
USENIX Association

Proceedings of the
14th Systems Administration Conference

(LISA 2000)

New Orleans, Louisiana, USA
December 3– 8, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

eEMU: A Practical Tool and
Language for System Monitoring

and Event Management
Jarra Voleynik – eEMUconcept Pty Ltd

ABSTRACT

This paper describes a new monitoring and event management concept. eEMU is a client-
server system that provides for rapid development of monitoring agents. This is thanks to its
messaging language that takes advantage of heuristic algorithms implemented in the eEMU server.
As opposed to SNMP and other static monitoring methodologies used in system and application
monitoring, eEMU takes a whole new approach by incorporating the dynamic aspect of
application and system events into the very heart of the dynamic message processing server.

Motivation

The society and industries are increasingly
becoming dependent on computers. Consequently,
system and application uptime management is becom-
ing a critical issue. Performance of outsourcing com-
panies is measured by SLAs (Service Level Agree-
ments). With the advent of e-commerce on a global
scale, ISPs are becoming 24x7 environments as well.
It all calls for good, flexible and reliable monitoring
tools that would allow to proactively keep uptimes at
the highest level and at the same time measure perfor-
mance of IT departments.

Monitoring tools must be simple, cross-platform,
scalable and cost-effective. This, to my observation, is
not the case with most available offerings. Utilities
such as Big Brother are widespread since they are
cost-effective open-source alternatives and they are
relatively simple to use. Nevertheless, alarm presenta-
tion and agent technology in Big Brother does not
bring any new major features compared to other
expensive commercial offerings.

Enterprise offerings such as Tivoli, OpenView,
BMC Patrol and Unicenter TNG use complex multi-
level drill-down alarm representations. Multiple win-
dows must be opened in order to identify the cause of
an alarm. At the top level, alarms are usually repre-
sented with color-coded icons. Big Brother has bor-
rowed this concept and offers color-coded button
matrix for monitored resources with a drill-down
option to find out more about some alarms. eEMU
replaces color-coded icons with a simple intuitive
interface called eEMU browser. Unlike other event
viewers, the eEMU browser displays a single textual
message for each event, not every event occurrence.
Subsequent updates to the event merely update the
existing message. As a result, a complete view of the
enterprise is facilitated with a single message screen
without a need to drill down for more information or
consult the event log. By default, the eEMU browser
displays only resources in ‘‘alarm state’’. It is based on

the premise that ‘‘normal state’’ information is in most
cases of little practical benefit.

eEMU was designed with modularity and inte-
gration in mind. Through scripting hooks to the event
engine, integration with other management tools, such
as OpenView or Unicenter TNG, is simple to achieve.

eEMU was developed by Jarra and Anna
Voleynik of eEMUconcept after many years of experi-
ence on large datacenter sites. Its design was an effort
to overcome shortcomings of other monitoring offer-
ings and provide a simple, powerful tool. Around 80%
of monitoring needs are application or site specific.
Standard monitoring agents that come with other ven-
dor ’s offerings will not monitor applications using off-
the-shelf agent configurations. A well monitored site
incorporates plenty of customisations that should be
simple to make. Here, eEMU comes to the rescue by
providing a message type arsenal that greatly simpli-
fies the design of monitoring agents. In the resource
ID section I will touch on the flexibility with which
eEMU can process resource hierarchies. To date,
eEMU has been providing the simplest agent develop-
ment kit available, thanks to the fact that the alarm sta-
tus is maintained by the eEMU server rather than by
the agent. Most eEMU agents are so simple and small
that they have been coined micro-agents.

How eEMU works

The majority of the currently available tools are
based on the premise that the agent ‘‘remembers’’ the
state of resources it monitors. Consequently, agents
are relatively complex programs that run as daemons
and maintain either a status database or status files.
eEMU works on the premise that all the status infor-
mation is handled by the eEMU server. eEMU agents
are simple scripts or programs that use the emsg pro-
gram to send messages to the server. The emsg pro-
gram is a simple executable that uses the eEMU proto-
col. The protocol is designed to deliver the necessary
information to the server so that the server can

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 131

eEMU: A Practical Tool and Language for System Monitoring and Event Management Voleynik

maintain the status of monitored resources. The key
attributes of each message are resource ID, time-to-
live, and message type. There are multiple message
types that implement the eEMU messaging language.

Figure 1: Color coded alarms.

Figure 2: Business view mode.

The eEMU server stores current alarms in an in-
memory database. Alarm messages sent by agents are
matched against the database contents to find out if the
status of an alarm has changed. If so, the alarm status
is updated. Each status change triggers an action
script. For the action script, message attributes are
facilitated as environment variables that can be used to
take conditional actions or perform correlation of mes-
sages.

SNMP monitoring systems are known to produce
UDP storms. This is partly caused by the fact that
SNMP traps are not guaranteed to be delivered, there-
fore the SNMP manager must regularly poll for
resource status as well. eEMU has been tested to eas-
ily monitor 100 systems on a 33 Kbps dialup line. This
is due to the fact that the OK status is not transmitted
and there is no polling necessary by the eEMU server.
eEMU uses the TCP reliable protocol and any mes-
sage delivery problems are quickly revealed through
missing heart beats from the heart beat agent, which is
an important part of every eEMU agent kit. eEMU has
been tested to process 1000 messages a minute on a

400 MHz Pentium PC. On a large site with hundreds
of nodes it may be easier to deploy 2 or 3 tiers of mon-
itoring servers with a consolidation server at the top.
Messages from middle tier servers can be selectively
forwarded to the higher level server. To make a rea-
sonable effort of delivering messages, emsg uses an
exponential back-off for spacing out several connec-
tion attempts before giving up and returning a failure
code. Consequently, out-of-band communication
channel can be used by agents if the primary commu-
nication channel is down.

The user interface is represented by an intuitive
event console called eEMU browser. The browser uni-
fies the best of both worlds - drill-down icons and
scrolling event screens. To enhance user communica-
tion, the browser allows the operators to not only
annotate existing messages but send new ones as well.
Technically, there is no difference between messages
sent by scripting agents and messages send by opera-
tional staff. The whole purpose is to create an event
flow between enterprise components and staff.

Figure 1 shows a list of alarms that are color-
coded by severity for easy interpretation. The ‘‘user
root is logged in’’ message is annotated with a change
request number to indicate a scheduled work on the
firewall.

132 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Voleynik eEMU: A Practical Tool and Language for System Monitoring and Event Management

Figure 2 shows the business view mode with
alarms logically grouped for a consolidated functional
view of the enterprise. Alarms under a specific busi-
ness group can be displayed by clicking the business
group button.

Resource ID and Message Class

In order to identify monitored resources, each
resource is assigned an Object ID. For a simple Object
ID processing, the Object ID must form the first word
of each message. To uniquely identify a resource, we
need a node name as well. Consequently, ‘‘node_
name’’:‘‘Object ID’’ form a Resource ID, which is a
message key maintained by the eEMU server for
every alarm. All references to existing alarms are done
based on the Resource ID. Examples of Resource IDs
are: web.dumbo.com.au:/usr or ps.porky.com.au:printer.
sydney.accounts1.

If a new agent is written, its messages will be
sent with its own resource ID. Therefore, the resource
ID should fit into the existing resource ID hierarchy,
just like SNMP OIDs are constructed based on a hier-
archical principle. With eEMU there is no need to reg-
ister the resource ID since the server doesn’t need to
know it in advance. It makes deployment of new
agents and resource hierarchies an extremely simple
task compared to SNMP agents. Today, systems and
applications undergo a constant change, thus repre-
senting a very dynamic environment that calls for an
equally dynamic monitoring tools.

If we start integrating eEMU with a call logging
system, we will find that calls need to be logged once
only for a specified resource problem. Later messages
for that particular resource need to update the existing
call only. Resource ID makes call logging possible.

Resource IDs are part of eEMU agents and can
be part of the agent code or part of the agent configu-
ration.

Time-to-Live

Time-to-live is a critical attribute of each mes-
sage. It determines how long the message is kept in
the status database maintained by the server. Let us
demonstrate the time-to-live on a simple agent sce-
nario. A filesystem agent runs every 5 minutes. It
scans all the mounted filesystems and compares their
utilisation with predefined thresholds. If a threshold is
exceeded, a message to that effect is sent to the eEMU
server. Time-to-live attached to the message will be set
to 7 minutes. The server will store the message in the
status database for the period of 7 minutes. If the mes-
sage is not updated within 7 minutes, the server will
delete it. The next filesystem agent run will occur 5
minutes later. It will send another message to the
server if the offending filesystem’s threshold is still
exceeded. Since the previous message is still stored in
the database (with 2 more minutes to live), the refresh
message will re-set its life to 7 minutes. The situation

repeats itself as long as the filesystem’s threshold is
exceeded. Once the problem is fixed, the message
times-out and is removed from the status database by
the server.

Time-to-live concept allows to transfer alarm sta-
tus management responsibilities onto the server, thus
tremendously offloading eEMU monitoring agents.
The concept of time-to-live can also be used in the
reverse sense as implemented in the sleep message
type, described below.

Message Class

The message class attribute was designed for
flexible classification of resources, building business
rules, event logging and escalation. The class can be
used to hierarchically build classes or trees of
resources and group them. The class attribute can
decide which support group needs to know about the
event and subsequently take action. Also, it may
describe a resource hierarchy from the application or
system point of view. Thus, class assists in both, the
business escalation process (it adds a business layer to
the message) and resource identification. Since the
class attribute can be retrieved from within action
scripts, it is trivial for administrators to implement
conditional message processing based on the class
string.

Message classes are part of eEMU agents and
can be part of the agent code or part of the agent con-
figuration.

Class examples are: /UNIX/PRD/FS, /NT/DEV/
ORA.

eEMU Messaging Language

Analysis of monitoring agents behavior revealed
that there are typical scenarios that repeat themselves.
The findings prompted us to turn these scenarios into
event message types, which resulted in the eEMU
messaging language.

The eEMU messaging language and time-to-live
are the key ingredients for making eEMU so simple to
use. A fairly complex monitoring scenario can be
expressed in a few lines of code.

Currently eEMU supports ten types of messages:
normal, delete, count, sleep, wakeup, event, mask,
query, comment and control.

The normal message is held in the status
database for the time-to-live period, whereupon it is
removed from the database if it is not refreshed. By
setting time-to-live to slightly more than the agent
polling interval, the message is guaranteed to stay in
the status database for the duration of the alarm, thus
reflecting alarm status.

The delete message can be sent to the server to
delete a message.

The count message behaves similar to the nor-
mal message only it is in an inactive state until the

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 133

eEMU: A Practical Tool and Language for System Monitoring and Event Management Voleynik

message has been refreshed a predefined number of
times. Each count message is accompanied with a
‘‘lag’’ value that indicates how many successive alarm
messages need to be received before the resource sta-
tus is changed. As an example, a system administrator
is not usually interested in CPU reaching 100% for
short periods of time. It becomes a problem only if the
CPU utilisation is high consistently over longer peri-
ods of time. There are many resources exhibiting simi-
lar qualities, e.g. the swap space, network traffic and
memory utilisation. Count messages are a powerful
means for monitoring such resources.

The sleep message is kept inactive (sleeping) in
the status database. It becomes active when it times
out. Of course, it can be removed from the database
with a delete message before the actual time-out. The
premature sleep message removal is used in many sce-
narios such as backups. When a backup is started, a
sleep message is sent to the eEMU server. Time-to-
live of the sleep message is slightly greater than the
maximum duration of the backup. At the end of the
backup, the sleep message is deleted. There are two
conditions under which the backup raises an alarm.
The first is that the backup script failed or crashed.
The second is that the backup is running overtime.
Both conditions will be revealed by the sleep message
timing out and becoming active.

One of the most interesting uses of the sleep
message is a heart beat agent that monitors system
uptime. E.g. the heart beat agent on node ‘‘dumbo’’
keeps sending heart beat messages, such as
$ emsg -o sleep -n eemuserver \

-p 1965 -t 7m -s 1 -c /UNIX/HB \
-w icecream -m "heart-beat is down"

The above message is sent to ‘‘eemuserver ’’ lis-
tening on port 1965, time-to-live of 7 minutes, sever-
ity 1, class /UNIX/HB, password ‘‘icecream’’ and
message ‘‘heart-beat is down’’. The resource ID is
‘‘dumbo:heart-beat’’.

With heart beat agents, no node discovery is nec-
essary. The first heart beat registers the node with the
eEMU server. If the node is down, the heart beat mes-
sage is not refreshed. The server turns the sleep mes-
sage into an active message that triggers an action and
displays the alarm on the eEMU browser. Once the
problem is fixed, the message goes to sleep again by
switching its status to inactive. After giving some
thought to the heart beat concept one finds out that it
is completely self-maintained. Frequent adding of new
nodes to a large monitored base is as easy as sending
the first heart beat without touching the eEMU server
configuration. Also, removing a node is as simple as
deleting the heart beat sleep message from he eEMU
database. Experience from large scale eEMU deploy-
ments has shown that heart beat agents are an
extremely reliable means of detecting problems.

The wakeup message is used to wake up a sleep
message. Let us suppose that there is a sleep message

already in the database but we would like to expedite
its time-out. It can be accomplished with a wakeup
message.

The event message behaves just like the normal
message with the difference that by default it does not
show on the eEMU message browser. It is predomi-
nantly used to notify the eEMU server of an event and
subsequently keep the event in the database for the
event’s duration. Event messages trigger action
scripts and many times they are used just for that. At
other times, a query message (described below) is
used to query the status database for a particular event.
E.g., a batch job on system A sends an event message
to eEMU on successful completion. System B runs its
batch job only on condition that the batch job on sys-
tem A completed successfully. Before the batch job on
system B runs, it first checks with a query message if
an event that designates the system A batch job’s suc-
cessful completion exists.

The mask message instructs eEMU to mask out
messages of a particular resource ID. The effect of the
mask message is set for a time-to-live interval. It lends
itself to scenarios such as when a backup shuts down
an application that is being monitored. The application
alarms can be masked out for the duration of the
backup.

The query message has two main uses. The for-
mer use lies in querying the status database to find out
about other alarms. This is handy for cross-system
event correlation. The latter use lies in downloading
files from the eEMU server. Central storage of files on
the server can be used for software distribution pur-
poses among others.

The comment message is used to annotate exist-
ing eEMU messages. IT staff can instantly provide
information related to raised alarms, such as actions
taken to correct existing alarms or reasons for sched-
uled downtimes.

The control message is used for administrative
purposes such as suspending the eEMU server.

eEMU Agents

eEMU agents have the eEMU messaging lan-
guage at their disposal. The core of the agent is the
emsg executable. In many cases, the agent code is a
few lines of code. This is due to the intelligence built
into various message types eEMU makes available.

Most monitoring systems rely on thick agents
that maintain status of monitored resources. The agent
technology can be tapped into by using a provided
SDK (Software Development Kit). Apart from a need
to have programming skills, administrators are bound
to learn the API and develop agents that are not
portable, depend on one vendor and are hard to main-
tain. With eEMU, the agents are typically simple
scripts in a language of the administrator’s choice.
Due to the agent’s simplicity and scripting language

134 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Voleynik eEMU: A Practical Tool and Language for System Monitoring and Event Management

implementation, they are portable, developed in a
rapid time-frame and easy to maintain. Moreover,
eEMU agents can be simply scheduled through the
UNIX cron or other scheduler, thus further simplifying
the agent code.

To demonstrate eEMU features, below are a few
scenarios and the way they can be tackled with eEMU.

A batch job run takes more than 10 minutes. If it
is less than 10 minutes, the job terminated prematurely
and we want to know about it. The following is the
eEMU wrapper code:
emsg -n eemuserver -o "count 2" \

-t 10m -c /VMS/BATCH \
-m "batch_job failed"

start batch_job
emsg -n eemuserver -o "count 2" \

-t -1 -C /VMS/BATCH \
-m "batch_job failed"

Before the batch job is started, a count message with
the lag value of 2 is sent to the server. This message
will be sitting in the server in an inactive state for 10
minutes and unless it is refreshed, it will be deleted.
Notice that the second emsg is sent for the same object
ID, namely batch_job, whereby the lag of the count
message is also set to 2. It means that if the first mes-
sage is still in the database at the time the second mes-
sage arrives, the message will assume an active state
and displays in the eEMU browser.

A cold backup of an oracle database on system
‘‘porky’’ shuts the database down. Since the database
processes are monitored with a process agent, we are
inevitably going to receive an alarm that the database
is down. In case of planned downtimes, we do not
wish to receive alarm messages. Some monitoring sys-
tems offer a calendar feature that can be used to tem-
porarily stop alarms from occurring. The problem is
that a ‘‘static’’ calendar configuration needs to be
attached to the alarm. With eEMU, message masking
is dynamically adjusted to the oracle backup interval.
emsg -n eemuserver -h porky -o mask \

-t 2h -c /PROD/ORA \
-m "sap_oracle is down"

shutdown_oracle.sh
backup_oracle.sh
startup_oracle.sh
emsg -n eemuserver -o delete \

-m "porky:sap_oracle"

The first emsg sends a mask message for the
porky:sap_oracle resource ID. It will mask out
sap_oracle alarm messages for 2 hours. Next, the
database is shut down and a backup performed. After
the backup has been completed, oracle is started up
and the mask message deleted. A bonus is that if the
backup runs overtime (more than 2 hours in this case),
we will be alerted of the application being down
beyond the backup window.

A CPU agent can be as small as the following
single line:

eval ‘vmstat 1 3 | tail -1 | \
awk ’{if ($16 < 1) { print \
"emsg -n eemuserv -p 1 965 \
-c LINUX/CPU -t 7m -s 1 \
-o \"count 5\" \
-m \"CPU is 100% utilised\""}}’‘

The above line retrieves the CPU idle time from
a vmstat output and if the idle time is less than 1% it
sends a count eEMU message with a lag of 5. If five
such messages are received in a row, an alarm is
raised.

In order to expand the usability of eEMU, the
query message was equipped with a file download
option. As a result, a file can be downloaded from the
eEMU server. This feature can be used for software or
script distribution but also for ad-hoc remote job exe-
cution. The following simple task distribution agent
regularly (from cron) checks if there is a specific
script in the download directory on the server. If there
is a script for download, it is downloaded and exe-
cuted.
RET=‘emsg -n eemuserver \

-p 1965 -w icecream -o query \
-m "FILE dumbo.job" | \
tee job_to_do.sh‘

if ["$RET" != "none"];then
chmod 700 job_to_do.sh
job_to_do.sh

fi

In the above, the downloaded script is displayed by
emsg on the standard output and subsequently saved
in job_to_do.sh for later execution. If there is no script
for download on the server, emsg returns string
‘‘none’’ and the body of the ‘‘if ’’ statement is not exe-
cuted. Notice that we do not need to log into the
remote system to perform the task. For a site with
many systems, the script or file distribution feature
can provide great benefits for day-to-day system
administration.

eEMU Action Scripts and Automation

Without action scripts, alarms can be viewed on
the eEMU browser but there cannot be any automa-
tion. One of the major benefits of monitoring systems
is that a corrective action or alarm escalation can take
place automatically without human intervention.
eEMU action scripts can be written in any program-
ming or scripting language. The scripts are called in
the background, whereby message attributes are
passed to it as environment variables. Korn shell, Perl,
Python, Tcl or Visual Basic are examples of excellent
scripting languages that can be used with eEMU.

eEMU features three action scripts: input, output
and delete. The input action script is called immedi-
ately on receipt of a new message. If the input script
returns a value greater than 0, the message is dis-
carded. The input script can be used for message
replication or to supplement security and let in mes-
sages from specified hosts only.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 135

eEMU: A Practical Tool and Language for System Monitoring and Event Management Voleynik

The output action script is called for every mes-
sage processed by eEMU except for delete messages.
Delete messages invoke a separate script called
‘‘delete action script’’.

An exhaustive group of environment variables is
provided for all the three action scripts, thus alarm
actioning can be easily coded. There is no limit on
what can be done in action scripts. emsg can also be
used in action scripts to query the eEMU database,
read a file or send a new message to eEMU. Care must
be taken to avoid infinite message loops.

With a combination of resource IDs, message
classes and message severity, call logging or paging is
simple to achieve through action scripts. For example,
to send a page if an alarm of severity 1 occurs, the fol-
lowing output action script can be used:
if [$E_SEV -eq 1 -a $E_COUNT \

-eq 1 -a $E_TYPE = "normal"];then
/usr/local/bin/page \

$E_CLASS $E_HOST $E_MSG
fi

The first occurrence of a normal message
(E_TYPE) with severity 1 (E_SEV) calls the
/usr/local/bin/page script. The script can page the
appropriate staff based on the message class
(E_CLASS).

Using eEMU

While syslog and e-mail has been in use for
some time and as such are powerful, proven messag-
ing tools, they do not provide enough flexibility for
dynamic monitoring in ever changing environment.
With the messaging arsenal eEMU provides it is possi-
ble to build simple powerful agents not only for the
system and hardware, but most importantly for appli-
cations. It is increasingly necessary to monitor various
applications. This task is not easy with system agents
provided with most other monitoring solutions. The
eEMU messaging language is expressive enough to
capture most typical scenarios in application monitor-
ing. Such scenarios are dynamic masking out alarms,
measuring application response times, catching over-
time or hung business processes, identifying crashed
scripts, synchronising batch job etc. Since eEMU
agents do not, in most cases, have to store the resource
status information, all that needs to be done is trans-
form the monitoring case into the eEMU messaging
language and if necessary, deploy the provided stan-
dard agents, e.g. the log agent, directory agent and
process agent.

The eEMU server is a powerful implementation
that has a minimum demand on operating system
resources. E.g. the message database on disk does not
typically grow beyond 500 kB. Action scripts are sim-
ple to implement. Action scripting is designed for easy
integration with other products, such as paging soft-
ware or third party messaging.

Status messages are equipped with a timestamp
and written into a log file. There is one log file for

each day. The contents of the log file can be used for
generating reports or ad-hoc alarm searches. Message
attributes in the file are delimited with a vertical bar
for handy processing by scripts or other reporting soft-
ware.

The eEMU browser unifies the best capabilities
of today’s alarming concepts, namely color-coded sys-
tem icons and event logs into one interface. As a
result, the browser is extremely intuitive with mini-
mum requirements on the operational staff. The latest
version of the eEMU browser implements ‘‘business
views’’ that allow to segment alarms into groups by
function, geographical region, business importance
etc.

There are a few passwords that enable access to
specific message type groups. For example, helpdesk
staff can view and annotate messages but cannot
delete them. Each message type must be equipped
with the correct password in order to be accepted by
the server.

Since eEMU agents do not typically run as dae-
mons, but rather are scheduled through a scheduling
mechanism, such as cron on UNIX, eEMU represent a
very safe monitoring solution for systems deployed in
insecure environments such as firewalls. eEMUcon-
cept provide an eEMU agent scheduler for Windows
NT.

eEMU Integration

eEMU is a modular system that allows to build
multi-tier hierarchies of monitoring agents and
servers. The emsg executable forms the client side of
the system. It can easily be integrated into any third
party system. The integration can be done either at the
emsg level or at the server level through action scripts.

eEMU has been successfully integrated with HP
OpenView and Unicenter TNG. They are both SNMP
based, so how was it done ? Simply through action
scripts. In case of standalone SNMP agents without an
SNMP manager, there are a few approaches. An
SNMP daemon can listen for SNMP traps and log
them into a log file. The eEMU log agent is pointed at
the log file and sends alarms for traps of our interest.
If SNMP GETs need to be employed, a simple agent
script, possibly written in perl, uses an snmpget utility
to retrieve a resource status and subsequently sends a
message to eEMU.

In the above, I described the case of alarms that
are forwarded to eEMU for display on the eEMU
browser and for triggering alarm actions. However, it
is also possible to forward alarms from eEMU to a
third party system. We can use the eEMU action
scripts and command line interface as a vehicle for
such forwarding.

Summary

In the network realm, SNMP is a successful,
firmly established monitoring methodology. As a

136 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Voleynik eEMU: A Practical Tool and Language for System Monitoring and Event Management

result, there have been numerous attempts to apply
SNMP to system monitoring. Our experience shows
that such attempts are not successful. What adminis-
trators need is a powerful, simple command line inter-
face to the monitoring server. Moreover, the interface
needs to possess intelligence so that agent scripting
requirements are reduced to the minimum. eEMU is a
system that brings message type and time-to-live con-
cepts that make the above possible. With eEMU,
every system and network administrator is able to
build monitoring and messaging infrastructure that
forms the backbone of every enterprise management.
There is no enterprise management without a powerful
messaging foundation equipped with scripting inter-
faces at all levels. Some vendors like to say that enter-
prise management is using their products or their inte-
gration kits for other third party programs. This is not
so. Enterprise management is based on open standard
interoperability and easy integration hooks in and into
existing systems. A lot of effort has been put into
making vendors build their products to recognised
standards. There has been more or less success doing
that. However, command line interface to programs
and script invocation on various events is still the best
and most versatile API available.

Availability and Support

The eEMU software is available from eEMU-
concept Pty Ltd, Australia. A free evaluation licence is
available on request from the company’s home web
page (http://www.eemuconcept.com). The eEMU kit
includes Unix and Windows NT system agents.

Author Information

Jarra Voleynik is a co-author of eEMU. He is
currently working for eEMUconcept as a chief archi-
tect for the eEMU product. Jarra has a MSc degree in
radioelectronics. He has been involved with comput-
ers, especially UNIX, for 12 years. He has worked, as
a consultant, for major UNIX vendors, such as Digital
Equipment Corporation, Compaq and Sun Microsys-
tems. Recently, Jarra has architected one of the largest
monitoring and call logging projects in Australia.
Reach him electronically at jarra@eemuconcept.com .

Bibliography

[1] Huntington-Lee, Terplan, & Gibson, HP Open-
View, McGraw-Hill, 1996.

[2] Knapik, M, & Johnson, J, Developing Intelligent
Agents for Distributed Systems, McGraw-Hill,
1998.

[3] Lendenmann, R, Nelson, J, Selby, J, & Patino
Lara, C, An Introduction to Tivoli’s TME10,
Prentice-Hall, 1998.

[4] Lirov, Y., Mission Critical Systems Management,
Prentice-Hall, 1997.

[5] Parsons T, Voleynik J, ‘‘Enterprise Event Man-
agement and Monitoring using eEMU and

Unicenter TNG (Open Source collaboration with
Unicenter TNG,’’ AUUG 99 Open Source Con-
ference Proceedings, 1999.

[6] Spuler, Enterprise Application Management with
Patrol, Prentice-Hall, 1999.

[7] Stevens W. Richard, TCP/IP Illustrated, Volume
1, Addison-Wesley, 1993.

[8] Sturm, R., Working with Unicenter TNG, QUE,
1998.

[9] Voleynik, J, Voleynik, A, ‘‘EMU - Event Man-
agement Utility,’’ Linux Journal, November
1999.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 137

