effect for subsequent messages
in the new thread. There are two ways of overriding
her default preference, by email or through the Web.
As Figure 4 shows, instructions for unsubscribing
from the thread appear at the bottom of the message to
users who are by default subscribed. Similarly, if a
user is by default not subscribed to new threads,
instructions for subscribing are included.

Unsubscribing by email takes at least two steps:
activating the embedded mailto link (e.g., mailto:sys-
ters-unsubscribe-fellowships51@javamlm.mills.edu)
and confirming to the MUA that the email should be
sent. (As RFC 2368 points out, it would be insecure
for a MUA not to require user confirmation [7].) To
minimize the number of required user actions, we also
provide in each message a Web interface for overrid-
ing one’s default preference, as shown in Figure 4
(e.g., http:/javamlm.mills.edu/scripts/override?list-
name=systers&thread=157&preference=0). Note that
the subscriber_id is not included in the URL, for three
reasons:

1. It would be inefficient. Including a different
subscriber_id in each message would require a
unique Java MimeMessage object for each
recipient.

2A mail user agent (MUA) is a client program for a user to
access and compose email. Common MUAs include Eudora,
Outlook, RMAIL, and pine.

Dynamic Sublists: Scaling Unmoderated Mailing Lists

2. It would be insecure. If the subscriber id were
embedded, it would be easy for a subscriber to
unsubscribe other people by substituting their
subscriber_ids.

3. It is not necessary. Because the Web interface
uses cookies to store the subscriber_id of users
who have successfully logged in, it is not nec-
essary to reenter it. If there is not a wvalid
cookie, the user is prompted for her username
and password. Users who share computers can
explicitly log out of the system.

Experience

We performed a month-long user test with 20-40
members of the main Systers list. Unfortunately, we
were unable to generate a critical mass for sustained
thread. Still, we were able to extract some useful
information.

Of the 40 subscribers, 39 chose to receive all
messages by default (i.e., preference = 1). Twenty-six
members specified plain text as their preferred format,
six hypertext, and eight both (i.e., MIME multipart).
Nobody unsubscribed from the list during the trial
period. We were surprised that the majority of users
chose plain text over hypertext, underscoring the
importance of having a good ASCII user interface.

Seven of the 11 threads were created by the sys-
tem’s authors. In an attempt to encourage members to
use the unsubscribe feature, we created a thread,
called wordl, that forwarded the daily word from Anu
Garg’s A-Word-A-Day service (http://wordsmith.org/
awad). Six members unsubscribed from the thread
without difficulty. One member publicly responded
positively to the thread with her thoughts on a word,

To: systers-new-fellowships@javamlm.mills.edu

Subject: AAUW Fellowships
From: spertus@mills.edu

Information about AAUW fellowships is now

available at http://www.aauw.org.

Figure 4(a): Initial message.

To: systers-fellowships5l@javamlm.mills.edu

Subject: SYSTERS: AAUW Fellowships
From: borg@javamlm.mills.edu

Senders: systers-fellowships51@javamlm.mills.edu

Information about AAUW fellowships is now available at

http://www.aauw.org.

To unsubscribe from this thread, send email to
systers-fellowships51-unsubscribe@ javamlm.mills.edu or visit
http://javamlm.mills.edu/scripts/override?listname=systers&thread=157&preference=0.

To unsubscribe from systers, send email to

systers-unsubscribe@javamlm.mills.edu.

Figure 4(b): Message as viewed by recipient.

Figure 4: The first message in a new thread, as (a) written by the sender and (b) seen by the recipient. This assumes
that the recipient has hypertext enabled and is by default subscribed to new threads. The recipient will continue
to receive further messages in this thread (i.e., sent to systers-fellowshipsS1@systers.org) unless she activates
the mailto orhttp link to unsubscribe from the thread or from thelist.

2001 LISA XV — December 2-7, 2001 — San Diego, CA

215

Dynamic Sublists: Scaling Unmoderated Mailing Lists

which motivated one of the authors to create a new
thread asking members for theirs pet peeve about
word misuse. It was unclear how to begin this new
topic. If it were within thread word1, subscribers could
not avoid the discussion without unsubscribing from
the A-Word-A-Day message, which many enjoyed.
Instead, we created a brand-new thread, peevesl,
which had the disadvantage of going to people who
had unsubscribed from wordl. This showed the desir-
ability of allowing for threads to have children, which
would allow child threads to begin by going only to
subscribers of an existing thread instead of to all users.

The first message in the peeves! thread was cre-
ated by sending mail to systers-new-peeves@
javamlm, which was cc’d to the subscriber who had
first expressed her opinion. Because this member
received the message directly (and not just through
Javamlm), the to-line contained systers-new-peeves@
javamlm instead of systers-peevesl@javamlm. Thus,
when she replied, another thread, peeves2, was cre-
ated. We are exploring solutions to this problem.

A point that no users raised but that concerned
the authors was how to deal with individuals’ joining
the list while a thread is in progress. If a user is by
default unsubscribed to threads, she will not see any
messages until a new thread begins (which may be the
right behavior). We may want to provide new users
with the options of being filled in on active threads,
perhaps through a Web interface.

A related problem is what to do if a user unsub-
scribes from a thread (either by default or explicitly)
and then explicitly subscribes. Currently, she would
never get the messages that occurred while she was
not subscribed. This is a particular problem for users
who are unsubscribed from new threads by default,
since, by the time they explicitly subscribe to a thread
of interest, earlier messages may be lost to them.
Clearly, we need to design a better approach.

Another problem that arose was varying hyper-
text production by different MUAs. The Eudora mailer
encloses a formatted message with “html” tags, while
Yahoo! Mail does not. Javamlm failed to properly
insert (un)subscription information in messages for-
matted differently from expected.

One user requested that subscribers be emailed
their user name and password, a feature provided by
Mailman [14]. We had opted not to provide this fea-
ture both because of the insecurity of email and
because we only store encrypted passwords. Clearly,
some users prefer convenience to greater security, sug-
gesting that we should provide per-user or per-list
security options.

Related Work

While many people have addressed minimizing
administration cost for owners of large mailing lists
[e.g., 1, 4, 5, 14], our goal is more to minimize costs
for users of high-volume mailing lists without increas-
ing administrative overhead.

216

Spertus, Jeffries, and Sie

Our system is a direct descendant of the threaded
news reader (trn) for Usenet [8] by Wayne Davison,
which grouped messages with common ancestors into
threads, allowing users to read articles by thread,
instead of by date or subject, or to automatically avoid
further messages in the thread. While the introduction
of threads revolutionized newsreaders, it has been
slow to cross over to email lists.

Ka-Ping Yee built a system, Roundup [16, 17,
18], supporting “fine-grained mailing lists,” making use
of the “In-Reply-To” header [12]. He used the term
“issue” for what we call a “thread” or ““dynamic sub-
list.”” Each issue has a corresponding set of users who
receive new messages, called “nosy lists.” Users are
added to an issue’s nosy list if they are found in the
“From,” “To,” or “Cc” headers of a message within
the issue.

Jamie Zawinski has implemented and docu-
mented [19] an algorithm for threading email mes-
sages based on the “In-Reply-To” [12] and ‘“‘Refer-
ences” [8] headers. Mark Crispin and Kenneth
Murchison recently described the algorithm more for-
mally and proposed changes to the IMAP protocol for
server-side support for grouping messages into threads
[6]. While making the best of the current situation, this
approach is limited by MUAs’ and users’ inconsistent
use of the “In-Reply-To” and “References” headers.
For example, there’s nothing to stop a user from man-
ually copying the “to” field in replying to a message,
rather than using a MUA’s reply-to function. By
embedding thread information in the “to”” address, our
system forces MUAs and users to include it in replies.
Combined with Crispin and Murchison’s proposed
IMAP extensions, more powerful server-side thread-
ing could be provided.

Future Work

We consider our current system, Javamlm, to be
a prototype, which we do not plan to extend. Instead,
we will incorporate support for dynamic sublists into
Mailman, the GNU mailing list manager [14]. We
chose Mailman because it has the following features:

e Web-based interfaces for both administrators
and users.

e Per-list and per-user configurability, including
digesting.

¢ Automatic web-based archiving.

We plan to extend each of these features, such as
allowing users to specify that a specific dynamic sub-
list should be delivered in digest form, while others
should be delivered immediately. This would enable
the systers-jobs example described earlier, allowing
job-seekers to receive announcements immediately
and other users to receive announcements as weekly
digests or not at all.

Unlike the jobs sublist, most dynamic sublists
are expected to be active for a short period of time
(days or weeks). Planned future functionality would

2001 LISA XV — December 2-7, 2001 — San Diego, CA

Spertus, Jeffries, and Sie

give users the additional option of seeing only a sub-
list’s first message and a final summary message cre-
ated by the thread’s originator. We also plan to support
individual keywords so a subscriber can automatically
see all messages containing “linux” and ‘“‘administra-
tion” if she so specifies.

We will also address the issues raised from our
user test, such as the best means for creating child
threads, supporting mid-thread subscription, and per-
user security options. We welcome further input and
participation in the project by anyone interested.

Acknowledgments

We are grateful to Sara Kiesler, Jennifer Goetz,
and Lee Sproull for performing a study of Systers
members with Robin Jeffries, upon which this work is
based. We would also like to thank Anita Borg and the
Systers members who participated in those surveys
and informal discussions, offered many ideas for
redesigning of Systers, and volunteered their skills and
effort to improve the Systers community. We have also
received useful input from Gloria Montano, who led
the first user test. Our understanding of email proto-
cols was greatly enhanced by members of the List
Managers Mailing List. We received encouragement
and valuable feedback, including pointers to related
work of which we had been unaware, from the LISA
referees, Sigmund Straumsnes, and Mailman author
Barry Warsaw. Ellen Spertus and Kiem Sie are par-
tially supported by a National Science Foundation
Faculty Early Career Development grant. This work is
being done in cooperation with the Institute for Women
and Technology, which hosts Systers.

References

[1] Bernstein, D. J., “Ezmlm,” http://cr.yp.to/ezmlm.
html .

[2] Bernstein, D. J., “Variable Envelope Return Paths,”
http://cr.yp.to/proto/verp.txt, February, 1997.

[3] Borg, Anita, “Why Systers?” Computing Research
News, http://www.systers.org/keeper/whysys.html,
1993.

[4] Chalup, Strata Rose, Christine Hogan, Greg
Kulosa, Bryan McDonald, and Bryan Stansell,
“Drinking from the Fire(walls) Hose: Another
Approach to Very Large Mailing Lists, LISA
XI1,” 1998.

[5] Chapman, D. Brent, “How I Manage 17 Mailing
Lists Without Answering ‘-request’ Mail,” LISA
Vi, 1992.

[6] Crispin, Mark R., and Kenneth Murchison, Inter-
net Message Access Protocol — Thread Exten-
sion, Internet Draft, IMAP Extensions Working
Group, [ETF, 2001.

[7] Hofman, P. L. Masinter, and J. Zawinski, The
mailto URL scheme (RFC 2368), Network Work-
ing Group, IETF, July, 1998.

2001 LISA XV — December 2-7, 2001 — San Diego, CA

Dynamic Sublists: Scaling Unmoderated Mailing Lists

[8] Horton, A. and R. Adams, Standard for Inter-
change of USENET Messages (RFC 1036), Net-
work Working Group, IETF, December, 1987.

[9] Klensin, J., ed., Simple Mail Transfer Protocol
(RFC 2821), IETF, April, 2001.

[10] Lindberg, Fred, “Ezmlm/idx Manual,” version
0.32, http://www.ezmlm.org/ezman-0.32/index.
html, March, 1999.

[11] Lundqvist, Ola, “otxt2html.pl,” http://www.opal.
dhs.org/programs/otxt2html/index.oml .

[12] Resnick, P., ed. Internet Message Format (RFC
2822), Network Working Group, IETF, April,
2001.

[13] Rosenthal, Chip, ““ ‘Reply-To’ Munging Consid-
ered Harmful,” http://www.unicom.com/pw/reply-
to-harmful.html, May, 1999.

[14] Viega, John, Barry Warsaw, and Ken Manheimer,
“Mailman: The GNU Mailing List Manager,”
LISA XII, 1998.

[15] Westine, A. and J. Postel, Problems with the
Maintenance of Large Mailing Lists (RFC 1211),
IETF, March, 1991.

[16] Yee, Ka-Ping, “Roundup: A Simple and Effec-
tive Issue Tracker in Python,” short talk, Eighth
International Python Conference, 2000.

[17] Yee, Ka-Ping, “Roundup: An Issue Tracking
System for Knowledge Workers,” design pro-
posal, Software Carpentry Design Competition
first round, March, 2000.

[18] Yee, Ka-Ping, “Roundup: An Issue Tracking
System for Knowledge Workers, Implementation
Guide,” Software Carpentry Design Competition
second round, June, 2000.

[19] Zawinski, Jamie, “Message Threading,” http:/
www.jwz.org/doc/threading.html, 2000.

217

218 2001 LISA XV — December 2-7, 2001 — San Diego, CA

