USENIX Association

Proceedings of the
LISA 2001 15" Systems
Administration Conference

San Diego, Cdlifornia, USA
December 2—7, 2001

USENIX
SAGE

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Specific Simple Network
Management Tools

Jiirgen Schonwdlder — Technical University of Braunschweig

ABSTRACT

The Simple Network Management Protocol (SNMP) has been around for more than a decade
and is supported by most network devices and end systems. Despite this success, there is still a
lack of simple to use network management applications.

This paper describes the design of an SNMP management tool called sc1i which provides
an easy and efficient to use SNMP command line interface. The software architecture has been
designed to make it easy for C programmers without any special SNMP programming skills to

extend the functionality provided by sc14.

Introduction

The Simple Network Management Protocol
(SNMP) [1, 2] has been around for more than a decade
and is supported by most network devices and end
systems. Despite its success in the network devices,
there is still a lack of simple to use network manage-
ment applications.

High-end management platforms such as HP’s
OpenView [3] or Aprisma’s Spectrum [4] are rela-
tively expensive and require special training in order
to use them effectively. Especially operators of smaller
enterprise networks often cannot afford the purchase
and training costs associated with these high-end man-
agement platforms. So they often revert to low-level
SNMP tools such as snmpwalk in combination with
shell scripting languages to get a certain job done
quickly. Others use SNMP extensions of well known
scripting languages such as Perl or Tcl to implement
their own little management solution. While this
seems to be a good approach in the short-term, these
scripts tend to be loaded with site-specific details
which often prevents people from sharing them. Fur-
thermore, these scripts are often fragile and hard to
maintain since error handling is usually poor and doc-
umentation is often missing.

This paper describes the design and implementa-
tion of an SNMP management tool called scli
which provides an efficient to use command line inter-
face to display, modify and monitor data retrieved
from SNMP agents. It runs on simple ASCII terminals
and does not require any graphical user interface capa-
bilities. The tool provides command line editing, com-
pletion and history capabilities to make it easy for net-
work operators and system administrators to use this
tool, even if they cannot remember the precise com-
mand syntax.

The sc1li commands are organized in a logical
command tree and hide the details of the SNMP inter-
actions and the underlying MIB data structures. The
default sc1i output format is optimized for human

2001 LISA XV — December 2-7, 2001 — San Diego, CA

readability and in some cases resembles the output
produced by existing Unix commands.

Optimizing the default output format for human
readability has the disadvantage that it becomes harder
to use scli in scripts since parsing the output is
complicated and error prone. In order to use sc1i as
a mechanism to collect data to be stored in data bases
or displayed on web pages, a second XML-based out-
put format has been implemented for many of the
scli commands.

The scli software architecture has been
designed to allow C programmers without knowledge
of low-level SNMP APIs to extend the functionality
provided by sc1i. This hopefully encourages a larger
group of people to write and share extensions for spe-
cific device types, protocols or managed services.

This paper is organized as follows. The first sec-
tion discusses the difference between generic and spe-
cific SNMP tools and why there is a need of specific
rather than generic tools. The next section describes
the overall software design of the simple command
line management tool scli. The following section
discusses some of the sc1i commands and presents
examples how they can be used in practice. Subse-
quent sections describe the implementation of scli
and how it can be extended. The paper concludes with
some remarks on future work.

Generic vs. Specific Tools

The tool described in this paper was written
because of the author’s continued frustration how
complex and inconvenient it is to configure, trou-
bleshoot and monitor SNMP manageable devices. An
analysis of the tools available shows that most of them
fall into one of the following five categories:

Generic low-level SNMP Tools. The first category
includes simple low-level SNMP command-
line tools such as snmpwalk or snmpset.
These tools are low-level since they just pro-
vide command-line interfaces to perform a

109

Specific Simple Network Management Tools

single or a sequence of related SNMP protocol
operations on MIB variables. The tools gener-
ally do not understand the semantics of the data
they manipulate. Furthermore, they require a
certain amount of SNMP and MIB knowledge
to interpret the results correctly.

Generic low-level SNMP APIs. The second cate-
gory includes tools and libraries that give pro-
grammers a relatively low-level programmatic
interface to invoke SNMP protocol operations
and to access MIB definitions. Examples of
generic low-level scripting APIs are WinSNMP
[5], SNMP++ [6], NET-SNMP or the Tnm
extension for Tcl [7, 8]. Many network opera-
tors and system administrators seem to prefer
APIs that are based on scripting languages such
as Perl or Tcl over APIs for system program-
ming languages such as C or C++ since they
are much easier to deal with.

Generic MIB Browsers. The third category
includes programs that allow network operators
to browse through MIB data on SNMP-enabled
devices. Some MIB browsers use Web tech-
nologies for their user interface while the
majority provides graphical user interfaces.
MIB browsers are usually designed as generic
tools that do not really understand the seman-
tics of the data they display and manipulate.
Many browser are able to load and interpret
MIB module definitions at run-time and some
of the more advanced browsers allow users to
customize the displays to a large extent. How-
ever, many important semantics described in
MIB description clauses are not machine read-
able. Therefore, generic MIB browsers gener-
ally require that users are familiar with the
semantics of MIB variables or at least able to
read and understand MIB module definitions.

Generic Monitoring Tools. The fourth category
includes generic monitoring tools. MRTG [9] is
an example of a generic monitoring tool which
is used in many networks to gather statistics
and to detect unusual system behavior. Some of
these tools have limitations that cause them to
produce erroneous results in some situations
(handling of counter discontinuities) if the user
configuring these tools does not pay attention
to special MIB semantics. Some more specific
tools such as Cricket [10] have been imple-
mented on top of these generic monitoring tools
to simplify the configuration for typical use
cases.

Generic Management Platforms. The fifth cate-
gory consists of management platforms which
provide a generic infrastructure for the imple-
mentation of network management applica-
tions. Applications written on top of these plat-
forms make use of platform specific interfaces
and services, such as protocol APIs or database

110

Schonwilder

services. Platforms also often include generic

tools for monitoring, event correlation or topol-

ogy discovery.

The tkined [11] and gxsnmp packages are

examples of openly available platforms. More

complex examples are commercial manage-
ment platforms such as HP’s OpenView [3] or

Aprisma’s Spectrum [4].

There are many SNMP management tools avail-
able today which fall into one of the five categories
described above. But the author still often feels
uncomfortable when trying to use them, even though
he has implemented some of these generic tools him-
self in the past. MIB browsers which display raw MIB
data structures tend to be of little use for actual man-
agement because MIB data structures are usually
designed to be read by programs rather than humans.
Furthermore, MIB modules undergo revisions as the
networking technologies evolve. Sometimes, the origi-
nal MIB module design turns out to be problematic
and the attempts to maintain backwards compatibility
while supporting new features makes MIB module
data structures often hard to understand.

Another problem are the naming schemes used in
MIB modules, which are typically optimized for
machines and which do not necessarily reflect what
humans prefer to use. For example, humans prefer to
identify network interfaces by names, such as “eth0”.
MIB modules, however, use numbers to identify net-
work interfaces [12]. Furthermore, on some devices,
these numbers can change with every re-initialization.
A good specific tool should allow users to refer to
interfaces by name and it should hide the SNMP and
MIB specific naming details.

Generic tools often do not understand the rela-
tionships between MIB objects. For example, consider
the speed of a network interface. There are two stan-
dardized objects in the IF-MIB [12] that report the
speed of a network interface (ifSpeed and
ifHighSpeed) and a good application should
understand their semantics and relationship and dis-
play the correct value in a meaningful way. Generic
MIB browsers are not able to do that and put the bur-
den on the user to understand how ifSpeed and
ifHighSpeed relate to each other and to pick the
right value.

It seems that the approach to build generic tools
that expose raw MIB data structures and which require
that the network operator or system administrator has
SNMP and MIB knowledge does not work very well
in practice. There is a need for simple tools that are
specific instead of generic in the sense that they under-
stand the semantics of the data they manipulate and
hide low-level SNMP and MIB details. Specific tools
should be designed to do just one thing and they
should attempt to do it right. Specific management
tools must be written by programmers who do under-
stand the semantics of the MIB objects as well as the

2001 LISA XV — December 2-7, 2001 — San Diego, CA

Schonwilder

conceptual model behind the relevant MIB modules
[13].

The sc1i tool, which was born in January 2001
and which has been openly available since February
2001, has since its first release improved in many
directions and it shows that the implementation of effi-
cient specific network management tools such as
scli can be easy and fun if one chooses a suitable
software design.

Software Design

This section discusses the software design
behind sc1i. The software design addresses five key
requirements:

1. The first requirement is extensibility. The soft-
ware design should make it relatively easy to
add new features to scli. This requires that
the internal APIs are as simple as possible. Fur-
thermore, the code must be obvious so that peo-
ple can easily derive extensions from the exist-
ing code base. In order to get many program-
mers involved, it is necessary to hide low-level
SNMP communication details as much as pos-
sible.

2. The second requirement is robustness. The soft-
ware design should ensure as much as possible
that errors are detected and handled gracefully
where possible. This implies to use facilities
which help to avoid problems such as buffer
overruns and to validate data received from the
network before processing it. Furthermore, the
program should abort if coders forget to check
for possible error conditions as soon as possible
so that bugs are noticed and fixed.

3. The third requirement is maintainability. It must
be possible to evolve the software over time,
which includes internal API changes. Further-
more, it is important to ensure that the docu-
mentation is available and in sync with the
implementation since scli wusers are not
expected to read MIB modules in order to use
scli. Finally, it is important to stay focussed
in the overall scope so that the resources avail-
able can be used effectively.

4. The fourth requirement is efficiency. The
implementation should be efficient regarding
the amount of resources needed to implement a
given management operation. This is of special
importance if the tool is used in scripts that per-
form more complex management tasks. Some
of the well-known generic low-level SNMP
tools consume noticeable resources while pars-
ing MIB files during startup and are thus ineffi-
cient if they are called frequently in scripts.

5. The fifth requirement is portability (at least
across Unix platforms). A port to Win32 plat-
forms should be possible, although the author
does not really have a need for such a port him-
self.

2001 LISA XV — December 2-7, 2001 — San Diego, CA

Specific Simple Network Management Tools

Implementation Language

The author’s experience with the Tnm extension
for Tcl, a generic low-level SNMP API [7], shows that
only a few Tcl coders actually contribute scripts writ-
ten on top of the Tnm API back to the package main-
tainer. And those who do so usually do not care too
much about the overall code organization and the
scripts often depend on side specific details. While the
original motivation behind Tnm was to provide a solid
SNMP scripting API which should make it easy for
people to create a repository of useful management
scripts, the overall success in reaching that goal is
rather limited. In fact, many management scripts turn
out to be rather fragile and trying to maintain them is
relatively costly.

It is interesting to note that the author’s experi-
ence with other open source projects that are coded in
C is quite different. Contributed patches for C code are
often of good quality and much easier to integrate and
maintain. Furthermore, compiled languages greatly
help to detect many potential problems and inconsis-
tencies if internal APIs change. It was therefore
decided to implement sc1i entirely in C.

C++ was also considered as a potential imple-
mentation language but was finally rejected since the
benefits of C++ over C relative to the requirements
stated above are limited and C is still more portable
and efficient and the number of C programmers is still
bigger than the number of C++ programmers. The
Java language was considered but not selected since
the resource consumption is noticeable.

Software Architecture

The overall software architecture is shown in
Figure 1. The package uses the glib library to
achieve portability and to reuse generic data structures
such as lists and dynamic strings. The SNMP engine
gsnmp has been derived from the gxsnmp package
and was subsequently modified to fix bugs and to
improve stability. The SNMP engine itself uses g1ib.

scli command implementations

procedures libxmI2
scli

stubs interpreter curses
core

gsnmp readline

glib history

operating system (Linux, Solaris, BSD, ...)

Figure 1: Software architecture.

The gsnmp library provides roughly the same
low-level functionality as many other SNMP APIs.
Since it was felt necessary to hide programmers from

111

Specific Simple Network Management Tools

the low-level SNMP programming details, it was
decided to use a MIB compiler to generate C stubs
from MIB modules. The stubs consist primarily of C
structures which represent MIB table rows or groups
of scalars plus a set of stub functions which can be
used to read/write these structures. The implementa-
tions of the stub functions serialize/deserialize the C
structures into SNMP varbind lists. They also validate
the data to ensure that the elements of the varbind lists
have appropriate types and sizes. The stub code gener-
ator is further described below.

The sc1li command implementations either use
the stubs directly or they use so called MIB proce-
dures. MIB procedures extend the stub interface with
specific functions for common operations like creating
rows in certain MIB tables or iterating over certain
MIB tables. MIB procedures are by definition MIB
specific and implemented entirely by using the stub
interface.

The scli interpreter core provides all the
infrastructure needed to register commands, to tok-
enize the input stream, to locate and execute the func-
tion implementing a recognized command and to
finally display the results on stdout or via a pager. The
interpreter uses the GNU readline and history
libraries for command line editing and the curses
library for screen management. It also uses g1ib data
types internally. All state information is bound to the
scli interpreter. It is thus possible to have multiple
scli interpreters in a single process — although this
feature is currently not used.

The design decision to implement our own inter-
preter instead of using one of the available embed-
dable command interpreters was driven by the obser-
vation that the features needed by scli are very
small and most interpreters such as Tcl are too heavy
weight these days for simple tools like sc11.

The interpreter core and some command imple-
mentations also use the 1ibxml12 library to create
and manipulate XML documents. By using a dedi-
cated XML library, it is possible to ensure that any
generated XML output is well-formed.

User’s View

This section describes sc1i from a user’s point
of view. It briefly introduces the basics about the
structure of sc1i commands before presenting some
examples how sc1i can be used.

Command Overview

All scli commands are hierarchically struc-
tured with a small set of top-level commands. The first
five top-level commands (open, close, exit,
help, history) are used to open and close SNMP
sessions and to help with user interactions. The
remaining top-level commands can be used to cre-
ate/delete something (create, delete), to modify
something (set), to display or monitor data (show,

112

Schonwilder

monitor), or to produce an scli script which
restores the current configuration (dump). As an
example, Figure 2 shows part of the set command
hierarchy.

- set
- system
- contact
- name
location

- ip

- forwarding
‘-ottl

‘- interface

- status

- alias

- notifications

- promiscuous

‘

Figure 2: scli set command hierarchy.

Commands are also logically organized into
scli modes. Figure 3 shows the syntax of the com-
mands provided by the interface mode. Note that
interfaces can be selected by regular expressions that
are matched against the interface description. This
allows users to perform a single operation on a set of
interfaces.

set interface status <{regexp> <status>
set interface alias <regexp> <{string>

set interface notifications <regexp> <value>
set interface promiscuous <regexp> <bool>

show interface info [{regexp>]
show interface details [{regexp>]
show interface stack [{regexp>]
show interface stats [{regexp>]
monitor interface stats [{regexp>]
dump interface

Figure 3: scli interface mode.

scli supports the concept of recursive com-
mand evaluation, which is especially useful for the
show and dump commands. The show dinter-
face command will retrieve and display all informa-
tion about all network interfaces while the show com-
mand will retrieve and display all information avail-
able from a device.

Interactive Browsing and Monitoring

The show and monitor commands can be
used to interactively inspect and monitor a device. The
screenshot in Figure 4 shows how scli displays the
containment hierarchy of the physical entities that
make up a router. Additional sc1i commands can be
used to get more detailed information about the physi-
cal entities.

Sometimes it is necessary to quickly monitor
some core statistics in order to track down a network
problem. The monitor commands can be used for
this purpose. Figure 5 shows a screenshot where
sc1li shows basic statistics and status information for
the network interfaces of a router. Note how scli
handles data not available for some ATM layers.

2001 LISA XV — December 2-7, 2001 — San Diego, CA

Schonwilder

The look & feel of the monitoring commands is
similar to the well-known Unix top command. The
top half of the screen displays basic summary infor-
mation. Special keys can be used to customize the
monitoring display.

Configuring Virtual LANs

LAN bridges (sometimes called layer 2 switches)
can often be configured via SNMP. The author
recently had a need to configure virtual LANSs across a
number of bridges. The telnet interface provided by
the bridges is menu-driven and not easy to handle for
automated configuration. However, the bridges sup-
port vendor specific MIB objects to allow configura-
tion via SNMP. (Unfortunately, the devices do not

Specific Simple Network Management Tools

support the standard MIB for virtual LANs as defined
in RFC 2674 [14].)

The approach to solve the configuration problem
was to extend scli with commands that can cre-
ate/delete virtual LANs and commands to assign ports
to them. This allows to save the virtual LAN configu-
ration for each bridge in a simple ASCII file. By using
the m4 macro processor, it is easy to import shared
bridge configuration commands and to use symbolic
names for port sets. Figure 6 shows the sc1i script to
install the virtual LANs. Note the regular expression at
the beginning to first remove all relevant virtual
LANSs. Figure 7 shows the sc1i script which config-
ures the ports on a particular bridge.

= loc

T d E

Agent Boot Time:
Interfaces: 12
Bridge Type:

Chassis Slot
Chassis Slot

13 container -
14 container -
15 module |
16 port |
17 container -
18 container T-
(ciscobs.rz) scli > []

T TI1570 ATH
Chassis Slot
Chassis Slot

2001-09-24 17:21:51 +02:00

source route transparent (SRT)
(ciscobs.rz) scli > shou entity containment

7206¥XR chassis. Hw Serial#: 21275454, Huw Revision: D
I- NPE 300 Card. Hu Serial#: 21275454, Hw Revision: D

- 2 Port Fast Ethernet/ISL 100BaseTX Port Adapter

ENTITY CLASS CONTAINMENT
1 chassis
2 module
3 container |- Chassis Slot
4 module I *- I/0 FastEthernet (TX-ISL)
5 port | *- DEC21140A
6 container |- Chassis Slot
7 module |
8 port | I- AmdFE
9 port | “- AmdFE
10 container |- Chassis Slot
11 module I ™= POS Port Adapter (SH)
12 port | "- Packet over Sonet

- ATM Lite Port Adaptor (SH)

Figure 4: sc1i showing the containment structure of router components.

=) Iocal ¢ EF e B
figent : ciscobs.rz:161 up 9 days 23:34:35 15:56:26
Descr: Cisco Internetwork Operating System Software I0S (tm) 7200 Software
IPv4: 6435 pps in 6408 pps out 6399 pps fuwd 0 pps rasm 0 pps frag
UDP: 8 pps in 6 pps out
TCP: 0 sps in 0 sps out 0 con est 0 con aopn 0 con popn
Command: monitor interface stats

1 UUCN Im 2m 3270 3152 0 0 FastEthernet0/0

2 UUCN 0 23 0 0 0 0 FastEthernet1/0

3 UUCN 10k 10k 50 50 0 0 FastEthernetl/1

4 UUCN 2m Im 3197 3254 0 0 P0S2/0

5 UDCN 0 0 0 0 0 0 ATM4/0

6 vw-—- - -— -— -—= -—— -——- fTH4/0-atm layer

7 uwW- -—-— = - == ——— ———— QiTH4/0.0-atm subif

8 UDNN 0 -—- 0 -—— --—— --—— ATH4/0-aalb layer

9 UDNN 0 -—- 0 -—— -— -——— ATH4/0.0-aal5 layer

10 UUNN 0 2105 0 18 0 0 NullO

11 UUNN 0 0 0 0 0 0 Loopback0

12 UUNN 0 0 0 0 0 0 Tunnel34

Figure 5: sc1li monitoring network interface statistics.

2001 LISA XV — December 2-7, 2001 — San Diego, CA

113

Specific Simple Network Management Tools

cleanup - regexps are cool :-)
delete nortel bridge vlan "~ (134|ibr-)"

IBR vlans (544-559) 134.169.34.*
create nortel bridge vlan 544 ibr-core
create nortel bridge vlan 545 ibr-cip
create nortel bridge vlan 546 ibr-test
create nortel bridge vlan 547 ibr-wlan

Figure 6: sc1i script for creating virtual LANs.

define (UP, “25,185") ## uplink ports
define (WLAN, ‘2,56") ## wireless vlan
define (CORE, “1,3-24,33-55,65-88")

F core vlan

#f create the vlans:
include(vlan-all.scli)
vlan port assignments:

set nortel bridge vlan ports \
ibr-core UP,CORE

set nortel bridge vlan default \
ibr-core CORE

set nortel bridge vlan ports \
ibr-wlan UP,WLAN

set nortel bridge vlan default \
ibr-wlan UP,WLAN

Figure 7: scli script which creates virtual LANs
and assigns ports.

It is also useful to be able to dump the virtual LAN
configuration via the dump command from the device
in order to check whether it matches the configuration
that is supposed to be on the device.

Generating HTML Status Pages
It is often convenient to generate HTML status

pages for some devices (such as printers) which are
linked to the Intranet. These status pages allow users

Schonwilder

to figure out why for example a print job does not
progress in the print queue by looking at a virtual
printer console. The Printer-MIB [15], which is
supported by many printers, provides a simple way to
read the console display and the status of the printer
lights.

Generating HTML status pages is straight-for-
ward since scli can generate XML output. XSL
transformations can turn the sc1i XML output into a
nice HTML page. Figure 8 shows the core of a trans-
formation which shows console lights as an HTML
table.

Programmer’s View

This section introduces scli from a program-
mer’s point of view. It first describes the stub code
generator before explaining how a simple sc1i com-
mand to display the console lights of printers is imple-
mented and registered.

Stub Generator

The stub code generator is a key component
since it hides the low-level SNMP communication
details. The stub code generator takes a MIB module
as input and generates a pair of .h and .c files for the
MIB module. The header file contains C type defini-
tions for MIB table rows or groups of scalars. The
SMI data types are mapped to glib data types
according to the base data type model used by the
SMIng proposal [16]. Some additional structure mem-
bers whose names start with an underscore are intro-
duced when dealing with variable size MIB variables.

The members of the generated C structures are
usually pointers. This reflects the fact that SNMP
agents are not required to return values for all vari-
ables, either due to implementation limitations or due

{xsl:template match="console">
{table>
{tr>
{xsl:for-each select="1light">
{xsl:element name="td">

{xsl:attribute name="width">60<{/xsl:attribute>
<xsl:attribute name="align">center</xsl:attribute>

{xsl:if test="status != ’off’">
{xsl:attribute name="bgcolor">
{xsl:value-of select="color"/>

{/xsl:attribute>
{/xsl:if>

{xsl:if test="status = ’blink’">

{xsl:element name="span">

{xsl:attribute name="style">text-decoration:blink<{/xsl:attribute>

{/xsl:element>
{/xsl:if>

{xsl:apply-templates select="description"/>

{/xsl:element>
{/xsl:for-each>
</tr>
<{/table>
{/xsl:template>

Figure 8: XSL transformation for show printer console XML output.

114

2001 LISA XV — December 2-7, 2001 — San Diego, CA

Schonwilder

to access control. Variables that are not accessible will
be represented by a NULL pointer. The decision to use
pointers requires that programmers check carefully
whether the pointers are valid before using them. Fail-
ure to do so will result in segmentation faults — a clear
indication that the program is buggy and must be
fixed. An alternative option would have been to intro-
duce special bit fields which indicate whether a given
data member is valid or not. This option was rejected
since programmers will likely forget to check these bit
fields and programs will operate on invalid data with-
out being noticed.

The generated header file also defines several
stub functions that read/write the C structures from/to
SNMP agents. Stub functions that retrieve complete
MIB tables return the data to the application as an
array of pointers to the C structures representing table
rows. The read/write stub functions also have a mask
argument which can be used to specify that only a sub-
set of the members of the C structure should be
read/written.

The implementation of the stub functions is con-
tained in the .c files. The table retrieval stubs generate
a sequence of suitable SNMP requests to read a table.

Specific Simple Network Management Tools

Holes in tables are handled automatically and data
which can be obtained by unpacking instance identi-
fiers is not retrieved explicitly in order to save some
bandwidth.

The data contained in response messages is first
validated by doing some basic type and range/size
checking. The instance identifier is unpacked and vali-
dated before C structures are filled with appropriate
values. Detected errors are signaled using glib
warnings and the values are ignored. This ensures that
SNMP communication problems are noticed and that
applications using the stubs only operate on validated
values.

The stubs also provide mapping tables for enu-
merations. These tables can be used to map numbers
or object identifier values to labels and vice versa.
However, in many cases, the labels assigned in MIB
modules are rather useless for direct display because
they are either too cryptic or simply too long. It is thus
not uncommon to implement more specific mapping
tables in addition to the tables generated by the MIB
compiler.

Figure 9 shows the stubs that are generated for
the prtConsolelLightEntry of the Printer-MIB

/*

* C type definitions for Printer-MIB::prtConsoleLightEntry.

*/

typedef struct {
gint32 hrDeviceIndex;
gint32 prtConsoleLightIndex;
gint32 *prtConsoleOnTime;
gint32 *prtConsoleOffTime;
gint32 *prtConsoleColor;
guchar *prtConsoleDescription;

gsize _prtConsoleDescriptionLength;

} printer_mib_prtConsoleLightEntry_t;

extern void

printer_mib_get prtConsolelLightTable(GSnmpSession *s,
printer_mib_prtConsoleLightEntry_t ***prtConsoleLightEntry,

gint mask);

extern void
printer_mib_free_prtConsoleLightTable(

printer_mib_prtConsoleLightEntry_t **prtConsoleLightEntry) ;

extern printer_mib_prtConsoleLightEntry_t *
printer_mib_new_prtConsoleLightEntry(void) ;

extern void
printer_mib_get prtConsolelLightEntry(GSnmpSession *s,
printer _mib_prtConsoleLightEntry_t **prtConsolelLightEntry,

gint32 hrDeviceIndex, gint32 prtConsoleLightIndex, gint mask);

extern void

printer_mib_set_prtConsolelLightEntry(GSnmpSession *s,
printer_mib_prtConsoleLightEntry_t *prtConsoleLightEntry,
gint mask);

extern void
printer_mib_free_prtConsoleLightEntry (
printer_mib_prtConsoleLightEntry_t *prtConsoleLightEntry) ;

Figure 9: Stub interface for prtConsoleLightEntry ofthe Printer-MIB (RFC 1759).

2001 LISA XV — December 2-7, 2001 — San Diego, CA

115

Specific Simple Network Management Tools

[15] which describes the status of a printer console
light. All type and function declarations are prefixed
by the MIB module name in order to deal with poten-
tial name clashes. The first two stub functions operate
on complete tables while the remaining stub functions
operate on table rows. The stub code generator has
been implemented as an output driver of the
smidump MIB compiler.

Command Implementation

Figure 10 shows the implementation of the
show printer console lights command.
Commands are implemented as C functions which are
called with a handle for the sc1i interpreter and the
command arguments as input and return an scli
return code. The commands usually first check the
command arguments before retrieving the data they
manipulate. If the retrieval was successful, they start
manipulating the data. The last section of a command
implementation is responsible to free any allocated
resources.

The show_printer_console_lights()
function shown in Figure 10 first iterates over the
retrieved table to calculate the maximum length of the
description strings. The second iteration calls an out-
put formatting function for each table row, depending

Schonwilder

on the current state of the sc 11 interpreter. The result
is written into the interpreter, which provides either
glib dynamic strings or a suitable pointer to an
1ibxml2 node.

The default output formatting function for the
show printer console lights command is
shown in Figure 11. It uses a utility function
fmt_enum () to lookup the label for a color number
and it does some computations to figure out whether
the light is on, off or blinking.

Command Registration

Command implementations must be registered in
the scli interpreter as shown in Figure 12. This is
accomplished by creating an array of command
descriptions. Each command description contains the
command name, the description of the arguments
accepted by the command, the documentation of the
command and some command flags. Commands that
are able to produce XML output also describe the
XML path and the XML Schema definition (not
shown in Figure 12).

Commands always belong to an scli mode.
The structure which describes an sc1i mode contains
the name of the mode, the documentation of the mode
and the commands it provides.

static int

show_printer_console_lights(scli_interp_t *interp, int argc, char

{

* *

argv)

printer_mib_prtConsoleLightEntry_t **lightTable;

int i;
int light_width = 12;
if (arge > 1) return SCLI_SYNTAX;

printer_mib_get prtConsoleLightTable(interp->peer, &lightTable, 0);
if (interp->peer->error_status) return SCLI_SNMP;

if (lightTable) {
for (i = 0; lightTable[i]; i++)

if (lightTable[i]->_prtConsoleDescriptionLength > light_width) {
light_width = lightTable[i]->_prtConsoleDescriptionLength;

}
}

if (! scli_dinterp_xml(interp))

g_string_sprintfa(interp->header,
"PRINTER LIGHT %-*s STATUS COLOR",

light_width,

}
for (i = 0; lightTablel[di]; i++)

if (scli_interp_xml(interp))

"DESCRIPTION") ;

xml_printer_console_light(interp->xml_node, lightTable[i]);

} else {

fmt_printer_console light(interp->result, lightTable[i],

}

light_width);

if (lightTable) printer_mib_free_ prtConsoleLightTable(lightTable) ;

return SCLI_OK;

Figure 10: Implementation of the show printer console lights command.

116

2001 LISA XV — December 2-7, 2001 — San Diego, CA

Schonwilder

All command and mode documentation is defined
in the C code and registered within the interpreter. This
encourages programmers to provide documentation
when implementing new commands. The sc1i manual
page and other documentation is generated automatically
from the output produced by the show scli modes
and the show scli schema commands.

The printer mode registration shown in Figure 12
registers the function show_printer_console_
lights () twice. The second registration causes the
command to be executed periodically since it sets the
SCLI_CMD_FLAG_MONITOR flag.

Conclusions

This paper first motivated the need for specific
rather than generic SNMP-based management tools. It
then presented the overall software design for a spe-
cific management tool called sc1i before discussing
scli in some more depth from the user’s and the
programmer’s point of view.

The evolution of sc11 so far has shown that the
approach of using compiler generated stubs to hide
low-level SNMP communication details is feasible.
Furthermore, the number of commands available is
already large enough to inspect, monitor and configure
devices using sc1i.

Specific Simple Network Management Tools

There are of course a number of areas where
additional work can be done. The SNMP engine does
not yet support SNMPv3 security [2]. SNMPv3 is
slowly getting more widespread deployment and it
would be nice to take advantage of strong security,
especially for set and create commands.

The code generator can be improved in many
ways. The biggest limitation right now is the restric-
tion that stubs can only operate on table rows or
groups of scalars. It is sometimes desirable to have
atomic SNMP set operations on varbinds that include
tabular data and scalars. The prominent example are
spin-lock variables such as snmpSetSerialNo
[17].

Many of the current MIB procedures follow sim-
ilar patterns and it would be convenient to generate
them automatically from formal MIB annotations. An
annotation language would perhaps also enable us to
automatically generate suitable caching strategies in
order to reduce the amount of data retrieved from
SNMP agents. However, some more experimentation
is needed to better understand the requirements for
such an annotation language.

Finally, it would be nice to have more command
implementations. People who like the tool and its
design are therefore encouraged to write new modes

static void
fmt_printer_console_light(GString *s,

printer_mib_prtConsoleLightEntry_t *lightEntry,

int light width)

const char *state = "off";
const char *e;

g_string sprintfa(s, "%6d ", lightEntry->hrDevicelndex) ;
g _string sprintfa(s, "%4d ", lightEntry->prtConsoleLightIndex) ;

if (lightEntry->prtConsoleDescription)
light_width,

g_string sprintfa(s, "%-*.*s ",

(int) lightEntry->_prtConsoleDescriptionLength,
lightEntry->prtConsoleDescription) ;

} else {

g string sprintfa(s, "%*s", light width, "");

}
if (*lightEntry->prtConsoleOnTime

&& !*lightEntry->prtConsoleOffTime)

state = "on";

{

} else if (!*lightEntry->prtConsoleOnTime
&& *lightEntry->prtConsoleOffTime) {

state = "off";

} else if (*lightEntry->prtConsoleOnTime
&& *lightEntry->prtConsoleOffTime) {

state = "blink";
}
g _string sprintfa(s, " %-*s ", 5, state);
e = fmt_enum(printer_mib_enums_prtConsoleColor,

lightEntry->prtConsoleColor) ;

g_string_sprintfa(s, "%s\n", e ? e

"");

Figure 11: Implementation of the show printer console 1ights formatter.

2001 LISA XV — December 2-7, 2001 — San Diego, CA

117

Specific Simple Network Management Tools

for their favorite devices or protocols and to contribute
them to the sc 11 project.

Acknowledgments

The author likes to thank Frank Strauss for the
many fruitful discussions which helped to shape the
design of scli and his XSL transformations. The
author is also grateful to the scli users who have
contributed patches and who maintain packages for
various Linux systems.

Availability

The SNMP command line interface scli has
been released under the terms of the GNU General
Public License version 2. The project home page is
http://www.ibr.cs.tu-bs.de/projects/scli/. Debian and
RPM packages for Linux systems have been con-
tributed by sc1i users.

The stub code generator has been integrated into
the 1ibsmi package which has been released under
Berkeley copyright conditions. The project home page
is http://www.ibr.cs.tu-bs.de/projects/libsmi/ .

Biography

Jirgen Schonwilder received his diploma in com-
puter science in 1990 and his doctoral degree in 1996
from the Technical University of Braunschweig, Ger-
many. His research interests are network management,

Schonwilder

distributed systems and network security. He has co-
authored several network management related RFCs
and is currently the chair of the Network Management
Research Group (NMRG) of the Internet Research
Task Force (IRTF).

References

[1] Stallings, W., SNMP, SNMPv2, SNMPv3, and
RMONI and 2, Addison-Wesley, Third edition,
1999.

[2] Case, J., R. Mundy, D. Partain, and B. Stewart,
“Introduction to Version 3 of the Internet-stan-
dard Network Management Framework,” RFC
2570, SNMP Research, TIS Labs at Network
Associates, Ericsson, Cisco Systems, April,
1999.

[3] Blommers, J., OpenView Network Node Man-
ager: Designing and Implementing an Enterprise
Solution. Prentice Hall PTR, 2000.

[4] Lewis, L., Managing Business and Service Net-
works, Kluver Academic/Plenum Publishers,
2001.

[5] Natale, B., “WinSNMP v2.0 — Evolution of an
Industry-standard APL,” Simple Times, Vol. 6,
Num. 1, March, 1998.

[6] Mellquist, P. E., “SNMP++: An Object Oriented
Approach to Network Management Programming,”
Simple Times, Vol. 7, Num. 1, March, 1999.

void

scli_init_printer_mode(scli_interp_t * interp)

{

static scli_cmd_t cmds[] = {

{ "show printer console lights", NULL,
"The show printer console lights command shows the current"
"status of the printer’s lights. [...]",
SCLI_CMD_FLAG_NEED_PEER | SCLI_CMD_FLAG_ XML,
"printer console",
"<xgd> <!-- --> </xsd>",
show_printer_console_lights },

{ "monitor printer console lights", NULL,
"The monitor printer console lights command shows the same"
"information as the show printer console lights command. The"
"information is updated periodically.",
SCLI_CMD_FLAG_NEED_PEER | SCLI_CMD_FLAG_MONITOR,
NULL, NULL,
show_printer_console_lights },

{ NULL, NULL, NULL, O, NULL, NULL, NULL }

1

static scli _mode_t printer_mode = {
"printer",
"The scli printer mode is based on the Printer-MIB as published"
"in RFC 1759 and some updates currently being worked on in the"
"IETF Printer MIB working group.",
cmds

s

scli_register_mode(interp, &printer_mode) ;

Figure 12: Registration of the show printer console 1lights command.

118 2001 LISA XV — December 2-7, 2001 — San Diego, CA

Schonwilder

[7] Schonwilder, J. and H. Langendorfer, “Tcl
Extensions for Network Management Applica-
tions,” Proc. Third Tcl/Tk Workshop, pp.
279-288, Toronto, July, 1995.

[8] Zeltserman, D. and G. Puoplo, Building Network
Management Tools with Tcl/Tk, Prentice Hall,
1998.

[9] Oetiker, T., “MRTG — Multi Router Traffic Gra-
pher,”” Proc. Twelfth Conference on Large Instal-
lation System Administration (LISA XII), Boston,
December, 1998.

[10] Allen, J. R., “Driving by the Rear-View Mirror:
Managing a Network with Cricket,” Usenix First
Conference on Network Administration, April,
1999.

[11] Schonwilder, J. and H. Langendorfer, “How To
Keep Track of Your Network Configuration,”
Proc. Seventh Conference on Large Installation
System Administration (LISA VII), pages
189-193, Monterey (California), November,
1993.

[12] McCloghrie, K. and F. Kastenholz, “The Inter-
faces Group MIB,” RFC 2863, Cisco Systems,
Argon Networks, June, 2000.

[13] Schonwilder, J. and A. Miiller, “Reverse Engi-
neering Internet MIBs,” Proc. Seventh
IFIP/IEEE International Symposium on Inte-
grated Network Management, Seattle, May,
2001.

[14] Bell, E., A. Smith, P. Langille, A. Rijhsinghani,
and K. McCloghrie, “Definitions of Managed
Objects for Bridges with Traffic Classes, Multi-
cast Filtering and Virtual LAN Extensions,”
RFC 2674, 3Com, Extreme Networks, New-
bridge Networks, Cabletron Systems, Cisco Sys-
tems, August, 1999.

[15] Smith, R., F. Wright, T. Hastings, S. Zilles, and J.
Gyllenskog, “Printer MIB,” RFC 1759, Texas
Instruments, Lexmark International, Xerox Cor-
poration, Adobe Systems, Hewlett-Packard,
March, 1995.

[16] Schonwilder, J. and F. Strauss, “Next Genera-
tion Structure of Management Information for
the Internet,” Proc. Tenth IFIP/IEEE Workshop
on Distributed Systems: Operations and Man-
agement, pp. 93-106, Springer Verlag, October,
1999.

[17] Case, J., K. McCloghrie, M. Rose, and S. Wald-
busser, “Management Information Base for Ver-
sion 2 of the Simple Network Management Pro-
tocol (SNMPv2),” RFC 1907, SNMP Research,
Cisco Systems, Dover Beach Consulting, Inter-
national Network Services, January, 1996.

2001 LISA XV — December 2-7, 2001 — San Diego, CA

Specific Simple Network Management Tools

119

120 2001 LISA XV — December 2-7, 2001 — San Diego, CA

