
USENIX Association

Proceedings of the
14th Systems Administration Conference

(LISA 2000)

New Orleans, Louisiana, USA
December 3– 8, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Peep (The Network Auralizer):
Monitoring Your Network With Sound

Michael Gilfix & Prof. Alva Couch – Tufts University

ABSTRACT

Activities in complex networks are often both too important to ignore and too tedious to
watch. We created a network monitoring system, Peep, that replaces visual monitoring with a
sonic ‘ecology’ of natural sounds, where each kind of sound represents a specific kind of network
event. This system combines network state information from multiple data sources, by mixing
audio signals into a single audio stream in real time. Using Peep, one can easily detect common
network problems such as high load, excessive traffic, and email spam, by comparing sounds
being played with those of a normally functioning network. This allows the system administrator
to concentrate on more important things while monitoring the network via peripheral hearing.

This work was supported in part by a USENIX student software project grant.

Introduction

Are your systems and network functioning cor-
rectly? Can you be sure at this moment? Every admin-
istrator has some need to be able to answer these or
similar questions on an ongoing basis.

Current approaches to live monitoring of net-
work behavior (such as Swatch [10], mon [4], and
their many relatives) can send email or page responsi-
ble people when things seem to go wrong. These tools
are both visual and intrusive; operators must either be
interrupted by alerts or periodically suspend other
work to check on network status. Furthermore, these
approaches are highly problem-centered and provide
mainly negative reinforcement; the monitor notifies an
operator only when problems occur. It does not, as a
rule, regularly inform one when things are going well.

We created a tool Peep that represents the opera-
tional state of a system or network with a sonic envi-
ronment. The flavor, texture, and frequency of sounds
played are used to represent both proper and improper
network performances, while the ‘feel’ of the sounds
provides the listener with an approximation of net-
work state. This environment plays in the background
while the operator continues other tasks. Without
looking anywhere and without interrupting other
pressing activities, the operator can hear peripherally
whether action is required.

Auralization

The idea of auralizing network behavior by play-
ing network sounds is not new. Joan Francioni and
Mark Brown [3, 5] represented parallel computer per-
formance using a synthesizer driven by a MIDI inter-
face. The strength of this approach, however, was also
its main limitation. For music to remain pleasant, one
must limit one’s representations to a limited number of
relatively pleasing harmonic combinations. This
greatly limits what one can represent with this tech-
nique. Earcons [2] are the sonic equivalent of icons;

sounds that are naturally associated with particular
events. For example, most people associate a car horn
with impatience or alert and a doorbell with someone
entering a house.

Both of these approaches define the meanings of
specific sounds or particular combinations in isolation.
Combining sounds is difficult unless they are conso-
nant either musically or environmentally, that is, that
the sounds naturally occur together and ‘sound right’
in combination. Natural sounds have an advantage
over music; they sound normal and pleasing in almost
any combination similar to that of nature. For exam-
ple, birds and frogs in wetlands can sing with virtually
no coordination, and the result is still pleasing.

The Psychology of Audio Notification

What makes Peep possible is that events in net-
works have easily recognized natural sound counter-
parts. Moreover, numerous natural sounds can be
played in combination while the result stays pleasing
to the ear. If each sound represents some part of net-
work function, and all are played together, the result is
a sonic ecology in which the current state of the net-
work can be determined moment by moment.

Peep exploits human instinct: our ability to
notice a deviation from the norm with little effort, to
determine what sounds right, and to discern singular
important sounds from a collection of many sounds.
We do these tasks with little or no conscious effort.
Since computer interfaces mainly require the visual
senses (and some motor skills), the audio senses are
left available to perform this unconscious processing.

Furthermore, Peep takes advantage of our ability
to do abstract processing. Instead of attempting the
difficult and sensitive problem of determining when a
network crisis has occurred or is about to occur, Peep
provides contextual, continuous sound information
and leaves interpretation to the listener. Decisions are
based not only on the quantitative measure of things,

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 109

Peep (The Network Auralizer): Monitoring Your Network With Sound Gilfix & Couch

but the relative amount and absence of things. A musi-
cian friend has often expressed to me his philosophy:
‘‘Anybody can play drums, but the great drummer
concentrates as much on the feel of the notes as on the
space, or absence of sound, between them.’’ Similarly,
information that is lacking from Peep’s sound
ambiance is just as important as the amount of infor-
mation conferred and the relative magnitude is left to
the judgement of the listener.

Representational Techniques

Sound representation in Peep is divided into
three basic categories: Events in networks are things
that occur once, naturally represented by a single peep
or chirp. Network states represent ongoing events by
changing the type, volume, or stereo position of an
ongoing background sound while heartbeats represent
the existence or frequency of occurrence of an ongo-
ing network state by playing a sound at varying inter-
vals, such as by changing the frequency of cricket
chirps.

Peep represents discrete events by playing a sin-
gle natural sound every time the event occurs, such as
a bird chirp or a woodpecker’s peck. The sounds we
chose are short and staccato in nature and easily dis-
tinguishable by the listener. Additionally, we noted
that certain events tend to occur together and found it
convenient to assign them complementary sounds.
While monitoring incoming and outgoing email on our
network, we noticed that the two events were often
grouped together, since both types of email were usu-
ally transferred in a single session between mail
servers. To better represent this coupling between
incoming and outgoing email events and make the
representation sound more natural, we used the sounds
of two conversing birds. Thus, a flood of incoming
and outgoing email sounds like a sequence of call and
response, making the sound ‘imagery’ both more
faithful to our network’s behavior, as well as more
pleasing to the ear.

State sounds correspond to measurements or
weights describing the magnitude of something, such
as the load average or the number of users on a given
machine. Unlike events, which are only played when
Peep is notified of them, Peep plays state information
constantly and need only be signaled when state
sounds should change. Peep represents a state with a
continuous stream of background sounds, like a water-
fall or wind. Each state is internally identified as a
single number measurement, scaled to vary from
extremely quiet to loud and obnoxious. Background
sounds should be soothing while the network is func-
tioning normally. However, when the administrator is
annoyed, he will know that action is required.

Heartbeats are sounds that occur at constant
intervals, analogous to crickets chirping at night. A
common folk tale is that one can tell the temperature
from the frequency of cricket chirps; likewise we can

represent network load as a similar function. Intermit-
tent chirps might mean low load, while a chorus might
mean high load. Heartbeats can also report results of
an intermittent check (or ping) to see if a given
machine, device, or server is functioning properly.

Humans are very apt at recognizing when contin-
ual background sounds change, making problem
detection swift and simple. If your email server dies,
chances are that you will not receive any email warn-
ing of the problem. But the crickets will have stopped
chirping. The heartbeats provide an effective method
for monitoring the functionality of your network and
being alerted of a problem when all else fails, through
the absence of sound. Likewise, the administrator need
not fear about monitoring his Peep server; if it dies, he
will be immersed in sudden silence!

Sound representation depends very much on per-
sonal taste. Peep aims to provide users with a choice
of themes such as wetlands (the current theme avail-
able) or jungle. Within a theme, sounds are classified
according to the network events they most appropri-
ately express. Although the two chorusing birds were
used to represent incoming and outgoing mail in the
previous example, the two bird sounds could have
been used for any type of coupled event behavior.
These classifications help the user make decisions on
what sounds to use from his collection of favorites.

We also recognize that distinguishing sounds can
be difficult if, for example, several similar bird sounds
are used in a single theme. As the theme repository
provided with Peep expands, we hope it will address a
wide range of network situations and personal tastes.

Scalability and Flexibility

The Peep architecture was designed to be versa-
tile and scalable. The architecture is based upon a pro-
ducer/consumer relationship between distributed mon-
itoring processes that watch the network and servers
that actually play sounds. Producers alert consumers
to events and state changes via short UDP messages,
as shown in Figure 1.

This architecture allows the receipt of status
reports from any number of devices or nodes. Produc-
ers (the monitors in Figure 1) monitor network behav-
ior and report events and states while consumers take
their input from the producers and play the appropriate
sounds. Producers can be pointed at several sound
generators simultaneously, e.g., a lab full of Linux
workstations, for a truly immersive experience!

Producers are executed as daemons on machines
with access to information sources. This eliminates the
need to send copious amounts of sensitive log or
machine information across the network to a central-
ized monitoring server. The packets sent to the con-
sumer contain only sound representation information
and would be of little use to a snooper without access
to the Peep configuration file.

110 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Gilfix & Couch Peep (The Network Auralizer): Monitoring Your Network With Sound

The Peep system was designed to take advantage
of existing system administration tools. Server and
client configuration information is stored in the same
configuration file. This allows centralized control of
Peep via simple file distribution via NFS or other
widely accepted mechanisms such as CFEngine [6, 7,
8] and rdist [9].

Clients provided with the Peep distribution are
‘lightweight’ Perl scripts. Each client functions strictly
within one problem domain: it addresses its original
intended purpose and no more. This keeps client code
simple, easy to debug, and easy to customize.

Figure 1: The Peep architecture.

We also wanted clients to run in the background
and utilize as little resources as possible. Our log
probing client, LogParser, watches log files and uses
regular expressions to determine when particular
events have occurred. Because of the way regular
expressions are mapped in memory, scanning a single
log for many different text patterns can become mem-
ory intensive. Instead, we designed LogParser to dis-
tribute monitoring overhead. Multiple instances of
LogParser can run on separate feeds around the net-
work, each instance searching for only a few textual
patterns in the local system logs. This allows the sys-
tem administrator to take advantage of the distributed
computing power of his network, rather than waste
what is often an abundance of idle resources in the
hands of naive users. Peep aims to provide administra-
tors with several means of implementing monitoring.
Administrators still have the option of directing all log
entries to a single machine should they so desire, at
the cost of increased network bandwidth. Furthermore,
the distributed method can be combined with the

single-machine method with no effort on the adminis-
trator ’s part.

Expanding the capabilities of Peep to fit your
own needs is simple. Perl libraries handle all the low-
level details, so writing scripts for event, state, and
heartbeat-driven feeds can be quick and painless. Log-
Parser can also be easily configured to scan a log for
new events via additional regular expressions.

The Peep Protocol

Peep was designed to allow centralized manage-
ment of its distributed architecture. The Peep protocol
uses auto-discovery to dynamically bind clients and
servers together upon startup. Peep configuration also
uses a class mechanism to define groups of clients that
should all report data to the same servers.

Peep was originally designed to use TCP for
communication between clients and servers but com-
munication over UDP proved much more efficient and
effective. The main strength of TCP is its reliability.
However, this reliability comes at the cost of greater
bandwidth usage. Extra packets must be sent to
ensure that transmissions were received correctly and
in the proper order. Peep does not require packets to
be ordered in any way – nor for packet transmissions
to be reliable – since the representation of the state of
the network is an approximation rather than a precise
depiction. In any case, the human ear has no way of
distinguishing the exact order of events when events
rapidly arrive at the Peep server; indeed, the resulting
sounds seem simultaneous.

The statelessness of UDP provided another bene-
fit: clients and servers can be stopped and restarted

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 111

Peep (The Network Auralizer): Monitoring Your Network With Sound Gilfix & Couch

without affecting one another. We wanted users to be
able to write their own clients with minimal hassle.
Avoiding connection management keeps clients sim-
ple and allows one to readily write Peep clients with-
out making use of the included Perl libraries.

One drawback to using UDP is that clients have
difficulty determining when servers crash. If this prob-
lem is not addressed, a client will continue to provide
data to a non-existent server forever. Peep deals with
this problem by combining a leasing mechanism with
auto-discovery. This combination provides safe,
dynamic, real-time bindings between clients and
servers.

Figure 2: A server initialization.

Figure 3: A client initialization.

Peep’s auto-discovery mechanism uses a
domain-class concept to maintain bindings between
clients and their respective servers. When a server ini-
tializes, it broadcasts its existence to the subnets asso-
ciated with its classes and announces the classes of
which it is a part. The clients that are members of
those classes register themselves with the server and
begin sending it packets. Conversely, should a client

start up and broadcast its existence, the servers associ-
ated with its class will tell it to begin sending. A
broadcast only occurs once during the initialization of
each client or server, after which a list of hosts is
maintained on both sides and communications are
direct. Both clients and servers can belong to multiple
classes at the same time and clients can communicate
with many servers concurrently.

Leasing is used to ensure that clients do not
waste network bandwidth and system resources send-
ing packets to servers that are no longer listening. The
server sends a lease time to the client during auto-dis-
covery. Just before the lease expires, the server tells
the client to renew the lease. The client responds by
telling the server that it is still alive and still needs to
know about lease information. If the client has not
heard from a server after the lease time has expired, it
will no longer send packets to that server. Similarly, if
a server does not receive lease acknowledgement from
a client, it will no longer attempt to renew its lease
with that client.

112 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Gilfix & Couch Peep (The Network Auralizer): Monitoring Your Network With Sound

The auto-discovery and lease mechanisms
greatly ease the burden on the system administrator.
The system administrator can then use a file distribu-
tion mechanism, like CFEngine, to add client and
server daemons to a machine’s background processes.
Clients will sleep until a server becomes available, and
will send packets only while that server stays avail-
able.

Alternatively, system administrators may decide
to dedicate a machine to run Peep software and want
all clients to execute on a single machine. In this situa-
tion, broadcasting becomes totally unnecessary and
inefficient. Instead, the user can disable the auto-dis-
covery mechanism. Clients will then become dumb
clients, continually processing and sending event
information to a server throughout the course of their
lifetimes. Peep also provides the user the choice of
mixing and matching, applying distributed and cen-
tralized configurations where they make sense.

In terms of robustness, the Peep protocol has ver-
sion identification, room for future expansion, and
type identification. Upgrades should allow older
clients to work with newer servers and vice versa.
Communications are done using one-byte quantities to
represent attributes, and strings for anything more
complex. This allows us to avoid any external data
representation issues, making the protocol more
portable.

Details of this protocol are hidden inside a Perl
client interface library provided with Peep. The Peep
library demands little expertise. To create a client
with all of the library’s benefits, programmers need
only initialize the library with their application name
and tell the library what information to send. Initializ-
ing the library parses the Peep master configuration
file, so programmers need not do it themselves. This
allows client design to be as simple or as complicated
as the user desires. We hope that the simplicity of
writing clients with the Perl library will encourage
users to write their own client applications and share
their code with others.

Configuring the Peep System

How one configures Peep is very much depen-
dent on whether you choose to use single or multiple
nodes. The generalized Peep installation is a four-step
process: downloading the source and a sound package,
compiling the server, editing the configuration file,
and deploying clients.

The Peep server package uses the gnu autoconf
package to make configuration and compilation easy.
Support for tcp_wrappers [11] can be added as an
option. Peep comes with two generic sound modules.
One handles generic /dev/audio support while the
other takes advantage of ALSA [1] on Linux systems.
The configure package will default to ALSA drivers
over generic support, if present. Special support for
the Sun audio jack is also provided.

After compilation, the next step is to tell Peep
which sounds to associate with which events, the
classes to which your clients and servers belong, and
your client configurations. A simple Peep configura-
tion file is shown in Figure 4.

class myclass
broadcast 130.64.23.255:2000
server swami:2001

end myclass

client LogParser
class myclass
port 2000
config
#Name|OptLetter|Location|Priority|RegX
out-mail 0 1 "sendmail.*:.*from"
inc-mail I 255 0 "sendmail.*:.*to"

end config
end client LogParser

events
#Event Type|Path|# sounds to load
out-mail /path/sounds/peep1a.* 1
inc-mail /path/sounds/peep2a.* 1

end events

states
#Event Type|Path|# sounds| Fade time
loadavg /path/sounds/water.* 5 0.3

end states

Figure 4: An example peep.conf .

Class definitions consist of two lines: one speci-
fying broadcast zones and another specifying which
servers are part of that class. Several broadcast zones
and servers can be specified. Clients and servers can
be part of several classes and will broadcast all the
classes to which they belong during initialization.
Putting multiple servers in a class (or making a client
a member of multiple classes) is an easy way to have a
single client dump data to multiple servers.

The ‘events’ and ‘states’ sections tell Peep
servers to associate a name with a group of sounds.
Filename descriptions in the Peep configuration file
have a trailing asterisk extension followed by the
number of sounds to load. Peep expands each asterisk
into a two-digit number and loads, in ascending order,
the number of sounds specified. All of the sound files
loaded for a single entry then correspond to a single
event. Every time that event occurs, the server will
randomly play one of the associated sounds. This ran-
domness makes the sound ambiance more natural.
Heartbeats are created from streams of normal events
from a client at suitable intervals. For state sounds, the
server randomly strings together sound segments to
create a non-repeating, random-sounding background
ambiance. To keep transitions between sound seg-
ments sounding natural, the user can specify a linear
fade time between segments.

The final step is to configure and deploy some of
the clients provided with Peep. Two of those are dis-
cussed here: Peck and LogParser.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 113

Peep (The Network Auralizer): Monitoring Your Network With Sound Gilfix & Couch

Peck
Peck is a command-line utility provided with

Peep. It allows the user to tell a server to play (and
how to play) a given sound. Peck is an example of a
dumb client and bypasses the auto-discovery and leas-
ing mechanisms. Event and state attributes are speci-
fied on the command-line and delivered directly to the
server. Some command-line options apply to event
sounds and others to background sounds, but the user
need only remember a small number of options to get
the Peep server to play some interesting things. Peck
can be called with appropriate arguments from a shell
script if a user does not wish to use a client library.
Ideally, one should only utilize Peck to talk to servers
on the same physical machine, or to report very infre-
quent events since Peck’s inability to use auto-discov-
ery and leasing capabilities means that calling applica-
tions will have no knowledge of the state of the
receiving server. Peck is handy for a variety of simple
tasks, including debugging installations, testing how
things sound together, experimenting with Peep’s
capabilities, and interfacing Peep with other monitor-
ing systems (such as an existing Swatch or mon instal-
lation).
LogParser

A simple log analyzer, similar to Swatch, is also
provided with Peep. LogParser takes advantage of
Peep’s auto-discovery and leasing mechanisms. It is
also an efficient distributed tool. LogParser reads its
entire configuration but only searches for and remem-
bers textual patterns specified on the command-line. It
was designed to have multiple instances run on several
different machines, each scanning for different sets of
textual patterns on each client machine.

LogParser is flexible, easy to configure, and pro-
vides a simple way to access Peep’s capabilities for
representing events and states. It analyzes log mes-
sages as they are added to the log file and scans them
for regular expressions. LogParser uses simple config-
uration syntax to generate command-line options and
determine which sounds to associate with which par-
ticular events. Several options follow:

• The priority of the event ensures that no matter
how many network events hit the Peep server,
the most important ones will be played first and
foremost.

• The stereo location of the event, aside from
pleasing the true audiophile, helps the user dis-
tinguish and even locate an event. Sonic loca-
tions can even be assigned to correspond to the
actual locations of machines on the network.
Future versions of Peep might include a visual
sound location map to exploit this.

• A regular expression that tells LogParser how
to find the event in a log file. Users with expe-
rience with Awk/Perl pattern matching will
appreciate this feature while others may find
writing these difficult. We feel this is the easi-
est way to extend the capabilities of Peep with-
out doing any sort of programming.

Directives in the LogParser configuration can be
enabled or disabled via command-line options. Each
line of the LogParser configuration corresponds to a
user-specified single-letter option. In Figure 4, incom-
ing and outgoing mail are mapped to command-line
options ‘‘I’’ and ‘‘O’’, respectively. Thus, an invoca-
tion of LogParser searching for incoming mail might
look as follows:
LogParser -events=I

-logfile=/var/log/messages

Should the user forget the options, a help option will
conveniently generate a list of user-configured
options.

A single instance of LogParser can scan numer-
ous logs simultaneously. It can send event streams to
multiple servers automatically via the auto-discovery
and domain-class mechanisms. These features provide
the user with a myriad of options for structuring the
architecture of Peep within a network.

Peep Performance under Pressure

To deal with copious amounts of incoming net-
work data, Peep has a queuing and windowing system
that handles large numbers of simultaneous events.
This ensures that events are played in the order of
receipt and in accordance with their particular priority.
Peep will also discard events from its queue if too
much time elapses between receipt and playtime, in
order to keep events relevant.

Peep plays sounds by mixing sources in soft-
ware. Since having large numbers of simultaneous
voices can become computationally expensive, the
user can tweak Peep’s performance by changing the
number of voices used when mixing sound. Less mix-
ing voices tend to mean that the Peep’s queuing and
windowing system gets more usage, but the two
always strike a balance to keep events accurately posi-
tioned in terms of time of occurrence.

It is difficult to send events to a Peep server fast
enough to fill a queue on a Pentium II 400 and during
testing, this required the use of an infinite loop. If the
Peep server does manage to become overloaded, it
only falls behind time-wise, adding a delay between
the real-time event and the playing of its counterpart.
Peep will preserve the general order and users will still
be able to diagnose problems based upon the relative
frequency of events. The delay experienced only
applies to events and heartbeats; state changes occur
instantaneously. In a worst case scenario, should the
queue manage to fill up while new events are still
arriving, Peep will begin discarding the oldest events
from the queue, attempting to give the best approxi-
mation of network activity.

A Brief Overview of Implementation

The inner-workings of a Peep server are based
upon the interactions between three execution threads
as shown in Figure 5: the listener, the engine, and the

114 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Gilfix & Couch Peep (The Network Auralizer): Monitoring Your Network With Sound

mixer. The listener handles all communications with
the client, discovering clients via auto-discovery and
keeping track of client leases. Upon receipt of event or
state data, the listener thread places the information
into a queue to be processed by the engine. The engine
works closely in conjunction with the mixer to keep
track of the priority of incoming and currently playing
sounds. The engine also tries to find the best available
mixing channel on which to play the incoming events
and informs the mixer of the necessary parameters to
properly represent the information. Should a suitable
mixing channel not be found, the engine will place the
events into a priority queue, ensuring that the mixer
will play the most important events as soon as mixing
channels free up. The mixer performs the processing
necessary to produce Peep’s output. This process
involves scaling each sound’s volume, as well as fad-
ing between state sounds. The mixer must also check
the engine’s event queue and ensure that queued, older
events have priority as soon as mixing channels free
up.

Critique

From our perspective, the design of Peep is very
robust and portable. We decided, however, that sup-
port for generic audio hardware was more important
than efficiency of memory and processor usage on the
server side. Peep utilizes Linux ALSA and OSS
drivers, as well as the Solaris /dev/audio interface, to
avoid device incompatibilities. This is done at the
expense of ignoring commonly available device-
dependent hardware-based mixing in favor of mixing
in software. Software mixing did afford us one advan-
tage that hardware cannot guarantee: users will always
get the benefit of sound processing incorporated into
Peep regardless of the hardware. Future plans do
include support for hardware-based mixing on a
selected number of audio cards.

An invisible limitation of Peep is that creating
accurate natural venues of consonant sounds is both an
art and very labor-intensive. Due to copyright limita-
tions on existing natural sound collections, Prof.
Couch has spent many hours with a Telinga parabolic
nature microphone and Sony DAT or digital minidisc
recorder in search of the perfect bird. Sounds we col-
lected required significant post-processing, including
high and low-pass filtering and noise reduction, before
they were free of enough normal background noises to
serve as event sounds. Collecting state sounds proved
even more difficult, with the sound of wind being the
most difficult. The challenge was to collect ‘desirable
noise’ without impurities such as car horns and air-
plane engines.

In spite of the excellent guidance on the record-
ing of natural sounds that we obtained from the Cor-
nell Ornithology website [13], the Stokes Field Guide
to Bird Songs [14, 15], and the British Library
National Sound Archive [12] we are not ornithologists
and apologize in advance for any gross mislabeling of

sounds included with Peep! Nonetheless, we have
made significant progress in providing a Wetlands
venue, and are planning others in the future.

Figure 5: The Peep server’s internal structure.

Configuring a Peep theme pleasingly can be non-
trivial, especially when choosing which sounds should
be associated with which events. The process of
choosing sounds can often be a very lengthy. Since
sounds chosen vary according to personal taste and the
situation they are attempting to describe, we hope to
provide several different preset configurations for our
users after the tool has had more exposure.

Peep is relatively young and prior to this publica-
tion has received very little public usage. We hope we
have anticipated and met the needs of a wide range of

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 115

Peep (The Network Auralizer): Monitoring Your Network With Sound Gilfix & Couch

network implementations. However, only public usage
and time will tell.

Future Work

We want to see several other capabilities added
to Peep servers to better represent network events.
One idea is ‘log dithering’. Due to block buffering,
many log files are updated in erratic bursts so that sev-
eral events are written to the log file and reported by
LogParser as simultaneous. A dither time would space
out how the events are played so they have a truer rep-
resentation.

We also want to represent state sounds in a way
that better models the way the human ear works. Since
the ear hears amplitudes on an exponential scale (in
dB), we want to scale state measurements exponen-
tially so that they better approximate what the human
ear considers truly loud. This still may not satisfy our
vision of having a storm break loose when a machine
is overloaded.

We may also allow sounds to change in nature
with volume. A small stream might become a river
rapid when a state measurement, such as load average,
increases. State sounds might be represented by three
or four different collections of sounds to achieve a
‘thunderous’ effect. A final item on the server wish-
list is pitch bending: the ability to play sounds at dif-
ferent frequencies. Using this capability we could gen-
erate birdcalls at different pitches and then combine
them together to create the effect of a chorus of dis-
tinct birds from a single sample.

We would also like to add a GUI to ease the pro-
cess of configuring sounds for Peep. Since we plan on
having several different sound classifications, a sound
browser would be a welcome addition. The interface
would let the user play several sounds simultaneously
so they could get a feel for how things would sound in
various situations. This will most likely be the next
major addition to the Peep software package.

Lastly, we hope a few brave users will contribute
homegrown scripts and configurations to the project
so that we can establish an archive and ease the pro-
cess of making a new installation.

Conclusions

This work began two years ago by trying to
define what constitutes ‘normal’ behavior of a net-
work and how to take action to rectify ‘abnormal’
behavior. This proved infeasible because normalcy
depends as much upon policy decisions as upon many
pre-existing conditions. These conditions exhibit com-
plexities and intricacies that are difficult to depict via
traditional methods.

Our sound ecology depicts normalcy in a new
way. Things are normal when Peep ‘‘sounds like it did
yesterday,’’ regardless of the intricacy of the depic-
tion. Our innate human abilities to detect these

differences are more acute than one may realize.
When things sound different, we may not know why,
but we can tell that something has changed.

Traditional tools look for specific problems
while Peep only tells the listener about potential prob-
lems. In that respect, Peep will outlast traditional
problem-detection tools because it portrays the general
problem and no more. And unlike other tools, Peep is
non-intrusive. One doesn’t need to pay much attention
to Peep in order to benefit. We don’t want you to. We
just want you to sit back, and listen.

Availability

The current revision of Peep is 0.3.0alpha and is
is currently freely available from http://www.eecs.
tufts.edu/peep/. A demo of Peep’s capabilities will
also be provided on the website in .wav format so
users can know what they’re getting into before they
install it.

Acknowledgements

Thanks to USENIX for funding this project and
making it possible. Additional thanks goes to Andy
Davidoff for contributing many great design ideas
throughout the course of Peep’s development and for
being one of the first to embrace Peep software.

Biography

Michael Gilfix was born in Winnipeg, Canada
and presently resides in Montreal, Canada where he
attended high school at Lower Canada College. He is
currently a junior at Tufts University, where he is
completing his undergraduate degree in electrical
engineering and his masters in computer science. His
interests include guitars, music, and computers in all
ways, shapes, and forms. While completing his
degrees, he is currently practicing the art of system
administration in Tufts’ Electrical Engineering and
Computer Science department. He will be graduating
in 2003. He can be reached via electronic mail as
mgilfix@eecs.tufts.edu . Reach him telephonically at
+1 617-627-2804.

Alva L. Couch was born in Winston-Salem,
North Carolina where he attended the North Carolina
School of the Arts as a high school major in bassoon
and contrabassoon performance. He received an S.B.
in Architecture from M.I.T. in 1978, after which he
worked for four years as a systems analyst and admin-
istrator at Harvard Medical School. Returning to
school, he received an M.S. in Mathematics from
Tufts in 1987, and a Ph.D. in Mathematics from Tufts
in 1988. He became a member of the faculty of Tufts
Department of Computer Science in the fall of 1988,
and is currently an Associate Professor of Electrical
Engineering and Computer Science at Tufts. He can
be reached by surface mail at the Department of Elec-
trical Engineering and Computer Science, 161 College
Avenue, Tufts University, Medford, MA 02155. He

116 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Gilfix & Couch Peep (The Network Auralizer): Monitoring Your Network With Sound

can be reached via electronic mail as couch@eecs.
tufts.edu . His work phone is +1 617-627-3674.

References

[1] Advanced Linux Sound Architecture, http://
www.alsa-project.org .

[2] G. Kramer, Ed, Auditory Display: Sonification,
Audification, and Auditory Interfaces, Addison-
Wesley, Inc. 1994.

[3] J. Francioni and J. A. Jackson, ‘‘Breaking the
Silence: Auralization of Parallel Program Behav-
ior,’’ Journal of Parallel and Distributed Com-
puting, June 1993.

[4] J. Trocki, ‘‘Mon, the Server Monitoring Dae-
mon,’’ http://www.kernel.org/software/mon .

[5] M. Brown, ‘‘An Introduction to Zeus: Audiovi-
sualization of Some Elementary Sorting Algo-
rithms,’’ CHI ’92 proceedings, Addison-Wesley,
Inc. 1992.

[6] M. Burgess, ‘‘A Site Configuration Engine,’’
Computing Systems, 1995.

[7] M. Burgess, ‘‘A Distributed Resource Adminis-
tration Using Cfengine,’’ Software: Practice and
Experience, 1997.

[8] M. Burgess, ‘‘Computer Immunology,’’ Proceed-
ings LISA XII, Usenix Assoc., 1998.

[9] M. Cooper, ‘‘Overhauling Rdist for the ’90’s,’’
Proceedings LISA VI, Usenix Assoc., 1992.

[10] S. Hansen and T. Atkins, ‘‘Centralized System
Monitoring With Swatch,’’ Proceedings LISA
VII, Usenix Assoc., 1993.

[11] W. Venema, ‘‘TCP WRAPPER, network moni-
toring, access control, and booby traps,’’ UNIX
Security Symposium III, September 1992.

[12] ‘‘The British Library National Sound Archive,’’
http://www.bl.uk/collections/sound-archive, The
British Library, 2000.

[13] ‘‘The Library of Natural Sounds,’’ http://birds.
cornell.edu/lns/, Cornell Lab of Ornithology,
2000.

[14] D. Stokes, L. Stokes, and L. Elliot, Stokes Field
Guide to Bird Songs: Eastern Region (three
audio CD’s), Warner Books, Inc., 1997.

[15] Peterson Field Guides, Eastern/Central Bird
Songs (three audio CD’s), Houghton-Mifflin,
Inc., 1999.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 117

