
USENIX Association

Proceedings of the
LISA 2001 15th Systems

Administration Conference

San Diego, California, USA
December 2–7, 2001

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

The Arusha Project: A Framework for
Collaborative Unix System Administration

Matt Holgate – University of Glasgow
Will Partain – Arusha Project

ABSTRACT

The Arusha Project is an independent open-source project centered on the premise that the
best hope for Unix system administration at modest-sized sites is through large-scale Internet-wide
collaboration. We present a simple object model as a thinking tool, and an XML-based
configuration language as a concrete notation for expressing system-administrative facts. We
show how this framework allows a gentle evolution from current practices, but gets us quickly to
very powerful ways of working.

Introduction

Fifteen years ago, people would stare at you
blankly had you suggested a major operating system
might be written by a few hundred people scattered
around the world in their spare time (more or less).

Today, people stare at you blankly if you suggest
that many thousands of Unix system administrators1
might manage their sites collaboratively, with no orga-
nization to ‘set standards’ and no single concept of
what ‘good’ administration is. Welcome to the central
idea of the Arusha Project!

The Arusha Project (ARK2) is an independent
‘itch-needing-scratched’ open-source effort that
sprung up in Glasgow, Scotland, in 1998. Whether it
will see its vision of rampant collaboration fulfilled is
a mostly sociological matter.3

For system-administrative collaboration beyond
a well-tuned mailing-list, a more formal lingua franca
(a ‘trade language’ used between people of diverse
mother tongues) is essential. The core ARK technol-
ogy, its configuration language, is our contribution to
this end. The ideas behind it are innovative, and its
design is a delicate brew of minimalist choices.

This paper outlines the context that we care
about, followed by a sneak preview of our final
results. We then set out some key engineering choices,
plus a word or two about the wider collaboration pic-
ture. The ARK configuration language is the main
technical content, followed by a review of what we
gain, collaboratively speaking.

The View From Mount Meru4

The Arusha Project is hugely informed by its tar-
get context, so it is worth explaining that in some detail.

1Hereafter, just ‘administrators’ (and ‘administration,’ ‘ad-
ministrative,’ . . .).
2‘ARK’ is Arusha’s airport code (Arusha airport, not Kili-

manjaro International, JRO). We use ‘ARK’ and ‘the Arusha
Project’ interchangeably.
3Peopleware argues convincingly that ‘technology’ and

‘process’ are always less important that ‘people’ issues in a
technical endeavor [DeM87].

Picture: To your left you see a pile of just-deliv-
ered Unix workstations (and servers, and networking
bits, and . . .), and to your right you see a marauding
herd of users with work to do. You, the glorious
administrator, are to assemble the pile of boxes to your
left into the most important tool of the mob to your
right, helping them toward staggering, competition-
wilting job effectiveness.

Now move the clock forward by ten years. Most
of those original computers have been retired, replaced
spasmodically by others (budget gods willing). That
known-to-work-together pile of equipment has turned
into a made-to-work-together hodge-podge. Duct tape
has been used. People, too, have come and gone.

The administrator’s goal will not have changed.
The amalgam of equipment should still comprise a
single ‘tool’ that is perfectly tuned for its users’ effec-
tiveness. (Better than that, actually: a good system will
continuously anticipate the workplace’s needs a year
or two ahead.) All with great uptime, no unplanned
outages, perfect backups, and apple pie for all.

Our picture provides a formidable administrative
challenge in the context we see: 4-400 hosts, with a
comparable number of users in an innovation-oriented
workplace.5 Some employers (e.g., investment banks)
may spend enough money to collect a surfeit of heavy-
hitting administrators. Other employers may be wise
or lucky enough to hire clever LISA readers. But, all
too often, you will find one-or-a-few under-resourced
administrators doing their best but not winning. If you
hear the phrase, ‘‘We spend all our time fire-fighting,’’
then you have found our target audience.

Our beleaguered fire-fighters will be doubly
frustrated if they are cursed by wanting to aim high:

4Arusha is a town in northern Tanzania that sits at the foot
of Mt. Meru, which is 14,979 feet high, the fifth highest
mountain in Africa. What better place for a general
overview?
5Such a workplace benefits from a rich and arguably over-

provisioned computing environment, with considerable in-
formation flow and exchange.

2001 LISA XV – December 2-7, 2001 – San Diego, CA 187

The Arusha Project: A Framework for Collaborative . . . Holgate & Partain

wanting to build a wonderful system. (And is it fun to
do anything else?)

We now outline some of the main problems
(labeled with P-n) and goals (G-n) that face our
overeager fire-fighters. (The labels are so we can refer
back to them.)
P-1 Complexity is unavoidable: No matter how you

go about it, 4-400 Unix hosts, well stitched
together, will make for a complex system; and
managing complexity well is hard work.

P-2 Mediocrity is natural: A modern Unix system
is composed of dozens, if not hundreds, of sub-
systems (kernel, DNS, sendmail, RAID, print-
ing, . . .), each of which is a complicated beast.
You can often make a Good Living Indeed by
being seriously good at just one of these sub-
systems. An administrator who spends a morn-
ing with one of these subsystems has to accept
that s/he is probably mediocre at it.

P-3 Wayward buses are a threat: It is all too easy
for essential site knowledge to live only in the
head of one administrator, but if s/he is run over
by the proverbial bus . . .

P-4 Isolation: In our target context, an administra-
tor often works alone, or a small team works at
a level far below ‘critical mass.’6 Solutions,
scripts, documents, etc., are unlikely to receive
any independent scrutiny; this is not a recipe
for robust and powerful systems.

P-5 Wheel reinvention: This tendency is fairly natu-
ral in an isolated systems ecology, and human
hubris tends not to help. Also, the site-specific
nature of scripts that administrators write weak-
ens their value as reusable components.

P-6 Administration is more than fiddling with /etc:
Just as there is more to software development
than design and coding, there is more to admin-
istering a Unix system than managing hosts,
users, and software applications.
Administrators have lots of other ‘things’ to
manage: vendor records, maintenance con-
tracts, old purchase orders, licenses, serial num-
bers, spare-parts inventory, helpline numbers
and addresses, e-mail about all of the above,
and so on.
One may choose to have no formal manage-
ment of such ‘things,’ with the attendant risks.
However, as soon as you turn such information
into bits to be cared for, you have entropy (or
‘bit rot’) to worry about. Phone numbers
change, new releases come out, the purchasing
department ‘improves’ their procedures, etc.

P-7 Systems have a multi-decade lifespan. Comput-
ing infrastructures tend to be evolving, long-

6We define a team at ‘critical mass’ as having enough
collective brainpower to get on top of the problems imme-
diately at hand, and to have enough cycles left over to en-
gage with the wider world (e.g., read LISA proceedings)
and to do some speculative projects, to explore new tech-
nologies, etc.

lived structures. It is not rocket science to
spend lots of money this year and have a great
system for users this year. What is a real
achievement is to keep entropy at bay for ten or
twenty years and still have a sweet system run-
ning, budget vagaries and turnover vicissitudes
notwithstanding.

P-8 Administrators are not, by and large, program-
ming-enthralled. Administrators admire a good
Perl script as much as the next guy, and are
more than willing to roll up their sleeves and
sling a little code. But tell them that they ‘only’
need to grasp (say) Hindley-Milner type infer-
ence [Mil78] to make some Great Leap For-
ward, and they will (mostly) respond, ‘‘No
thanks.’’

P-9 Working examples to learn from are rare. Many
administrative tasks, e.g., setting up a mailing-
list server, are an amalgam of small tasks. The
README file typically says, ‘‘You could do
this, or perhaps that.’’ What you really want to
know is what did someone, anyone, actually do
to complete the job. Even better would be sev-
eral real, working, non-obsolete examples to
study and work from.

G-1 Administration should be ‘site-at-a-time.’ If
your administrative gestures (running a com-
mand, clicking a GUI button, . . .) have small
effects, e.g., adding a single line to a file on one
host, then it takes many gestures to do the job
(low productivity). We want high-impact ges-
tures that make something true for the whole
site. But more important than automated ways
of doing things is thinking about the system in
‘site-at-a-time’ ways. (This is the same impulse
as the ‘infrastructures’ work [Tra98].)

G-2 All added-value matters. Recall our initial pic-
ture of just-delivered boxes to the left, users to
the right . . . We consider all ‘value-adding’
activities that lead to a useful-to-users system to
be ‘system administration’ and therefore within
the Arusha Project domain.
Setting /etc/resolv.conf correctly for all hosts is
in play (nothing new there . . .), but so is the
hpux-admin article about kernel tuning that you
saved. So are notes of a phone call to Sun sup-
port. All are part of the total ‘added value’ that
makes the system what it is.7
This goal says that we need something analo-
gous to the ‘methodologies’ of the software
domain. The observation there is that software
development is much more than just frenetic
coding, and all of the many other artifacts and
activities that go into making software (require-
ments gathering, unit testing, project plans,

7Aside: this paper concentrates on what we do to the box-
es on the left in order to induce great work in the user pop-
ulation. Actually, we consider it equally within an admin-
istrator ’s remit to Do Things to users (training, cajoling,
altered work practices, new ways of thinking, etc.), if that
makes the total result better.

188 2001 LISA XV – December 2-7, 2001 – San Diego, CA

Holgate & Partain The Arusha Project: A Framework for Collaborative . . .

etc.) need to be ‘managed’ and dealt with inside
some overall ‘process.’8

G-3 Simplicity. In this line of work, simplicity of
design and implementation is invariably
rewarded.

G-4 A system should have its ‘source code.’ We
want as much of administrators’ ‘added value’
to be expressed as bits-on-disk as possible, if
only to avoid the Wayward Bus problem (P-3).
We view the bits created directly by administra-
tors (scripts, notes, e-mail, web pages, etc.) to
be the source code for the system.

Of course, the idea of ‘source code’ implies
something stronger: with nothing but the source
code and raw vendor-supplied hardware/soft-
ware, the overall system should be entirely
reproducible.

G-5 Once and Once Only. Just as duplicate code is
suspect in programming, a system’s source
code should have the same ‘‘once and once
only’’ property.9 If a site has a hub-and-clients
sendmail configuration, that should be
expressed in one piece of ‘source,’ and not in
files scattered hither and yon. It is good to look
in a single directory and be able to say, ‘‘That is
all there is to know about our sendmail setup’’;
it is downright perverse to cut-and-paste send-
mail.cf fragments from host to host. That is
malignant source-code duplication.
And if saying something once per site is good,
once per planet is even better.

G-6 It’s great for sites to be different. A common
impulse in administration is to ‘standardize’
(hardware, software, people, . . .), nearly always
as a way to cut costs. The notion is not entirely
without merit.
‘Standardizing’ often bumps into an organiza-
tion’s Immovable Local Realities (ILRs). These
are less-than-ideal local facts or components
that simply must be factored into any system
solution. Examples might include: poor cable
ducts, a cantankerous old plotter that is essen-
tial to the enterprise, some key software whose
supplier has long-since gone out of business.
ILRs often guarantee that administrators must
deal with ‘not as standard as we’d hoped’ solu-
tions.

Another worry with ‘standardizing’ is that it
increases the risks associated with single-ven-
dor solutions. This year’s ‘obviously the way to
go’ can crumble if your vendor loses a few key
people, or stumbles into an unfortunate lawsuit.
A deeper problem with ‘standardizing’ is that it

8Actually, we are profoundly skeptical about the conven-
tional ‘processes’ and ‘methodologies’ of the software
world. But you are going to have an administrative
‘methodology,’ whether you call it that or not; so you
might as well try for a good one.
9‘‘Once and once only,’’ usually written ‘OAOO,’ is a

buzzphrase of Extreme Programming [Bec99].

is often at the expense of competitive advan-
tage. If you are committed to making your
users more effective than the competition, you
will have to supply something extra, something
different that the other guys cannot just order
off the web. Decreeing ‘‘A Windows PC for
everybody!’’ is not an option that your competi-
tion somehow stupidly overlooked.

G-7 Presentation matters: While there have been
many Unix sites that were rigorously managed,
there have been many fewer where this was
manifestly obvious to someone other than the
administrator who did the work.

Cairo10

We have established a setting for ARK, and will
shortly describe the ARK configuration language and
‘engine.’ But, you cry, ‘‘Cut to the chase scene! What
might I do with this stuff at my site?’’ Here are some
deeply hypothetical examples, barely explained.

Build all packages for all hosts (even if of
diverse platforms):
ark package install ALL

Verify the configuration of all Solaris hosts:
ark host verify sparc-solaris

Check that local mailing lists only have valid sub-
scribers:
ark maillist chk-valid local-lists

Any support contracts about to expire?
ark support-contract list-expiring ALL

Notice how many kinds of administrative ‘added
value’ are being managed in a consistent way.

Crucially, we want these (and many other) pow-
erful ‘site-at-a-time’ commands to incorporate both
local ways of working and top-quality ‘patterns’ from
respected ARK sites around the world.

We hasten to add that this kind of power does not
fall ready-made out of an ARK tarball. You must build
up an ARK description of your site; but this local
effort to make such powerful commands possible is
modest. At one of our real sites, an average package
(file) clocks in at 20 lines (690 bytes), a host at 32
lines (1140 bytes), and a ‘disk chunk’ [think of an
automount-map entry . . .] at nine lines (295 bytes).
Often, even these small files can be copied from a col-
laborating pal.

Volcanic Ash11

Our context and goals make for a big picture.
Happily, the Arusha Project is not about filling in the
whole picture; rather, we provide a framework within

10Arusha lies about halfway along the Cape-to-Cairo over-
land route, which is the direction most people do it. Cairo is
their ultimate goal.
11The ground beneath your feet in Arusha is a powdery

greyish volcanic ash; we hope the foundations of the Arusha
Project, sketched in this section, are more solid.

2001 LISA XV – December 2-7, 2001 – San Diego, CA 189

The Arusha Project: A Framework for Collaborative . . . Holgate & Partain

which cooperating administrators world-wide can set
about painting the canvas. Still, even a framework
must make some up-front (engineering) choices that
affect its shape and scope.

We first review a few simple pragmatic choices,
noting how they tie into our problems and goals.

Small sites: Our target is comparatively small
sites (4-400 hosts), and scaling issues do not keep us
awake at night. Lots of people target the single-host
site, and others are better placed to tackle the Big Sites
(‘enterprises’).

High on the food chain (i.e., existing tools): We
strongly prefer to build on existing tools (notably the
standard Unix utilities), especially for the heavy-lift-
ing parts of administrative tasks (P-5).

For scripting, administrators should still be able
to use shell/Perl/Python. They don’t have to learn a
new language, throw out their old stuff and start again
(P-8).

Textual tools must suffice: Administrators
sometimes work with the world crashing around them.
They must not be forced to rely on an elaborate soft-
ware scaffold to get any work done.

Our central choice is unsurprisingly:

Internet-wide large-scale collaboration: We
simply cannot see any other way for administrators at
small sites to produce top-quality results. (P-4)

Other basic design choices follow from our col-
laboration imperative.

Separate mechanism and methods: Our ‘it’s
OK to be different’ goal (G-6) means that the core
ARK machinery needs to provide a mechanism that
doesn’t constrain the methods used in administration.
Sites ought to be able to pursue different policies,
architectures, and/or methods, yet still be able to
express their solutions in an ARK framework.

Reuse must be lavishly supported: Good ways
to reuse administrative solutions (across organiza-
tional boundaries) are essential; otherwise, sharing to
overcome administrator isolation (P-4) clashes with
the need for site-specific solutions (G-6).

Not all-or-nothing: ARK must not be an all-or-
nothing proposition. If the only way to ‘get into’ the
Arusha Way is to start building a site over again,
administrators will (rightly) walk on by.

Object orientation: We need some extra think-
ing machinery. For this, we steal a simple form of
‘object-oriented’ thinking from the software world. It
is ubiquitous, universal in application, and is essen-
tially a complexity-managing tool. (P-1)

Using XML as the main notation: We need
some extra notational machinery. For this, we make
simple use of XML [XML]. It has the merit of being a
standard, and of perhaps being faintly familiar to
administrators. The tidal wave of XML-related tools
should make it easier to get presentation right as well.
(G-7)

XML’s extensibility means that different sites
can use different tags to encode their unique informa-
tion. And the way XML can wrap around other pro-
gramming text means that the ‘business end’ of a solu-
tion can use a specialized tool (e.g., PIKT [Ost]) or
remain in a familiar scripting language (P-8).

What we value most about XML is its semi-
structured nature: the level of precision of a descrip-
tion can range from utterly precise (very structured) to
exceptionally loose (unstructured) . . . For example,
here is an install method that is precise:
<install><code>
cd /build/dir/foo
/usr/bin/make install
</code></install>

And here is a much looser ‘equivalent’:
<install><code lang="message">
You will need to be in the directory
where foo is built. Typing
‘make install’ should do it.
</code></install>

XML lets us express all of our ‘added value’ (G-2) but
without forcing us to do so rigorously. ARK can then
support an evolution from informal solutions (proba-
bly text) to precise ones (probably code). (P-7)

All of that said, we are not that excited about
XML.

Tribal Matters

The Arusha Project (ARK) is substantially a
social enterprise, and that is not the subject of this
paper. But we do need to mention ‘teams’ and com-
ment upon the old ‘but we cannot give away our
secrets’ chestnut.
Teams

The team is the basic social unit in ARK. All
code is tied to some team. A site team produces and
manages the code specific to a site. A methods team
produces and manages code that is site-independent
and which (presumably) promotes particular ways of
doing administrative things; the team’s members
might share an office, or be scattered around the
world. And finally, there is at least one mechanism
team: the base team, also called ‘ARK,’ provides the
ARK engine.

How teams go about their business (what they
promote, how they distribute their bits) is entirely up
to them. Teams may have profoundly different notions
of administration. A healthy Arusha world would
comprise many site teams, possibly just the one mech-
anism team, and perhaps four or five general (how-to-
run-a-site) ‘methods’ teams. There might also be quite
a few specialized teams that target a specific domain,
e.g., how to run a particular flavor of website.
Collaboration vs. Competition

The ARK collaboration imperative may seem at
odds with a goal of seeking competitive advantage
through better computing infrastructure.

190 2001 LISA XV – December 2-7, 2001 – San Diego, CA

Holgate & Partain The Arusha Project: A Framework for Collaborative . . .

There are some aspects of administration you
would not reveal to a competitor: your exact mix of
tools, your /etc/hosts.allow file, anything related to your
core competence, and so on.

But it is simply delusional to think that your
standard-issue Apache configuration (say) somehow
represents a rival-clobbering breakthrough. On the
contrary, if the configuration was set up by a solo
administrator without any peer review (P-4), the
quicker you expose it so that a fellow ARKer can
knock off the rough edges, the better.

Strangely, we have a hunch that Internet-wide
administrative collaboration may work better than that
within an organization. Inside a company, interactions
(between, say, ‘satellite’ and ‘corporate’ IT groups)
may be clouded by issues of funding, status, or politi-
cal advantage. Meanwhile, the stranger in Croatia who
critiques your Big Brother setup is probably a disinter-
ested party.

Even if publicizing considerable administrative
work meets with a collaborative deafening silence, there
is still one certain beneficiary, and that is the provider:
we all do better work if we know others will see it.

Swahili12

The single unavoidable piece of Arusha technol-
ogy is the ARK configuration language and the
engine that interprets it.

Things, Fields, Values (and More)

The ARK configuration language has an XML
syntax and can describe any entity an administrator
cares about. The following figure shows (contrived)
examples of the unavoidable entities (or things, in
ARK-speak) – teams, hosts, and packages.13 A team:
<team name="glasli1">
<contacts><list>
<item>partain@dcs.gla.ac.uk</item>

</list></contacts>
<admin-group>sliadmin</admin-group>
</team>

A host:
<host name="slicker">
<status>active</status>
<ip-address>130.209.242.51</ip-address>
<history><doc format="html"><![CDATA[

2001.09.04: Rebooted (matt).
2001.03.10: Add 2nd disk drive.

]]></doc></history>
</host>

A package:

12Swahili is the lingua franca (trade language) of eastern
Africa. Though it is mother tongue of some people who live
on the coast, most Arusha dwellers would speak another lan-
guage at home and use Swahili in civic life.
13All XML examples are slightly simplified compared to

Real Life.

<package name="textutils--2.0.11">
<status>revealed</status>
<hosts-supported><list>
<item>sparc-solaris7</item>

</list></hosts-supported>
</package>

All instances of an ARK ‘thing’ (e.g., all hosts)
are said to be of the same type.

Besides the unavoidable types (teams, hosts,
packages), a site may choose to manage other things:
users, support call-outs, disks, network ports, . . . the
ARK engine is domain-agnostic. Some fictional exam-
ples of such things might be:

<user name="matt">
<status>active</status>
<cron-allow-fragment>
<constraint>
<host-spec>slinger</host-spec>

</constraint>
<string>matt</string>

</cron-allow-fragment>
</user>

<support-contract name="hp">
<terms>next day</terms>
<phone>+44 800 555 4321</phone>
<email>none</email>
<expires>2002.03.31</expires>
</support-contract>

Every thing has zero or more fields. For exam-
ple, the <support-contract> example above has an
<expires> field. Fields are not nested.

An individual field, whatever thing it is part of,
has a structure drawn from a fixed set of elements
(G-3). (That is worth saying again: All fields of all
things have the same internal structure!) The most
important field elements are:

A value: A value can be one of: a string, a list, a
table (key-value pairs), a documentation fragment
(various formats), or some code (Bourne shell,
Python, or Perl). Preceding examples show at least
one of each. A value can be nested in obvious ways,
e.g., a list of tables of lists of lists of strings . . .

Parameters: Values, most notably code, can be
parameterized; this is a key reuse weapon, and essen-
tial to ‘‘once and once only’’ source code (G-5). So,
for example:

<do-it-now>
<param name="ECHO">/bin/echo</param>
<code>$ECHO "I’m doing it now"</code>

</do-it-now>

Parameters usually have defaults, as in this
example.

Constraints: A field’s constraints guard its
value; if the constraints are not satisfied (or cannot be
made so), then the value/parameter-settings/etc. do not
apply. Consider:

2001 LISA XV – December 2-7, 2001 – San Diego, CA 191

The Arusha Project: A Framework for Collaborative . . . Holgate & Partain

<used-for>
<constraint>
<host-spec>freebsd</host-spec>

</constraint>
<string>Web serving</string>

</used-for>
<used-for>
<constraint>
<host-spec>rhlinux</host-spec>

</constraint>
<string>SETI@Home</string>

</used-for>

If we ask for the <used-for> field in the context of a
freebsd host, we get one string; if an rhlinux host, we
get another.

Constraints are normally intra-type; for example,
one package method depends on another. But con-
straints can also be cross-type; for example, a host
method could depend on a user’s attribute or a ven-
dor ’s method.
Prototypes

You should now have some notion of how you
might ARKishly describe all of your hosts (for exam-
ple). For each machine, you would prepare an XML
file (<host> . . . </host>), each of which might have
many fields, e.g., <ip-address>, <serial-num>, <disk-con-
fig>, <os>, etc.

<host name="lab-machine" prototype="yes">
<tagline>
<param name="what" default="no" />
<string>A @param:what@ in Lab 4</string>

</tagline>
<disk-config><table>
<entry name="boot"> Quantum 9902</entry>
<entry name="other"> IBM 4/4432</entry>

</table></disk-config>
<os>NetBSD 1.4.3</os>
<restart-sendmail><code>
kill -HUP ‘/bin/cat /var/run/sendmail.pid‘
</code></restart-sendmail>

</host>

Listing 1: A proto-host expressing common knowledge.

This task would be hugely repetitive, because
many machines would have the same elements for the
same fields. The solution is to create a proto-host (a
specific form of proto-thing) that expresses the com-
mon knowledge; e.g., see Listing 1.

Now, all the hosts that have these properties (pre-
sumably all ‘lab machines’) can have this (proto-)host
as a prototype; for example:
<host name="slibber">
<prototypes>
<prototype team="ours"

name="lab-machine">
</prototypes>
<ip-address>192.10.168.4</ip-address>
<tagline>
<param name="what">workstation</param>

</tagline>
</host>

‘Things’ as Objects
The ‘prototypes’ idea is drawn from the world of

classless object-oriented programming languages
[Bor86]. By ‘object,’ we mean an opaque entity that
presents an interface to the world through public
attributes (data about it which you can query) and
methods (code that makes it ‘do something’).

The idea of a prototype-based object is incredi-
bly simple: you create a new object by first copying
another, and then tweaking the new object to make it
unique. The object, or objects, that you copy (from)
are the prototypes for the new object.

This is exactly what we are doing with ARK
things. In the example above, the host named slibber is
created by first cloning the prototype host lab-machine,
and then adding/overriding-with its own unique data,
notably the field <ip-address>.

An ARK thing (with prototypes) fits our defini-
tion of ‘object,’ above. A field with a non-code value
is an attribute, and a field with a code value is a
method.

For example, we can query our host object slibber
for its attribute ip-address (a string), or for disk-config (a
table). Or we can invoke one of its methods, perhaps
restart-sendmail (implemented with a shell script).

A thing can have zero or more prototypes. A
proto-thing can itself have prototypes. Exactly how
this works out is explained later.
Inheritance

In our example above, the host slibber inherits the
value its disk-config field from the lab-machine proto-
host. Inheritance is a fundamental property of objects
which helps to control complexity: we push com-
mon/reusable attributes and methods into the base
(prototype) objects, which make them widely avail-
able to their inheritees. (P-1, G-5)

Combining this inheritance with parameterized
values gives easy reuse of administrative solutions.

In ARK, field fragments are the only inherited
entities. Thanks to our classless prototypes mecha-
nism, there is no complex type/class structure to worry
about as well (G-3).

192 2001 LISA XV – December 2-7, 2001 – San Diego, CA

Holgate & Partain The Arusha Project: A Framework for Collaborative . . .

This style of ‘value inheritance’ is close to that in
Couch’s Babble [Cou00] and that recently explored by
Anderson [And00b].
Textual and Semantic Entities

A quick review: what do we type (textual), and
what do we think about (semantic)?

A ‘thing’ is a semantic entity to which we apply
‘object’ thinking. The total textual material that com-
prises that ‘thing’ comes from potentially-many files,
one per thing or inherited proto-thing. In our example,
two files: slibber.xml and lab-machine.xml.

Similarly, a ‘field’ is a semantic ‘atom,’ the
smallest piece of a ‘thing’ that we can get a hold of.
The total textual material that comprises a ‘field’ is
one or more like-named field fragments, plus the pro-
totype links that connect them. In our slibber example,
its <ip-address> field comes from one field fragment.
However, its tagline field comes from two fragments,
the partial fragment (no value) in slibber.xml and the
completing fragment in lab-machine.xml.

Crucial point: even the smallest entity in ARK
land, a field, can be built up collaboratively by differ-
ent teams scattered around the world!
Other Language Complexities?

We have glossed over some details of the config-
uration language, mostly unexciting details of what
you can do with a <code> value. We are sometimes
asked for further details about ‘modules,’ or include
files, or DTDs, or other suspected language facilities;
in short, ‘there must be more to it’ . . .

No, that is all there is (G-3). (For a complete
rundown on field elements, see the language manual
[ARK].)
Prototypes As Matching and Naming Mechanisms

A prototype name can be a pattern against which
we match ‘real’ (non-prototype) things. When we had
a <host-spec>freebsd</host-spec> constraint, it simply
meant that any real host which has the freebsd proto-
host as one of its prototypes will match.

Similarly, naming a prototype thing is equivalent
to naming all of the real things that have that as a pro-
totype.
Prototypes as Cross-Planet Inheritance

Notice that every <prototype> ‘link’ must specify
a team (‘.’ is shorthand for the prevailing site-team).

This team can be (and ideally will be) a global
ARK team. By using the prototype things it supplies,
you take advantage of others’ expertise that may bene-
fit your site’s requirements. You also maximize the
pool of people who will be interested in (and critique)
your own contributions.

We like the idea that people around the world
work to improve our systems while we are asleep.
The Operational View

How do we write code to use the ARK objects
(things), to access their attributes and invoke their

methods? In Python, you write code that looks like
this:
create a host "object" for
our ’slibber’:
slibber = ark.host.ArkHostsMgr(). \

lookup(’slibber’)

access and print out its IP#:
print slibber.ip_address()

run its restart-sendmail method:
slibber.restart_sendmail()

This is object-oriented programming at its simplest.
What lies behind these rather lovely method calls is the
ARK engine, which scrambles over <prototype> ‘links’
to create the illusion of the built-up-by-copying objects.

The prototype links in an ARK ‘thing’ comprise
a directed acyclic graph; the nodes visited by doing a
depth-first left-to-right traversal give a thing its proto-
type path.

Operationally, the ARK engine walks along a
prototype path. This has the same semantics as actu-
ally copying proto-things, but is more efficient.

The executive summary version of the algorithm
is: walk the prototype path looking for the field of
interest, checking constraints and collecting parame-
ters as you go, returning immediately when you find a
field fragment with a value. (For tables, we keep going
and ‘merge’ all of the entries found.)

The Command-Line View
We provide a command-line tool ark, with which

we can ‘fire’ common methods for ARK objects. The
syntax is: ark type method [options] [thing1
[thing2 . . .]].

The examples given earlier should now make
sense!

Big Game Spotted14

We have described enough of the ARK configu-
ration language to show why it is effective ‘glue’ to
hold together world-wide collaborative administrative
effort, as well as the merits of our simple object
model. We note connections to the problems (P-n) and
goals (G-n) of the first section.

Collaborative Wins
Domain- and methods-agnostic: The ARK con-

figuration language has virtually no system adminis-
tration wired into it. Choosing to express solutions
with it in no way compromises local ways of working.

Optional: Managing aspects of your site with
the ARK machinery is optional. If you don’t want
<vendor>s as part of your ARK world, then don’t.

Evolutionary: You can start small with ARK,
and grow bigger (P-7). Also, you can bring non-ARK

14Arusha is awash in safari operators, as it is the ‘jumping-
off point’ to all of northern Tanzania’s game parks. Most
tourists hope to see the Big Five: buffalo, elephant, leopard,
lion, and rhino.

2001 LISA XV – December 2-7, 2001 – San Diego, CA 193

The Arusha Project: A Framework for Collaborative . . . Holgate & Partain

bits of your world into ARK play quite easily. Con-
sider this variant on the method we saw earlier:
<restart-sendmail><code>
/usr/local/sbin/restart-sendmail
</code></restart-sendmail>

(We presume the referenced script is pre-ARK.)

Lingua franca, not mother tongue: Though we
envisage a strange administrative world of ‘objects,’
‘methods,’ etc., we expect this to materialize mostly
by straightforward ‘wrappers’ around conventional
solutions. The ‘wrapping’ is this funny ARK stuff, but
the ‘business end’ is still your favorite scripting lan-
guage (P-8), or Cfengine, Nessus, RPM, Swatch, or
any other tool of your choice.

Simple pragmatics: ARK uses a dull form of
XML, and requires little more than a text editor and a
Python interpreter. Most fields in most XML files are
a few lines long, particularly for site teams, which typ-
ically inherit most of their smarts from a global team.
(G-5)

Simple mental model: The ARK prototype-
based ‘object’ model is as simple as they come, but
packs a heavy punch (G-3). It means we can think
about all aspects of a site’s administration in a uniform
framework.

Simple data: Strings, lists, tables, bits of script-
ing or documents . . . not a lot to get your head around.

Rich reuse: The basic way that a field become
reusable is by putting it into a prototype thing. As a
field is pushed up a prototype tree, it applies to more
and more inheriting ‘objects.’

If we then parameterize some aspects of inherita-
ble attributes/methods, their reusability is considerably
enhanced. Our experience is that you do this slowly, as
the need arises.

A small unit of collaboration, the ‘field’: Col-
laboration does not work if the parties have to agree
on too much up front. The smallest ‘atom’ of ARK
collaboration is a single field of a particular type of
thing. Sites can do quite different things with ARK
<host>s, but if they can agree on just a few fields (e.g.,
<ip-address>, <gateway>, and <dns-servers>), useful col-
laboration can follow.

ARK is easy to learn: Our experience is that a
competent Unix administrator can learn everything
they need to know about the ARK configuration lan-
guage in half a day.

Object Wins

Our dominant mental metaphor, of ‘objects’ with
attributes and methods, is a powerful (and well-
known) way of thinking about systems. It attracts ben-
efits of its own.

Universal: The ARK configuration language can
describe any aspect of a system that you care about.
(P-6, G-2)

Should you choose to record a preponderance of
administrative ‘added value’ with the ARK language,
you then have comprehensive ‘source code’ for your
system (G-4), which is a key defense against adminis-
trators falling under buses (P-3).

If many sites record their solutions in the ARK
language and make them available to others, then we
have a ready source of complete, accurate, probably-
automated examples that administrators can study
(P-9).

Abstracted away from immediate file con-
tents: Because ARK is about ‘objects’ rather than
files and bytes, it tends to operate at a high level of
abstraction. ‘Site-at-a-time’ operations (G-1) are the
most obvious manifestation of this; for example con-
figuration files that require a different format for each
platform can be produced from a single object repre-
sentation.

Complexity control: The fundamental strength
of object thinking is managing complexity. We try to
push complexity ‘upward’ into a prototype, so that
many things can inherit from it (spreading the com-
plexity cost over more things) (P-1).

If we push the complexity into a global team, we
hope to find ourselves working with other clever peo-
ple (in the relevant team) to keep the fancy stuff right.
‘‘With enough eyeballs, all bugs are shallow’’ (Linus’s
Law, according to Raymond [Ray00]). This is how
you can beat the inherent mediocrity (P-2) in a small
isolated administrator team (P-4).

Will They Bite?

So, will administrators working in our context
bite and do the ARK thing? As we have said, we are
sure the answer is more sociology than technology.
One of the biggest obstacles today is IT management
that optimizes for ‘cost’ and has never thought of opti-
mizing for ‘effective.’

Administrators will need to learn enough XML
to talk the ARK talk; they probably know a little
HTML already, so it is not a stretch.

Administrators really should know how to write
Bourne shell scripts, ARK or not. Perl and Python are
optional.

Administrators are slow to adopt any site-config-
uration tool, because they (rightly) know that it is a
decision that will be hard to escape. We’ve tried to
make ARK suitable even for glacially-paced incre-
mental adoption.

Related Work

There is a flotilla of tools that offer comprehen-
sive management of a single host: HP’s SAM, IBM’s
SMIT, Linuxconf, and many others. These are all
nearly useless in our context.

The literature (and world) is crawling with ‘site
configuration’ systems; Evard’s 1997 paper [Eva97] is

194 2001 LISA XV – December 2-7, 2001 – San Diego, CA

Holgate & Partain The Arusha Project: A Framework for Collaborative . . .

a particularly useful review. On the specific matter of
configuration languages (notations), Paul Anderson’s
survey [And00b] is a good overview of the territory.
He draws on the venerable Edinburgh work on LCFG
[And00a], as well as Cern’s SUE [SUE], Cfengine
[Bur] and others. If you venture over to the world of
software deployment, there are lots of related things; a
good starting point is the work by Hall, et al. [Hal98].
Moving not much further afield and you reach the
bewildering land of ‘software configuration manage-
ment’ . . . [App]

Our ARK work tends to differ from other ‘site
configuration’ tools in that they make no upfront pro-
vision for collaboration across organizational bound-
aries. Couch’s DISTR system [Cou97] is an exception,
with collaborative concerns very similar to ours, but
limited to file distribution. Another system in a com-
parable vein is ‘PowerAdmin’ [Pow], a customizable
service that diverse groups within the University of
Michigan can ‘buy.’

There are many systems where a difference in
scale is apparent. In the high-performance computing
arena, there is much effort (and money being spent) on
computational grids, e.g., the Globus Project [Glo],
aspects of which are squarely in our domain, notably
the Metacomputing Directory Service (MDS). All-
inclusive commercial administrative tools, e.g., CA’s
Unicenter TNG [CA], HP’s OpenView [HP] and
Tivoli’s tools [Tiv] seek to cover the wide ground that
ARK does; again, however, such solutions tend to be
well beyond the means of our target audience (and
often platform-specific).

In his analysis, Evard [Eva97] suggests that the
‘‘systems administration community needs stronger
abstraction models.’’ We believe the ARK object
model contributes here. As mentioned before, both
Anderson [And00b] and Couch [Cou00] have dabbled
with a similar form of ‘value inheritance.’ We further
note that the FLASH project in Brazil also picks up on
object-oriented ideas, in a more complex way [daS98].

There are a few other systems that try to capture
constraints among configuration artifacts, as we do.
Ganymede [Abb98] is one example: it is a directory
service into which ‘local smarts’ can be programmed.
The work by Couch and Gilfix with Prolog [Cou99] is
another powerful (and scary) way to tackle such con-
straints. Again, if you move slightly further afield, you
find many comparable systems; one example is the
CML2 Linux-kernel configurator [Ray01].

Roads From the Arusha Clock Tower15

The Arusha Project (ARK) is not about produc-
ing a tool; rather, it hopes to be at the center of a

15The Arusha town center features a clock tower, next to
which is a signpost giving distances to other locations. What
with Arusha’s place along the Cape-to-Cairo route, the
places listed tend to the remote: London, Moscow, Cape
Town, etc.

maelstrom of collaborative system administration. The
core developers’ activity is driven by ‘scratching the
itches’ at their real sites, which may or may not have
value to others. We would hope that most Arusha
activity will evolve to happen well beyond our
purview.

One aspect of ARK that we expect to occupy us
for a while is the presentation (or documentation) of a
system (G-7). We think of it as bringing the literate-
programming impulse [Knu84] to the system source
code (as represented by the ARK XML files). (We
have a first-cut implementation, using the Webware
application server [Est01], also written in Python.)

The ARK configuration language is domain-
agnostic, and so the question arises: in what other
fields might it reasonably be applied? For example,
the ‘chipmake’ tool, for describing how to put together
a semi-custom chip, was scarily close to ARK in the
issues that it had to address [Hol00].

Summary

The Arusha Project (ARK) has a profoundly
ambitious goal of many thousands of Unix sites
around the world being managed in a collaborative
way.

We began this paper with a from-first-principles
analysis of our target context, reaching a set of goals
we would have for any system-administrative frame-
work. The ARK configuration language provides a
basis for meeting all of those goals. It is an XML-
notated lingua franca with which system administra-
tors can describe the value they have added to a col-
lection of raw vendor-supplied computing equipment.
Their descriptions are in terms of objects (‘things’),
with parameterized attributes (‘fields’) and methods
(fields with code values). We have a universal and as-
precise-as-you-like language for describing adminis-
trative activities (because of the semi-structured nature
of XML).

Our object ‘things’ are built up out of prototype
objects, possibly supplied by other teams, potentially
anywhere in the world. Administrators collaborate on
shared solutions insofar as they use (and work to
maintain) common prototype objects.

The ARK ‘object’ view of administration is
lightweight, builds on standard Unix tools, and allows
extremely varied uses, from do-just-one-specific-task
to run-the-whole-site.

The following ideas are unique to the Arusha
Project:

• Describing all administrative ‘added value’ in a
single notation (the ARK configuration lan-
guage

• Viewing these descriptions as objects which
link together across organizational boundaries;

• Advocating world-wide collaboration as the
basic way forward for Unix system administra-
tion.

2001 LISA XV – December 2-7, 2001 – San Diego, CA 195

The Arusha Project: A Framework for Collaborative . . . Holgate & Partain

Acknowledgments

The Arusha Project (ARK) is an independent
open-source project that has been based in the Com-
puting Science Department at Glasgow University. We
have received financial support for LISA-related
expenses from the Department (including some under
SHEFC RDG Project 85, ‘‘Design Cluster for System
Level Integration’’), and from Verilab (http://www.
verilab.com). We are very grateful to all concerned.

ARK work has origins in the glamake tool
(1997), which automatically built open-source soft-
ware for multiple platforms. The earliest (undis-
tributed) ARK code was written in Haskell [Has].
ARK was set up as a SourceForge project in January,
2000. (Hooray for SourceForge!)

A small army made this paper hugely better than
what we started with, including our LISA reviewers
and shepherds, and also David Partain, Jonathan
Hogg, Rolf Neugebauer, and Tommy Kelly. Thanks,
folks.

Status and Availability

The central Arusha Project website is http://ark.
sf.net/ . It includes instructions for getting any and all
ARK bits.

We recommend that prospective ARK users join
one or more of the ARK mailing lists. Also, the web-
site recommends some get-your-feet-wet activities to
try before you switch to an ARK lifestyle.

At time of writing, there are a few real produc-
tion Unix sites fully managed in the Arusha Way,
mostly in the chip-design (‘technical computing’)
arena.

Author Information

Matt Holgate is a Research Assistant on the
IDEAS project, which is funded by SHEFC RDG 130.
He is based in the Computing Science Department at
Glasgow University, Scotland. He is also a part-time
system administrator for Verilab, a Scottish hardware
design and verification company. He graduated with
an honours degree in Computer Science from Trinity
Hall, University of Cambridge in 1998. Contact:
matt@dcs.gla.ac.uk.

Will Partain is a graduate of Arusha School, Rift
Valley Academy, Rice University (BSEE), and Uni-
versity of North Carolina at Chapel Hill (Ph.D., com-
puter science). He was one of the original develop-
ment team for the Glasgow Haskell Compiler, at the
Computing Science Department, Glasgow University.
Contact: partain@dcs.gla.ac.uk.

References

[Abb98] Abbey, Jonathan and Michael Mulvaney,
‘‘Ganymede: An Extensible and Customizable
Directory Management Framework,’’ LISA 1998,
Boston.

[And00a] Anderson, Paul, and Alastair Scobie,
‘‘Large Scale Linux Configuration with LCFG,’’
http://www.dcs.ed.ac.uk/home/paul/publications/
ALS2000/ .

[And00b] Anderson, Paul, ‘‘A Declarative Approach
to the Specification of Large-Scale System Configura-
tions,’’ version 1.9, Discussion Document, 2001, http://
www.dcs.ed.ac.uk/home/paul/publications/conflang/ .

[App] Appleton, Brad, ‘‘The ACME Project: Assem-
bling Configuration Management Environments
(for Software Development),’’ http://www.enteract.
com/˜bradapp/acme/ .

[ARK] ‘‘The ARK configuration language manual,’’
http://ark.sf.net/ark-conflang.html .

[Bec99] Beck, Kent, Extreme Programming Ex-
plained: Embracing Change, Addison-Wesley,
1999,

[Bor86] Borning, A. H. ‘‘Classes versus Prototypes in
Object-Oriented Languages,’’ Proceedings of the
ACM/IEEE Fall Joint Computer Conference, pp.
36-40, 1986.

[Bur] Burgess, Mark, Cfengine, tool, http://www.iu.
hio.no/cfengine/.

[CA] Computer Associates, Unicenter TNG, tool,
http://www.cai.com/unicenter/ .

[Cou97] Couch, Alva L., ‘‘Chaos Out of Order: A
Simple, Scalable File Distribution Facility for
‘Intentionally Heterogeneous’ Networks,’’ LISA
1997, San Diego.

[Cou99] Couch, Alva and Michael Gilfix, ‘‘It’s Ele-
mentary, Dear Watson: Applying Logic Program-
ming To Convergent System Management Pro-
cesses,’’ LISA 1999, Seattle.

[Cou00] Couch, Alva L., ‘‘An Expectant Chat about
Script Maturity,’’ LISA 2000, New Orleans.

[daS98] da Silva, Fabio Q. B., Juliana Silva da Cunha,
Danielle M. Franklin, Luciana S. Varejão and
Rosalie Belian, ‘‘An NFS Configuration Man-
agement System and its Underlying Object-Ori-
ented Model,’’ LISA 1998, Boston.

[DeM87] DeMarco, Tom and Timothy Lister, People-
ware: Productive Projects and Teams, Dorset
House Publishing Co., 1987.

[Est01] Esterbrook, Chuck, ‘‘Introduction to Webware for
Python, 9th International Python Conference,’’ Long
Beach, California, March, 2001, http://webware.
sf.net/Papers/IntroToWebware.html .

[Eva97] Evard, Rémy, ‘‘An Analysis of UNIX System
Configuration,’’ LISA 1997, San Diego.

[Glo] ‘‘The Globus Project,’’ http://www.globus.org .
[Hal98] Hall, R. S., D. Heimbigner, and A. L. Wolf,

‘‘Evaluating Software Deployment Languages
and Schema,’’ Proceedings of the International
Conference on Software Maintenance, Novem-
ber, 1998; See http://www.cs.colorado.edu/serl/
cm/Papers.html .

[Has] ‘‘A Short Introduction to Haskell,’’ http://www.
haskell.org/aboutHaskell.html .

196 2001 LISA XV – December 2-7, 2001 – San Diego, CA

Holgate & Partain The Arusha Project: A Framework for Collaborative . . .

[Hol00] Holgate, M. and J. Hogg, ‘‘Chipmake: An
XML-based Distributed Chip Build Tool, 1st
ECOOP Workshop on XML and Object Technol-
ogy,’’ Sophia Antipolis, France, June 12, 2000.

[HP] Hewlett-Packard, OpenView, tool, http://www.
openview.hp.com/ .

[Knu84] Knuth, D. E., ‘‘Literate Programming,’’ Com-
puter Journal, Vol. 27, No. 2, pp. 97-111, 1984.

[Mil78] Milner, R., ‘‘A Theory of Type Polymorphism
in Programming,’’ Journal of Computer and Sys-
tem Sciences, Vol. 17, pp. 348-375, 1978.

[Ost] Osterlund, Robert, PIKT (Problem Infor-
mant/Killer Tool), tool, http://pikt.uchicago.edu/
pikt/ .

[Pow] ‘‘The ITD PowerAdmin service,’’ http://www.
umich.edu/˜gpcc/poweradmin/ .

[Ray00] Raymond, Eric, ‘‘The Cathedral and the
Bazaar,’’ http://tuxedo.org/˜esr/writings/cathe-
dral-bazaar/cathedral-bazaar/, 2000.

[Ray01] Raymond, Eric, ‘‘The CML2 Language: Con-
straint-based Configuration for the Linux Kernel
and Elsewhere,’’ http://tuxedo.org/˜esr/cml2/cml2-
paper.html, 2001.

[SUE] ‘‘SUE (Standard Unix Environment),’’ tool,
http://wwwinfo.cern.ch/pdp/ .

[Tiv] Tivoli enterprise management tools, http://www.
tivoli.com/ .

[Tra98] Traugott, Steve and Joel Huddleston, ‘‘Boot-
strapping an Infrastructure,’’ originally published
in the Proceedings of the Twelfth USENIX Sys-
tems Administration (LISA) Conference, Boston,
Massachusetts, 1998, http://www.infrastructures.
org/papers/bootstrap/bootstrap.html .

[XML] ‘‘Extensible Markup Language (XML),’’ http://
www.w3.org/XML/ .

2001 LISA XV – December 2-7, 2001 – San Diego, CA 197

198 2001 LISA XV – December 2-7, 2001 – San Diego, CA

