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The Maelstrom: Network Service
Debugging via “Ineffective Procedures”

Dr. Alva L. Couch — Tufts University
Noah Daniels — Analog Devices

ABSTRACT

The process of network debugging is commonly guided by “decision trees,” that describe
and attempt to address the most common failure modes. We show that troubleshooting can be
made more effective by converting decision trees into suites of “convergent” troubleshooting
scripts that do not change network attributes unless these are out of compliance with accepted
norms. ‘“Maelstrom” is a tool for managing and coordinating execution of these scripts.
Maelstrom exploits convergence of individual scripts to dynamically infer an appropriate
execution order for the scripts. It accomplishes this in O(#*) procedure trials, where n is the
number of troubleshooting scripts. This greatly eases adding scripts to a troubleshooting scheme,
and thus makes it easier for people to cooperate in producing more exhaustive and effective

troubleshooting schemes.

Introduction

In maintaining complicated service networks,
one pressing problem is to determine and actively
eliminate causes of network service disruptions. It is
currently easy to automatically detect network prob-
lems through a variety of monitoring techniques [14,
16, 28]. But taking the next step of automatically rem-
edying network problems has so far proven impracti-
cal. A human troubleshooter must often engage in
involved scientific inquiry to infer ‘causes’ from
observed ‘effects.” A complex problem can take weeks
to solve, and may be solved without ever revealing the
true ‘cause’ of the problem.

It is currently easy to automatically detect net-
work problems through a variety of monitoring tech-
niques [14, 16, 28]. But taking the next step of auto-
matically remedying network problems has so far
proven impractical. A human troubleshooter must
often engage in involved scientific inquiry to infer
‘causes’ from observed ‘effects.” A complex problem
can take weeks to solve, and may be solved without
ever revealing the true ‘cause’ of the problem.

While it may be argued that a well-designed net-
work and well-chosen hardware do not fail, this is cer-
tainly not true in an environment where one teaches
hands-on Computer Science. We face problems almost
daily with runaway processes, latent bugs in web
scripts, and other disruptions based upon student (or
faculty) error. Vendor-supplied servers crash due to
latent bugs ‘discovered’ by users toying with new pro-
gramming techniques. Cables are stepped upon and
equipment is abused. We cannot limit the capabilities
of users to prevent such failures without compromis-
ing our educational mission, so that we must react to
failures on an ongoing basis.

One problem with automating troubleshooting of
mission-critical network services such as http, ftp, imap,
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ssh, etc., is that these services typically depend upon
other base services (such as NFS, LDAP, database
servers, etc.) that must function before the externally
visible services will function. Network devices that
connect internal servers to one another must also be
examined during the troubleshooting process. Ideally,
to automate service troubleshooting, one must inte-
grate and coordinate procedures that analyze and
repair almost every device in the network, from server
processes down to switches. While it may be argued
that a network is poorly designed unless the prece-
dences between services are clearly defined and
unvarying, problems persist largely because we do not
fully recognize or understand the dependencies
between services.

Convergence

Troubleshooting is by nature a convergent pro-
cess where one only repairs a component if it seems
not to function properly. Monolithic tools such as
Cfengine and its relatives [2, 3, 4, 7, 8, 17, 18] attempt
to force every attribute of a given device into compli-
ance with a predefined operational policy. Most of
these tools are limited to functioning in environments
where one can compile and run programs, and cannot
be utilized to maintain closed-source vendor compo-
nents such as routers, switches, dialup servers, and so
on. Babble [10] provides the beginnings of a tool for
convergent administration of turnkey network ser-
vices, but is largely limited to conversing with and
controlling one device at a time.

Expanding these tools to cover the problem of
network-wide troubleshooting seems impractical.
They are already limited by their own size and com-
plexity. Some are perhaps reaching the limits of soft-
ware complexity from the standpoint of usability, pre-
dictability, maintainability, and adaptability to new
needs.
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In this paper, we study the potential for dividing
these currently monolithic administrative processes
into smaller pieces that work together to accomplish
the same goal. Tools designed to be maintained by a
small group of experts may require extensive effort
from the programmer who wishes to couple new and
reusable convergent processes into an existing tool
framework. It is more desirable to be able to con-
tribute independent processes that interoperate easily
with others without utilizing traditional software cou-
pling mechanisms such as subroutine calls and inter-
faces.

can establish ftp
connection?

done

¢an interact wit
console of ftp
server?

C
power-cycle ftp
server
Y=0
E

inetd running on
ftp server?

manually restart
inetd

Y=0

done

Figure 1: A typical (though oversimplified) trou-
bleshooting decision tree.

Decision trees

As a ‘best practice,” many sites pragmatically
describe and standardize network troubleshooting pro-
cedures as “decision trees” that describe tests to make
and corresponding actions to take. Usually decision
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trees are prepared by senior staff (or vendors) to aid
junior staff in dealing effectively and autonomously
with common problems. A decision tree is nothing
more than a flow chart (in actuality a directed acyclic
graph (DAG)) of actions, where the result of each
action determines the next action to try.

For an example, consider the (very much over-
simplified) decision tree in Figure 1. According to the
tree, to check whether ftp service is running, one must
first check whether one can make an ftp connection
from a client machine. If so, everything is working. If
not, one must then check whether the console of the ftp
server responds to a keypress. If this succeeds, the
server is running; otherwise it has probably crashed
and needs to be power-cycled. The final measure is to
check whether the program inetd is running on the
(now perhaps rebooted) ftp server, and to start it if not.
This is far too simple to be realistic; it is contrived
only to illustrate concepts rather than as a practical
application.

Two special actions determine when to give up.
The ‘done’ action indicates success, while the ‘fail’
action indicates that the decision tree failed to correct
the problem. In a realistic situation, failure of a proce-
dure would escalate the problem’s priority and refer it
to the next level of technical staff.

One could perform most of the steps in this sim-
ple tree by convergent administration in Cfengine [2,
3, 4], but for the purposes of this discussion we con-
sider the steps in the tree to be Babble [10] scripts that
potentially interact not just with a local host but also
with remote serial consoles of devices such as routers,
switches, and power interrupters. While Babble suits
our needs for some scripting purposes, these scripts
could be arbitrary programs in any desired language.

We started this work with the goal of automating
the process of interpreting troubleshooting ““decision
trees” like the above to automatically detect and repair
network disruptions. We abstracted each ‘decision’ in
the tree into a script with multiple exit values 0, 1, 2,
..., where the exit value of a script indicates the next
script to invoke. Simple actions not involving a deci-
sion are considered to be decisions with only one exit
code and outcome. The scripts are plumbed together
by declaring which ones should be called as a result of
the return codes of others. We implemented a tree
traversal algorithm in Perl that ““executes the decision
tree” by running scripts and taking decision branches
as indicated.

Within our scheme, one would implement the
above example as scripts A, B, C, D, E, with exit codes
determining branches as indicated in Figure 1. For
example, if B’s exit code is 1, we invoke C; if the code
is 0, we invoke D. Using algorithms from Babble [10],
we thought we could represent this tree structure in
XML [15]. We endeavored to convert this XML tree
into a nested hash and execute the results as a kind of
script.
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Ineffective Procedures

This approach seemed logical, sensible, and
straightforward, but failed miserably in practice. Most
decision trees for human use are ineffective proce-
dures. They suggest what to do, but are typically
based upon a simplified view of network function that
is understandable to a human. The typical tree
addresses a few failure modes and makes assumptions
about the precedences between tasks and couplings
between components that may not be true in practice.

Perhaps these limitations of a decision tree arise

from its real (and perhaps hidden) purpose.

Proposition 1: A decision tree is not an embodi-

ment of technical knowledge, but rather a state-

ment of operating policy [9].
It is a description of what a human should “try first,”
not necessarily what must “work first.”” The order of
tests and actions to be taken are tempered not by phys-
ical dependencies, but by service expectations and site
mission. For example, ‘Rebooting’ might be a routine
expedient at an academic site, but not at a bank!

Thus one must consider any decision tree not as
an effective procedure, but merely a theory of what to
do when. One does not interpret such a tree literally,
but instead bases a course of action upon the informa-
tion in the tree. In practice, this is what we really do
with our own troubleshooting procedures; we ‘jump
around’ within the tree, executing the steps not in
order of tree appearance, but in order of their likeli-
hood of causing the problem we have detected.

Exposing Convergent Processes

Most decision trees can be straightforwardly rep-
resented as a series of convergent processes performed
in sequence, each with the purport, “If it is broken,
then fix it.” A typical convergent process consists of a
test and perhaps a configuration change action. If the
test succeeds, no action is performed; else an appropri-
ate action is taken in order to ensure that the test suc-
ceeds at a later time.

The processes in most decision trees are not con-
vergent in this sense. Sometimes it takes a bit of
worthwhile effort to fit an existing decision tree to the
convergent process model. For example, one might
replace the decision tree above by three convergent
processes:

F. Test whether ftp is running, and report success
or failure.

G. Test whether the console of the ftp server
responds, and power-cycle the server if it seems
to have crashed.

H. Test whether inetd is running on the fp server,
and manually restart inetd if it does not seem to
be running.

Barriers in the decision tree that prevent unnec-
essary troubleshooting are no longer necessary. Step F
need not fail before one tries steps G and H. None of
these steps is damaging to a network that is
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functioning normally. Step F is a simple test of symp-
toms that is not even necessary to invoke, because the
other two processes are the only ‘operative’ ones that
could potentially change the state of the network and
repair a problem.

This convergent representation has advantages
over the original decision tree representation. If all
three of these processes report success, ftp is running
as desired. It no longer matters which process is tried
first, as the diagnostic procedures will not take action
upon a problem unless the problem has been observed
directly and a change is necessary.

In our study we have been unable to generate a
network decision tree that cannot be represented as a
set of convergent scripts. Network decision trees sel-
dom exhibit more complexity than can be represented
straightforwardly in this form. Even when they do,
such trees can be expressed in this simpler form by
encapsulating more complex processes inside larger
“convergent” processes that replace several decisions.

The Curse of Precedence

Transforming a complex decision tree into a
sequence of convergent actions is advantageous not
only from a human interface standpoint, but also
because of the properties of the networks we wish to
manage.

The most difficult problem in creating a network
debugging decision tree is to determine the prece-
dences between debugging tasks. Many facets of net-
work performance depend upon others. For example,
one server may provide NFS service to another that
cannot function properly without that service, so one
must make NFS work properly before trying to do
anything with the dependent server.

Anyone who has tried to manually craft a Make-
file for use with the make [23] program will have expe-
rienced the complexity of determining and specifying
precedences. If the precedences are incorrect or
incomplete, make may not have the desired effect,
sometimes in subtle ways.

A decision tree is nothing more than a descrip-
tion of the precedences between tasks; in this sense it
is a subset of the precedence declarations in a Makefile.
But in a network, the precedences between tasks may
be constantly changing and are impossible to prede-
fine. As an oversimplified example, consider the prob-
lem of a router that utilizes TFTP to boot and then pro-
vides routing services for the TFTP host. Suppose we
have two convergent processes:

J. Check router function and restart if necessary.
K. Check the TFTP server and restart TFTP if nec-
essary.

In this case, there need not be any fixed prece-
dence between processes J and K; the best precedence
depends upon the network’s configuration and its cur-
rent state. If the router is down, then it would be
greatly desirable to check the TFTP server first so that

65



The Maelstrom: Network Service Debugging ...

the reboot will work, unless the TFTP server is on the
other side of the router from the host running the
debugging scripts! The ‘best’ ordering for these
checks must be determined by considering several fac-
tors that may or may not be known:
e The current state of the network and current
failure mode.
¢ Dependencies that apply between components
while in that state.

Errors in precedence mean that the overall
debugging process will fail, so the success of the pro-
cess is dependent upon the problem being solved. This
means in turn that we must work around this potential
problem in a decision tree by encoding both orders for
the above processes into the tree in some fashion.

In constructing Makefiles, determining the correct
precedences is a surmountable problem, because those
precedences never change. In network debugging, the
problem of determining appropriate precedences
between tasks is ill-formed, and there may not be a
static precedence between tasks that always applies.
Thus make’s algorithm of ‘topologically sorting’ tasks
into an execution order coherent with a predetermined
partial order is not enough to deal with the prece-
dences between troubleshooting tasks. In fact:

Proposition 2: Precedence between troubleshoot-
ing tasks is an abstract ideal that is not well-
defined in practice.

Exponential Complexity

To generate a decision tree that could succeed in
repairing problems in all cases, we would necessarily
have to foresee all possible failure modes and encode
them into the tree. These failure modes determine the
order in which steps should be taken. Each possible
ordering or precedence would add complexity to the
tree, in the worst case resulting in an exponential
explosion in the size of the tree.

These negative conclusions engendered a funda-
mental change in our thinking and approach. Since we
did not believe that we could ever construct such a
complex tree correctly, we had no confidence that
direct automation of any regular decision tree could
ever be useful. We stopped even thinking about exe-
cuting a decision tree directly, and began looking for a
better way to approach the problem. The key to this
approach is that if a set of scripts exhibit a particular
set of properties, precedence does not matter. The key
concept is homogeneity of effect; that scripts do not
conflict with one another in the goals they wish to
ensure.

Homogeneity

The concept of a ‘convergent script’” must be
refined slightly when one expects it to interoperate
and cooperate with other scripts of similar intent. A
script must not only be convergent within itself, but
must also behave so that the set of all scripts is con-
vergent as a suite. To do this, each script must exhibit
three crucial ingredients:
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e awareness: a script knows whether it suc-
ceeded or not in enforcing its requirements. It
returns a nonzero exit code to indicate failure
and a zero exit code to indicate success.

¢ convergence: applying the script twice changes
nothing and has no effect if the network is
already in compliance with the script’s require-
ments.

e homogeneity (or consistency): scripts never
undo the changes made by others (though
scripts may enforce the same changes as oth-
ers). This is a global convergence criterion over
all scripts.

These conditions were of course inspired by the
convergent processes of Cfengine [2, 3, 4] and our
own Slink [7] and Distr [8], and are exactly the behav-
iors that we previously attempted to ensure by script-
ing in Prolog [9] instead of Cfengine or PIKT [24],
and in Babble [10] instead of Expect [20].

Of these conditions, the first two are relatively
easy to ensure for a given script. These are properties
of a script in isolation from others. The third property
of homogeneity is a global condition on the suite of all
scripts. These seemingly abstract ideals are easy to
provide in scripts. Consider the simple task of forcing
letclinetd.conf to have a particular form. A script that
does this might contain:'

cp /proto/inetd.conf /etc/inetd.conf

This script can be converted into a convergent one by
checking that a copy is needed before making the
copy:
if [ ! cmp /proto/inetd.conf \
/etc/inetd.conf ] ; then

cp /proto/inetd.conf /etc/inetd.conf
fi

This can be made aware by arranging for it to return
the proper exit codes:

if [ ! -f /proto/inetd.conf ] ; \

exit 1
if [ ! cmp /proto/inetd.conf \
/etc/inetd.conf ] ; then
cp /proto/inetd.conf /etc/inetd.conf
fi
exit O

To make it homogeneous with other scripts, however,

every script that modifies /etc/inetd.conf must modify it
into this exact form.

Avoiding Precedence

A set of scripts that exhibit awareness, conver-
gence, and homogeneity with one another has unex-
pected properties that may not be evident at first
glance.

Proposition 3: Scripts that are convergent and
homogeneous may be executed in any order
without harm to a functioning network.

"It is generally believed that such a file should be main-
tained by incremental editing rather than by file copying;
this example is oversimplified for clarity.
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Since they will not repair non-problems, they will do
nothing in a functioning network, and since they will
agree on results, they will not undo each others’
changes.

This means that even if we do not know the
dependencies between scripts, we can dynamically
discover an order in which they work properly:

Proposition 4: Given a set of aware, convergent,
and homogeneous scripts that repair parts of a
network, we can assure network function by
cycling through all possible permutations of the
scripts.
Given a little thought, this claim is relatively obvious.
If a script is safe to repeat until it works, and innocu-
ous when not needed, one can simply try it in all pos-
sible contexts until it works. If there is an order in
which the scripts will work, that order will be tried, so
that precedences will be satisfied.

In our decision tree example, step H depends
upon the success of step G, while step F depends upon
the success of step H, so that the appropriate execution
order is “GHF”. But even if we do not know this
order, we can still utilize the tests effectively by
repeating them so that all possible orders will be con-
tained in the pattern of repetition. If we execute the
steps in the order “FGHFGHF”, the appropriate “GHF”
subsequence is present in that ordering. The sequence
“FGHFGHF” contains all possible permutations of
F,G, and H as subsequences:

(FGHFGHF)
FGH. ...
F.H.G..
.GHF. ..
.G.F.H.
. .HFG..
..H.G.F

After this sequence of executions, ftp will be running if
it possibly can be made to run by the debugging pro-
cesses as given.

Trying All Permutations

Given any set of scripts that are aware, conver-
gent, and homogeneous, one can try them in all possi-
ble permutations in a very straightforward way. One
exploits the following mathematical fact:
Proposition 5: Given a sequence S=A4;---4, of n
objects, the sequence containing » — 1 copies of
S followed by the first object 4; in S contains all
permutations of the members of 4 as subse-
quences. This sequence contains n(n — 1) + 1
elements.

Counter to intuition, enumerating all permutations as

subsequences of a given sequence does not require

O(n!) steps, but only O(n*) steps.

As an aside, this fact is easy to see by inductive
proof. The inductive basis case is that for two objects
A; and A,, the appropriate sequence is 414,4;. If we
presume that the proposition is true for A;---4,_1,
then a sequence S,_; consisting of n — 2 copies of
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Ay---A,_, followed by 4;, contains all permutations
of Ay---A,_; as subsequences. For 4, elements, we
construct the sequence S, of n — 1 copies of 4, ---4,,,
followed by A;. Our claim is that S, contains all per-
mutations of 4; - - - 4,, as subsequences.

To show this, we choose one element 4; from the
first copy of 4, ---A4,, and consider the subsequence
of this sequence constructed by starting after 4; and
deleting 4; from the rest. The beginning of this subse-
quence always has the form of the sequence in the
inductive hypothesis, and thus contains all permuta-
tions of the 4’s without 4;. Thus the sequence S, (of
which this is a subsequence) contains all permutations
starting with A;. As A; was arbitrary, S, contains all
permutations of the A’s.

For example, consider what happens with four
scripts A, B, C, and D. If we start with the sequence
ABCDABCDABCDA and select, e.g., C from the first
group, the subsequence constructed according to the
proof is ABDABDA, which has already been shown to
contain all permutations of A, B, and D. By repeating
this process we can generate all permutations of A, B,
C, and D:

subsequence permutations
ABCDABCDABCDA
ABCD.BCD.B... (A first)
.BCD..C...... ABCD, ABDC
.C..B.D.B... ACBD, ACDB
...D.BC..B... ADBC, ADCB
.BCDA.CDA.C.. (B first)
.CDA..D..... BCDA, BCAD
DA.C.A BDAC, BDCA
.A.CD..C.. BACD, BADC
..CDAB.DAB.D. (C first)
.DABA...... CDAB, CDBA
AB.D.B... CABD, CADB
..... B..A..DA CBAD, CBDA
...DABC.ARC.A (D first)
....ABC..B... DABC, DACB
..... BC.A.C DBCA, DBAC

...... C.AB..A DCAB, DCBA

This is not the best known solution to the prob-
lem of “Permutation Embedding.”” For n objects there
is a sequence of n*> — 2n + 4 elements that contains all
permutations of the original objects as subsequences
[1, 5,13, 19, 22, 26, 27]. The methods utilized to con-
struct a sequence with this lower bound are less intu-
itive than ours, while the size of the sequence remains
O(n?) in all cases. To our knowledge, finding the opti-
mal solution in the general case remains an open prob-
lem in combinatorics.

In our case, the objects being permuted are
scripts that manage the values of configurable
attributes, while the sequence is the execution order
for the scripts. If we know that a correct order for the
scripts exists, then if we try to execute them in the
order suggested above, that order will be achieved at
some time during the process. Because of our homo-
geneity constraint, each script need work only once
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and scripts will not undo the work of others, so that
one iteration of the scripts in the proper order is all
that is required. Thus the precedence constraints for all
scripts will be satisfied if there is a way to satisfy them
at all, and the algorithm dynamically infers the correct
execution order for the scripts as it executes.

Exploiting Awareness

If we know that the scripts we are running are
aware as well as homogeneous, we can make this iter-
ative process more efficient. If they are aware, they
know when they succeed. If they are homogeneous,
one success for each script suffices. Thus we need
only execute each script until it succeeds, and the per-
mutation embedding algorithm can skip invoking
scripts that have already succeeded.

Suppose, e.g., that we have six scripts
A,B,C,D.E,F, to be executed in that order, and that in
actuality D and E must occur before B; E before C; C
before A; and A before F. Let us notate a success of A
as =A (representing unification with A’s postcondi-
tions) and a failure of A as !A. Then the algorithm’s
execution will proceed as follows:

1A 'B IC =D =E IF

1A =B =C .. .. IF

=A .. .. .. .. =F
In the first pass, A, B, C, and F fail, while D and E suc-
ceed, because !C implies !A, ID and !E imply !B, |E
implies !C, and A implies F. In the second pass B and
C succeed because their predecessors D and E have
succeeded in the first. In the last pass, A and F succeed
because all their preconditions are satisfied. So an
appropriate total order is D, E, B, C, A, F.

The worst case is that the precedences are the
reverse of the order of the list. In this case the algo-
rithm takes O(n?) executions, where n is the number
of scripts:

IA !B IC ID IE =F
1A !B IC !D =E

A !B IC =D
1A 1B =C

1A =B

=A

There are (n — 1)(n — 2)/2 script failures due to inap-
propriate precedence. Once we know the reverse order
is more appropriate, however, a subsequent run will
take only O(n) executions.

The driving idea here is that

Proposition 6: The execution order for an aware,

convergent, and homogeneous set of scripts

need not be predeclared through precedences,

but can be discovered by executing the scripts

and observing their effects.
We should note that this does not mean that we can
discover the true precedences between scripts, just that
we can discover some execution order that obeys those
precedences. Further, Frode Eika Sandnes shows that
knowing this order does not in general aid in inferring
the true precedences between actions [25].
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The Maelstrom

Maelstrom is a tool that implements the above
algorithm for dispatching debugging scripts. The input
to Maelstrom is a configuration file that describes the
probable precedences between a collection of debug-
ging scripts. These need not be the actual precedences
between scripts; they represent just a suggestion of the
best order in which to execute the scripts. Maelstrom
begins by ordering these scripts into a total order con-
sistent with the partial order declared in the file, in the
manner of make [23].

The scripts that Maelstrom controls are expected
to know whether they succeed or fail. A script tells
Maelstrom that it succeeded in its task by returning an
exit code of 0. Maelstrom interprets such a response as
an indication that the script either found the network
in compliance with the script’s requirements or made
the network comply by making changes. Maelstrom
makes no distinction between these cases. If a script
returns a nonzero exit code, Maelstrom interprets this
as an indication that the script could not succeed for
some external reason. Such scripts are tried again at a
later time to determine if other scripts make it possible
for them to succeed.

Maelstrom attempts to make all the scripts suc-
ceed — indicated by an exit code of 0 — by trying a suf-
ficient number of permutations of the scripts. Given n
scripts, each script is tried at most »n times. When a
script succeeds, it is not tried again. If precedences are
correct, each script is executed exactly once and suc-
ceeds immediately, while if precedences are com-
pletely backward, each script is executed n times with
n — 1 failures preceding one success. At the end of
trying all possible permutations of the scripts, Mael-
strom gives up and reports the scripts that failed con-
sistently. If this happens, then the scripts have failed to
repair the network and some other script (or human
intervention) is required in order to repair the problem.

Crafting the Perfect Storm

For convenience and ease of use, Maelstrom’s
configuration file looks much like a Makefile. The
directive:

cl : c2 : c3

describes the precedences between scripts ¢1, ¢2, and
¢3: ¢3 before c2 before ¢1. The difference between this
and a Makefile is that there are nothing but scripts here;
there are no other files or intermediary results listed.
Scripts can have arguments. Two script invocations
are considered identical if they have the exact same
arguments, so that a script must succeed once with
each set of arguments. Thus the declaration:

cl -f : c2 --tftp

c2 --tftp : c2 --comsat
describes the relationships between three scripts, “c1
-f, “c2 --comsat” and ““c2 --ftp”’.

Commands in Maelstrom are repeatedly exe-
cuted until they succeed, as indicated by a return code
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(exit status) of 0. If they do not succeed, they are
repeated in sequence according to the total order sug-
gested by a topological sort of the partial order
described by the file. During this process, Maelstrom
skips any scripts that previously succeeded during the
repetition. In the last example above, the total order is:
A. c2--comsat

B. c2-ftp

C.cl-f

Maelstrom would execute these in the order
“ABCABCA,” which as above contains all permuta-
tions of A, B, and C as subsequences.

Maelstrom and make

It should be obvious by now that Maelstrom uses
a very different execution algorithm than make. First,
Maelstrom presumes that all of the scripts it controls
use exit codes to indicate whether they should be
repeated. In make, a non-zero exit code instead indi-
cates an irrecoverable error and causes a full stop. The
most crucial difference, though, is that make utilizes
centralized or global knowledge of precedence in
order to schedule its tasks, while Maelstrom’s knowl-
edge is a local result of the behaviors of the scripts it
controls. This means that to emulate make with Mael-
strom, some of the tasks done by make must move into
the scripts that Maelstrom dispatches.
For example, consider the trivial Makefile:
foo: foo.o bar.o
gt+ -0 foo foo.o bar.o
foo.o: foo.c
gtt -c foo.c
bar.o: bar.c
gt+ -c bar.c

This describes how to make an executable foo from
source files foo.c and bar.c. To simulate this in Mael-
strom, we break it into three convergent tasks c1, c2,
and c3: one for each compilation command in the
Makefile. The convergent process of creating f00.0 from
foo.c is easy to express in the (shell) script ¢2:

if [ -nt foo.o foo.c ]; \

exit O
gtt -c foo.c
exit O

(-nt x y is true if x is newer than Yy). Likewise,
compiling bar.c into baro can be accomplished in a
script €3:

if [ -nt bar.o bar.c ]; \

exit O
gt+ -c bar.c
exit O

Difficulties, arise, however, in performing the
final step of creating foo from f00.0 and bar.o. In make,
the states and dates of all files are known, and this
global knowledge is used to assure that each command
operates upon up-to-date data. Maelstrom knows none
of this, so we must compensate for its lack of aware-
ness by checking all prerequisites inside the compila-
tion script before doing the final compilation:
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if [ -nt foo.c foo.o ]; \
exit 1
if [ -nt bar.c bar.o J]; \
exit 1
if [ -nt foo foo.o \
-a -nt foo bar.o 1; \
exit O
gt+ -o foo foo.o bar.o
exit O;
The script that combines all results must compensate
for Maelstrom s lack of global knowledge by obtaining
that knowledge for itself. 1If we call this script ¢1, then
the Maelstrom configuration:
cl : c2
cl : c3

has the same result as the above Makefile.

This may seem like a limitation until we realize
that in Maelstrom’s problem domain, the kind of
global knowledge that make utilizes is typically
unavailable or approximate. Since troubleshooting
scripts, for safety, must check that their prerequisites
are satisfied before continuing, Maelstrom’s lack of
global knowledge does not impact its ability to solve
troubleshooting problems.

Implementing Policy

Sometimes decision trees are effective proce-
dures. Thus we have made it possible to implement
traditional decision trees (such as the one at the begin-
ning of this paper) using Maelstrom’s syntax. Decision
trees are implemented by specifying execution rules
for scripts based upon the exit codes of others.

Three forms of policy control in Maelstrom
allow forcing execution of specific scripts immedi-
ately after the failures or successes of others. Forced
evaluation is a policy decision based upon what is
most important in a network. One might wish, e.g., to
minimize the impacts of a reboot by immediately
checking specific services related to the reboot, before
checking other facets of operation. Unlike the core
scripts Maelstrom invokes, these are not interpreted as
suggestions or theory, but directly control what Mael-
strom does in specific situations.

All the execution controls mimic shell syntax for
ease of use. Short-circuit ‘and’ and ‘or’ work as they
do in the shell:

Al B
causes script B to be invoked only if script A fails.
Likewise,

A && B

causes script B to be invoked only if script 4 succeeds.
Equivalently,

1A && B

has the obvious meaning. An advanced syntax allows
reacting directly to exit codes:

A [ 23=>B; 34=>C ]

means that if the exit code of A is 23, execute B, and if
the exit code of A is 34, execute C.
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Primary and Secondary Scripts

Scripts that are called as the result of determinis-
tic rules are treated differently by Maelstrom than the
scripts to which such a rule applies.

e Primary scripts are those that appear alone, in
precedence declarations, or on the left-hand
side of the above conditional execution forms
(e.g., A in A||B or A&&B or A[B;C]).

e Secondary (or incidental) scripts do not appear
in any of the primary contexts.

Maelstrom attempts to make all the primary scripts in
its configuration file succeed once. Secondary scripts
are not included in Maelstrom’s algorithm, and only
execute under the conditions in which they are
declared. This allows one to code traditional decision
trees into Maelstrom processes without invoking the
Maelstrom algorithm upon their components.

For example, the tree at the beginning of this
paper, containing scripts A, B, C, D, E could be coded
explicitly as:

A[1=>B[1=>C;0=>D[1=>E]]]
or by realizing that X[1=>Y] is just X||Y, more simply
as:
Al |B[1=>C;0=>D| |E]
In this case:
¢ A is a primary command and becomes part of
Maelstrom’s main task.
¢ B, C, D, E are secondary scripts that are only
invoked when A fails. They are not part of
Maelstrom’s list of scripts that must succeed.

Using the [] syntax, very complex trees are possi-
ble, though for simplicity any one script invocation
can be assigned only one set of actions. Writing the
two declarations:

Al| B

A [ 1=>C ; 2=>D ]
together is illegal, because there can only be one
response to an invocation of A.

A Maelstrom command is parsed by first split-
ting it into phrases separated by the precedence opera-
tor ‘. These phrases consist of a list of commands
separated by ‘;’. Each command can optionally be
associated with an action by use of the decision opera-
tors ‘&&’, ‘||’, or ‘[]’, where the latter can themselves
contain lists of commands and associated actions. A
decision can appear after a command in any context,

e.g.,

A[lB[C;D]  ;E||]F] :G&H
is precisely equivalent to

A G

AIlB[C;:;DI]:E||]F]

G && H

and roughly equivalent to:

A G

A[B; E]

B[C; DI
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E || F

G && H
In the first two declarations there are two primary
commands A and G, while in the last one the primary
commands also include B and E (because they appear
outside the context of a conditional command).

Testing the Wind

Maelstrom was much more difficult to test than
to write, because few of us would enjoy releasing a
tool of such powers to do damage to our network dur-
ing testing! Thus testing required writing a simulator
whose input was a known set of task precedences, to
see if Maelstrom could sort them out without fore-
knowledge of their precedences. It does this as
expected.

Quite obviously, the success of Maelstrom
depends upon the quality and reliability of the scripts
it dispatches. To date, we have not deployed Mael-
strom in production, because we are not yet confident
of our scripts’ convergent properties. The scripts that
we envision using in production are largely targeted at
restoring specific mission-critical services, and not at
addressing systemic failures or network connectivity
as yet. A typical script tries a netcat from a remote
device to see if a service is working from outside a
server and then attempts to repair any problems inside
the server, as is possible by using Babble.

Safety

Even in the simple examples of this paper, there
are conditions in which a troubleshooting script can
make things worse by its actions. This can happen if a
corrective action is too extreme or depends upon
external resources that are themselves down at the
moment. If our scripts are convergent in the Cfengine
sense and there are no hidden constraints, Maelstrom
is relatively safe. If, e.g., a reboot depends upon hid-
den constraints that have not been assured, such as a
service required for reboot, Maelstrom may reboot a
server even though this makes the network state
worse, and may well make future troubleshooting
impossible without operator intervention.

Maelstrom is currently relatively naive about the
limitations of its environment. It can be made safer by
giving it more understanding of the imperfections
within its scripts, and the hidden couplings between
scripts and Maelstrom’s environment.

Maelstrom cannot currently compensate for
inhomogeneity or lack of convergence in scripts. In
the future, there will be stronger precedence operators
to control Maelstroms actions in the presence of
imperfect scripts. Recall that “c2 : ¢1” means “c1
might theoretically precede ¢2.” We plan other prece-
dence operations whose main purpose is to compen-
sate for script deficiencies:

e “c2 : ¢1” will mean “the last success of c1
must precede the last invocation of ¢2.”
e “c2 :: ¢1” will mean “‘the first success of c1

must precede the first invocation of 2.
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IT3% 2]

Both of these are still weaker conditions than the *:
in make. In Maelstrom, we could notate make’s con-
cept of strong precedence as follows:

e “c2 i ¢1” could mean that every success of c1
must be followed by an invocation (and suc-
cess) of ¢2.

We use the colons to limit the number of characters
one must escape inside shell commands in the config-
uration file (currently 2, <;’, ‘[, and ‘]’).

All of these syntactic mechanisms are attempts to
compensate for non-homogeneous or non-convergent
behavior in scripts.

e The declaration ¢2 :: ¢1 means that ¢1 and c2 are
convergent but inhomogeneous, so that ¢2 must
be tried after ¢1 in order to make the execution
result deterministic. This rule means ‘““always
clean up after ¢1 with ¢2.”

The declaration ¢2 ::: ¢1 declares a hard-coded
precedence, and means it is impractical to
execute ¢2 without at least one success of c1.
We will use this when there are unavoidable
physical dependencies, such as when an inter-
vening router must be tested before the equip-
ment behind it.

The declaration ¢2 ::: ¢1 (which we may not
implement in the immediate future) compen-
sates for non-convergent behavior of c1, by
always following it as soon as possible with a
cleanup routine c2.

To understand the importance of adding these
precedence operators to Maelstrom, note that with
even the first one (:;) we can simulate make with Mael-
strom without resorting to more script intelligence. If
script ¢1 is:

if [ -nt foo foo.o \
-a -nt foo bar.o] ; exit 1
g++ -o foo foo.o bar.o exit O

and script €2 is:
if [ -nt foo.o foo.c ] ; \
exit O

gt+ -c foo.c
exit O

and script €3 is:
if [ -nt bar.o bar.c ] ; \
exit O

gt+ -c bar.c
exit O

then the Maelstrom declarations:

cl :: c2

cl :: c3
would accomplish the same effect as the Makefile
above. Even the relatively weak double-colon operator
precedence avoids the need to have script ¢1 know all
the dependencies between its files, as in the former
example. This script might do redundant compilations,
but in the end it will accomplish the exact same result
as the Makefile.
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Although we discuss the possibility of ‘reboot-
ing’ as a result of a script, we are not happy with the
prospect of automated power-cycling of servers. We
are currently developing a tool that allows that kind of
dangerous action to be controlled by an electronic
mail or two-way pager transaction. The script that
wishes to reboot a server asks us whether it should or
not, and an operator can mail back a ‘yes’ or ‘no’
response.

One weakness of Maelstrom’s scheduling is its
simplicity. Many colleagues have suggested that Mael-
strom should allow one to declare not just prece-
dences, but also “costs” as a measure of how disrup-
tive a particular action will be. One could then try
solutions in order of increasing cost. But this would
require an even more complex syntax in the configura-
tion file, and theoretical precedences have the same
overall effect (through different kinds of declarations).

Observability

The Maelstrom framework allows one to ‘glue
together’ several scripts toward a common goal.
Precedences do not have to be specified during the
gluing because Maelstrom will sort the scripts into an
appropriate order during execution. During the sorting
process, Maelstrom does not determine the actual
precedences between scripts, but rather a total order
that satisfies those precedences. The order is observ-
able but the precedences are not [25]. Similarly,
Proposition 7: While the effects of homogeneity
are observable, homogeneity itself is an abstract
ideal that is unobservable in practice.

We will illustrate this fact with several examples.

For simplicity, let us consider the case in which
all scripts control configuration attributes that have
static values in the absence of script effects. This
ignores dynamic attributes that can change on their
own without script intervention. If the former are
problematic, the latter surely are as well.

In this simplified model, there are only attributes
to be controlled and parameters describing ideal set-
tings. A configuration attribute is any such data,
including text or numeric fields in configuration files
or device memory, or even hierarchies of configura-
tion data as handled by Arusha [17] or Babble [10]. A
particular script can perhaps do two things with an
attribute:

e read its value to validate this value against
established norms.
e write a value into the attribute in order to put it
into compliance with such norms.
The value of a particular attribute can be compared
with a configuration parameter that describes its ideal
state. This can either be a fixed value or a rule that
describes the ideal value in a variety of situations.

Using this simplified model of script behavior,
we can describe correct and compliant script behavior
as well as possible deviant script behaviors:
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¢ A script that is aware can read all the configura-
tion attributes that it sets to check for success or
failure.

e A script that is convergent only changes
attributes that are “out of sync” with desired
parameter settings. This means that it reads
every attribute and writes it only if it does not
satisfy parameter requirements or rules.

e A script that is homogeneous agrees with other
scripts upon parameter values. This can be
accomplished either by synchronizing the con-
tents of multiple parameter sources or by
depending upon a single source for parameter
and policy information.

process

Y

sasned

\J
set attribute to
parameter value

parameter

Figure 2: A healthy transaction copies a parameter
into an attribute only if needed.

process B

<o

y/
A

\<>/

process C

[y

Figure 3: Two homogeneous scripts using the same
parameter source.

Graphically, the relationships between scripts,
attributes, and parameters may be depicted by repre-
senting scripts as rectangles, decisions as diamonds,
parameters (or policies) as storage drums, and device
attributes to be controlled as parallelograms. An arrow
between two objects means that the first affects the
second, even when one or more of the objects being
affected are themselves arrows. An arrow between a
parameter and an attribute means that this parameter
affects that attribute by setting it to a compliant value.
An arrow from a script to the prior arrow means that
the script in question enforces that relationship.
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For example, in Figure 2, we have one healthy
configuration process that controls one attribute with
respect to one parameter. The process reads both the
attribute and its controlling parameter, and the
attribute is only set if needed. This is indicated by a
decision node whose inputs are the values to compare,
and which controls the (data flow) arrow between the
parameter and the attribute in question.

process B

<O

process C

O™

y

5
b

Figure 4: Two inhomogeneous scripts using different
parameter sources.
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Figure 5: Latent inhomogeneity masked by a single
environmental side-effect.
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Figure 6: Latent inhomogeneity hidden by multiple
environmental side-effects.

This notation allows us to notate many things
that can go wrong (or right) when scripts try to coop-
erate. Homogeneity of scripts means that when they
control the same attribute, they utilize the same source
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(Figure 3). Inhomogeneity results from two processes
that try to force the same attribute into conformance
with conflicting parameters or policies (Figure 4).

It would seem from the above example that inho-
mogeneity is easy to observe and detect, but it can be
easily masked and obscured by relatively common
scripting errors so that it is only observable under spe-
cific environmental conditions.

For example, in Figure 5, script B changes an
attribute P to a parameter value X depending upon
conformance of a distinct attribute Q to a parameter Y.
If another script C sets P according to another parame-
ter rule Z, then the result of the sequence BC will
always give P the value from Z, while the sequence CB
will give P an inhomogeneous value only if Q is ini-
tially out of conformance with Y. Thus inhomogeneity
of B and C is not observable except under certain (typ-
ically unknown) environmental preconditions.

One might think that this condition would be rare
in traditional practice, but we actually find it very
common in our own scripts! For example, we might
want to update someone’s password on a machine or
network. This password is stored, with other informa-
tion — such as the user’s print name — that might be
changed inadvertently at the same time as the pass-
word is changed.

Side-effects can make inhomogeneity arbitrarily
difficult to detect. In Figure 6, three processes B, C,
and D have homogeneous effects except when parame-
ter W matches attribute R, parameter Y does not match
attribute Q, and B and C are executed after script D. In
this case alone, scripts B and C are inhomogeneous
and the orders DBC and DCB will set attribute P
according to conflicting parameters Z and X, respec-
tively.

Thus inhomogeneity is very difficult to detect in
general, even when the scripts being tested work prop-
erly in isolation and are fully convergent and aware of
their effects. Using a generalization of the above con-
struction, one can create a set of scripts for which
every permutation produces the same result except
within one particular environment, wherein two per-
mutations produce inconsistent results.

Assuring Determinism

So far, whenever we have been unable to prede-
fine something we need, we have consistently tried to
observe it instead. When observing, we found that the
original abstract concept that we tried to describe is
not what we need, and that something less descriptive
and more observable suffices. While we initially
searched for a way to define precedences for tasks, we
only truly need an order in which the tasks will func-
tion properly. This order can be discovered dynami-
cally, even if the precedences remain hidden.

Applying this approach to homogeneity of a set
of scripts, it is the observable results of homogeneity
that we desire, rather than the property itself.
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Minimally, the execution of every set of scripts should
have a deterministic outcome so there are ‘no sur-
prises.” If this outcome is inappropriate, we know that
our scripts are incorrect. If a script has an inhomo-
geneity that does not affect the outcome, we will never
know about it, and perhaps need not even care.

To assure determinism in the outcome of execut-
ing a set of scripts that are convergent and determinis-
tic in isolation from one another, we can run them in a
particular order on a functioning network. If they are
homogeneous with one another, this will make no
changes to the network. If they are inhomogeneous but
convergent, a script that disagrees with another will
make a conflicting change to the network. Even so, the

fact that the scripts were executed in a predetermined

order guarantees a result dependent upon that order.
Once we have agreed upon this as a goal, detecting
inhomogeneity becomes easier. If each script reports
whether it changed anything, we can record whether
there are any inhomogeneities apparent within the
sequence in which we execute the scripts. This is
much easier to determine than detecting inhomo-
geneities between all pairs of scripts, as we need only
concern ourselves with anomalies in executing one
permutation of the scripts, not all permutations (as
would be required to detect the subtle examples of
inhomogeneity presented above).

Suppose that in a functioning network, we run a
sequence of scripts twice. We can conclude, in the
absence of other external effects, that any script that
reports changes twice during this process is inhomoge-
neous with at least one of the scripts invoked between
its two invocations. For example, if the sequence of
scripts is ABCDE, and we invoke them twice with the
following results:

script: ABCDEABCDE

change: nynnynynney
we can conclude that B and E are inhomogeneous with
one another, while the other scripts are observably
homogeneous. In more complex cases it may not be
clear which scripts are inhomogeneous with others, as
in

script: ABCDEADBGCDE

change: nyynynynny
We can say little about the relationship between C and
the others, as it only makes changes once. All that we
can conclude from this is that E must follow B to
ensure the result achieved by this run. It is unclear
whether C is inhomogeneous with either B or E from
this evidence.
Coping with Inhomogeneity

Just as homogeneity guarantees that the effect of
a sequence of scripts is independent of its order, lack
of homogeneity means that the effect of a sequence of
scripts depends somewhat upon their ordering. While
repeating the scripts in a functioning network in a pre-
determined order assures a deterministic result, we can
restore some semblance of predictability with less
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effort by restricting ourselves to a subset of execution
orders for the scripts during the troubleshooting pro-
cess.

For example, consider scripts A, B, C, and D.
Suppose that A is homogeneous with all others, D is
homogeneous with all others, and B and C are not
homogeneous with one another. This is a precise way
of saying that BC (B success followed by C success)
may perhaps exhibit a different result than CB. Thus
there are two groups of permutations of the set of
scripts that produce two distinct results:

result 1 result 2
BCAD CBAD
BACD CABD
BADC CADB
ABCD ACBD
ABDC ACDB
ADBC ADCB
BCDA CBDA
BDCA CDBA
BDAC CDAB
DBCA DCBA
DBAC DCAB
DABC DACB

Suppose that we wish to decide (perhaps arbitrarily)
upon BC. Then we must execute C after B even if C
has already succeeded. This is a less extreme solution
than executing all of the scripts again in a functioning
network, but in this case has the same effect. In the
future, we will be able to assure this kind of behavior
in Maelstrom by using extended precedence operators

Latent Variables

In practice, however, homogeneity can be much
more difficult to identify or refute, because other prob-
lems and processes can cause the same symptoms.
Suppose for two otherwise homogeneous scripts B and
C, there is yet another unknown rogue process interfer-
ing with B. In this case, the fact that B had to correct a
problem twice does not indicate a sequencing problem
with C, but is rather due to a hidden latent variable that
has nothing to do with the performance of either script
we are considering. Conversely, a successful test like
the above can only indicate that homogeneity is pre-
served in one test case. Any such analysis only sug-
gests that homogeneity may or may not be preserved,
but does not indicate whether it is or is not preserved.
Sadly, the latter are mathematical ideals that are mean-
ingless in practice.

Phenomenology

In the above arguments, twice we have applied
observation as a replacement for description, first in
determining the order of troubleshooting scripts, and
then in determining whether a particular set of scripts
is capable of being ordered in that manner. These are
both ‘phenomenological’ (or ‘empirical’) approaches
that replace abstract descriptions with hard evidence,
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by changing the problem to allow employing evidence
instead of theory.

In traditional approaches to troubleshooting, the-
ory guides all actions. In the context of this paper, the
precedences between tasks are theoretical. Interpreting
a valid theory literally improves speed of trou-
bleshooting by avoiding redundant tests, while an
invalid theory may blind one to a potential problem by
keeping one from executing tests in the order required
by physical conditions.

Modularity

The rules above for scripts allow scripts to be
added freely to our debugging schema without any
attention to precedences between scripts as long as
they all remain homogeneous, convergent, and aware
of their effects. These requirements allow a new form
of ‘phenomenological’ software modularity; a modu-
larity based upon effect rather than interface. If scripts
can maintain agreement about their overlapping
effects, they may be freely mixed and employed
toward a common goal. Maelstrom’s algorithm is
nothing more than a ‘phenomenological sort’ of phe-
nomenologically modular scripts into a total order
within which each can function properly.

Traditional ideas of software modularity express
modules as being defined by interfaces with specified
preconditions and postconditions on the use of each
interface. For Maelstrom, instead modularity is based
solely upon effect and postconditions; modularity is a
requirement of the postconditions of the network after
the script finishes. Every script must check its precon-
ditions itself and only proceed if they are appropriate,
so all scripts are expected to function correctly for all
possible sets of preconditions.

Of course, what has been omitted so far in this
discussion is the difficulty of writing scripts with the
appropriate properties of environmental awareness,
convergence, and homogeneity. In general it is diffi-
cult to construct such scripts while assuring script
quality and reliability [10]. It is this difficulty that jus-
tifies the use of complex tools such as Cfengine [2, 3,
4] to fulfill that purpose instead.

Assuring Convergence

The problems of constructing convergent scripts
have already been discussed in [9, 10]. One approach
to ensuring awareness and convergence is to create an
intelligent interface for dealing with the environment
[7]. This interface hides the details of convergence
from the script writer by checking for each change
before making it inside of subroutines that accomplish
the changes. As long as one interacts only with the
environment through the lens of these subroutines, the
script is guaranteed to be convergent. Without this dis-
cipline, convergent scripts are more complex than
their non-convergent counterparts. Checking every
parameter before changing it leads to doubling of
script size with a commensurate increase in the diffi-
culty and cost of script maintainability.
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Assuring Homogeneity

Even if we can solve these problems, the new
problem of assuring that scripts agree globally on their
effects (homogeneity) gives rise to even more script
complexity. One part of enforcing homogeneity is
easy. If two scripts configure or control distinct
domains with no overlap in parameters, such as a
router and a distinct switch, we say the scripts have
orthogonal domains of change. Such scripts are auto-
matically homogeneous once they are convergent.

If, however, two scripts affect the same environ-
mental parameters, they must somehow agree upon
the appropriate values (or rules) for those parameters
or homogeneity will not be possible. Scripts that over-
lap in function should ideally gather their configura-
tion details from the same source. In this way, the only
requirement for the scripts themselves is that they be
convergent, and homogeneity is guaranteed by conver-
gence. Again, this calls for a common interface; a
library that accesses the same database of desired
traits of a network for all scripts.

With both of these ingredients — convergent
interface libraries and globally consistent access to
configuration information — homogeneity is automati-
cally guaranteed. But almost none of the modern solu-
tions to scripting have the second property of consis-
tent access to configuration information.

A beginning for this kind of globally consistent
access to parameters may be found in the configura-
tion files and common configuration interface of the
Arusha Project [17, 18]. Even with powerful mecha-
nisms such as Arusha’s XML-based parameter inheri-
tance, assuring both of these ingredients also requires
substantial discipline on the part of the programmer;
all access to the network or to configuration informa-
tion must be through this mechanism. Any sloppiness
in code — such as embedding configuration parameters
into code or using other methods for accessing the net-
work or the parameters — will lead to non-compliant
scripts.

The Myth of Causality

Can the Maelstrom approach be applied to the
problem of inferring the ‘causes’ of network prob-
lems? Probably not. The question of what ‘caused’ a
specific problem usually turns out to be ill-formed.
This is mainly because the action that seemingly
repaired a problem need not be directly related to the
true cause of the problem.

Proposition §: Causality is an abstract ideal that

is meaningless in practice.
Foremost, the reason for this is that any claim that the
Maelstrom process can make about causality is only
true about the computing environment in which it was
observed. This environment is constantly changing,
and many changes are not observable, so no prior
inference can be useful in predicting future behavior
reliably. Theoretical ‘cause/effect’ relationships can be
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used to guide the troubleshooting process, but these
cannot reliably be inferred from observations during
that process.

The concept of causality is plagued by ‘latent
variables’ that affect the function of a system without
being recognized as having any effect. Most recently,
months of carefully checking DHCP and router con-
figurations for a DHCP problem ended when we
observed a DHCP server answering an ARP request
with an incorrect IP address. The ‘latent variable’
turned out to be a defective network driver on the
DHCP server — something we had never considered.
The idea that troubleshooting is often a search for
‘latent variables’ justifies the ‘phenomenological mod-
ularity’ that allows one to easily add tests to a decision
tree.

Eells [12] points out that the latent variable prob-
lem is much more severe than this simple case study
illustrates. He shows that by an appropriate ignorance
of latent variables one can ‘prove’ that smoking pre-
vents cancer. In his example, one latent variable is the
location of the test subjects, either in large cities or on
rural farms.

While network debugging by lower-level staff
can be represented by decision trees, persistent prob-
lems referred to the highest level of triage almost
always involve latent variables that are not part of the
decision tree at all. Thus it becomes very important to
be able to add tests to the debugging process as latent
variables are discovered without affecting the global
integrity of the debugging process. This need justifies
use of ‘phenomenological modularity’ to assure inter-
operability between scripts, and the complete
intractability of determining precedences between the
various tests justifies the execution time that it takes to
infer the precedences automatically.

The idea of causality cannot be even exhibited
within scripts that are appropriately homogeneous and
convergent. In fact:

Proposition 9: Script convergence obscures

causal relationships.
Causal relationships take the form of scripts (or
actions) A, B, and C, where C always succeeds after A
and always fails after B. In this case, A and B cannot be
homogeneously convergent with one another, because
they sufficiently diverge in what they do to either
assure or break C. To add to this quandry, it is seldom
true that a script enables or disables another in all pos-
sible conditions. This is also a mathematical idea that
never appears in practice.

Limitations

When scripts are convergent, this does not imply
that they are non-disruptive. Convergence is a post-
condition describing the resulting state of the network
after the script completes. A convergent script can still
make arbitrary changes while it executes, up to
rebooting servers or even re-routing services to new
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servers. In this sense our definition is less stringent
that that of Cfengine [2, 3, 4], which requires that a
script avoid creating non-conforming equipment states
while executing (which prevents it from rebooting
servers).

This fact is the root of several limitations of the
method. First, the method is inherently serial, because
convergence and homogeneity are not otherwise guar-
anteed. Maelstrom, unlike make, cannot run scripts in
parallel without presuming complete orthogonality of
script domains of change. Future versions of Mael-
strom may allow one to declare scripts as independent,
to allow parallelism.

Perhaps the most severe hidden limit is the sub-
tlety with which scripts must be developed in order to
exhibit true and guaranteed homogeneity. The only
reliable ways to assure this in practice are to use only
scripts that administer non-overlapping domains and
cannot behave inhomogeneously, or to force all scripts
with overlapping domains to retrieve configuration
information from a common and shared source.

Conclusions

Maelstrom is a relatively simple tool. But it is a
result of complex and perhaps controversial changes
in our thinking about the troubleshooting process.
What we want is not necessarily what we need. It
would be nice if we could predefine the script that
accomplishes troubleshooting, by implementing a
decision tree as a script. This does not work. It would
be nice if we could predefine precedences between
troubleshooting tasks. We cannot. It would be nice if
the result of scripting was a description of the problem
that was solved. As we often do not know the causes
of problems when solving them as human trou-
bleshooters, this is an idle dream.

The lesson of Maelstrom is that there are things
we can do to automate troubleshooting without run-
ning into these roadblocks. We can employ conver-
gence as a replacement for causal theory. We can con-
centrate on effects, and base the modularity of our
automation upon consistency and agreement upon the
effects we wish to achieve, and reliable reporting of
effects, rather than agreement upon software interfaces
or platforms. We can compensate for lack of agree-
ment by sequencing.

But taking these steps also requires casting aside
some commonly held values. We must remember that
machine labor is cheap while staff labor is expensive,
so that an inefficient machine process is sometimes
preferable to an efficient one performed by a human.
In utilizing machine labor, however, it is important to
keep the automated process understandable and
repeatable by a human, so that it can be verified, vali-
dated, and improved. Maelstrom does not use the most
efficient strategy, but the most understandable one.

Research is itself a convergent process, so it is
not surprising that many others have faced the same
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problems in other areas and come to some of the same
conclusions. The need to limit ourselves to cases that
are observable is echoed in current work on testing of
distributed software systems [6, 11]. Safety (freedom
from undesirable states) and /iveness (freedom from
deadlocks) are goals of both software engineering and
system administration. Safety and liveness are difficult
to assure, even when one has a complete model of
what proper operation should be — something a net-
work administrator often lacks.

It is often claimed that learning to be a painter is
not so much learning to paint as it is learning to see.
Here we have the same effect; we need to learn to trust
our senses rather than our theories, our results more
than our models. Only then can we sort out the mael-
strom that is troubleshooting, and can truly know that
we can ‘‘paint what we see.”

Availability

Maelstrom is freely available from http:://www.
eecs.tufts.edu/"couch/maelstrom . It is written in Perl-5
to be portable to almost every UNIX system in cre-
ation.
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