
USENIX Association

Proceedings of the
14th Systems Administration Conference

(LISA 2000)

New Orleans, Louisiana, USA
December 3– 8, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

A Linux Appliance Construction Set
Michael W. Shaffer – Agilent Laboratories

ABSTRACT

Open source UNIX-like operating systems offer unique opportunities for administrators to
create appliance style operating system and application packages that meet their own specific
needs. This paper provides examples of several commonly useful appliance configurations based
on the Linux operating system and documents the motivations, principles, and techniques behind
the development of a basic ’Linux Appliance Construction Set’ known as LxA which was used to
produce them. Experience with LxA so far suggests that its use may help system administrators
significantly reduce the amount of time spent deploying, maintaining, upgrading, and documenting
certain types of hosts under their control.

Introduction

This paper details the philosophy, tools, tech-
niques, and sample implementations that I have cre-
ated in the course of developing a Linux Appliance
Construction Set which I refer to as LxA. Certainly
the philosophy and many of the the general principles
detailed herein would apply to the construction of sim-
ilar systems based on any open source UNIX-like
operating system, but I chose Linux because of my
long personal experience and familiarity with it. LxA
expands to: Linux x Appliance, for instance: LRA
abbreviates Linux Routing Appliance.

The original design parameters for LxA included
the requirement that the entire boot and root file sys-
tem images fit on a single 3.5’’ floppy disk. The reader
might legitimately wonder why I would embark on the
creation of yet another mini Linux when there are
already a number of excellent and similar projects
active in the open source community [17, 11, 4, 10].
While most mini-Linux distributions aim to provide
completely functional systems on low resource plat-
forms, LxA attempts only to provide a single or small
number of well defined features per configuration. It is
not so much the minimal size as the minimalist philos-
ophy that distinguishes LxA from its peers. In fact,
some configurations such as LPA-CD (Linux Printing
Appliance on CD-ROM) are quite large and require a
CD-ROM for their root file system. Since the initial
release of LxA, other community projects have arisen
which pursue principles similar to those of LxA with
apparently excellent results so far [5].

In general, LxA seems to be well suited to sys-
tems such as: Internet connection sharing routers, fire-
walls, bridges, routers, print servers, certain types of
file servers (such as CD-ROM towers), terminal
servers, point of sale terminals, browser kiosks, or in
general any type of small to medium size single pur-
pose system. LxA would probably not serve well for
systems such as desktop ’power user’ or developer
workstations whose users regularly install, test, and
uninstall many applications. LxA is also not intended
to serve as a general purpose or standalone Linux

distribution although it is hoped that the sample con-
figurations will serve well as a basis for the future
development of many different types of Linux appli-
ances.

Motivation

As a system administrator, I frequently work
part-time for small businesses, organizations, and
departments who don’t for one reason or another have
in-house system administration staff. When, in mid
1999 I decided to move from South Carolina to Sili-
con Valley, I was faced with the dilemma of support-
ing a number of existing installations of Linux
machines providing file, print, and network routing
services which I would now be able to visit in-person
perhaps only once a year. While Linux has inherited
both a well deserved reputation for reliability and
excellent facilities for remote administration from its
UNIX ancestors, there are still situations which are
extremely difficult to manage remotely. Furthermore,
even with the recent surge in popularity that Linux has
enjoyed it can still be difficult to find local companies
or individuals who can provide reliable and affordable
UNIX system administration to small customers in
many regions.

A typical serious problem that I considered fac-
ing was the catastrophic failure of a hard disk or
power supply in a critical machine such as a print
server. While it would be easy to remotely coordinate
procurement and installation of replacement hardware
for such a failure, the rebuild or restoration of the soft-
ware load for even a simple Linux server could be
quite a dicey undertaking if trusted to inexperienced
personnel working three-thousand miles away. I con-
sidered the possibility of having replacement equip-
ment shipped to my new location, configuring it
myself, and then shipping it on to its destination, but I
felt that this approach was undesirable since it would
at least double the already significant costs, delays,
and risks inherent in shipping computer sized pieces
of electronic equipment around the mainland U.S. In
addition, there was always the risk that I might make

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 229

A Linux Appliance Construction Set Shaffer

some trivial error in configuration that would only be
discovered when the system was powered up in its
final destination and failed to work properly (worst of
all would be a mistake that also prevented me from
remotely accessing the machine).

In response to these considerations I formulated
the idea of building Linux systems which would
require no installation in the traditional sense but
which would simply boot and run directly from the
media on which they were delivered. My initial goal
was to create fully functional internet connection shar-
ing and print spooling systems contained entirely on a
bootable floppy or CD-ROM. As I progressed in this
endeavor, I also realized that I was unhappy with the
significant amount of time that was required to
‘adjust’ the typical Linux distribution to my own pur-
poses and tastes after installation, and I decided to
enlarge the scope of the LxA project to include devel-
opment and documentation of a general purpose
framework for building small Linux systems tailored
precisely to the needs of my typical customers. Such
Linux systems would allow me to provide customers
with backup copies of the software load for their sys-
tems by simply providing extra copies of their media
upon delivery and would also allow me to deploy
upgrades and fixes to systems much more economi-
cally by simply shipping new CDs or floppies to all
affected customers. Thus it was that I embarked upon
the creation of LxA with the following goals:

• Reduce system setup time
• Reduce system maintenance and upgrade time
• Reduce system complexity
• Reduce probability and impact of hardware

failure
These are elaborated below.
Reduce System Setup Time

The typical procedure for setting up a new host
using a general purpose operating system involves
performing an installation from original media and
then applying a long series of patches, packages, and
procedures to adjust the system to the particular level
of functionality and security desired. Certain operating
system projects such as OpenBSD [14] seek specifi-
cally to minimize the number of unnecessary compo-
nents in a default installation and to dramatically
reduce the number of steps required to achieve a high
level of security after initial setup. Other projects such
as Bastille Linux [1] do an excellent job of distilling
and codifying community knowledge of the best prac-
tices for a given platform into hardening scripts which
aid administrators both in learning and applying a con-
sistent security policy to new systems. LxA, on the
other hand, attempts to provide a set of procedures and
examples for quickly composing new systems based
on minimal filesystem trees that include exactly the
components required in the proper configuration.
Once a prototype system tree is created and tested, it
can be deployed to new systems much more rapidly
and with greater confidence in its correctness and
security.

Reduce System Maintenance And Upgrade Time
Many individuals and organizations seem to for-

get that most of the time spent on any given comput-
ing system will be spent maintaining it, not designing
or installing it. For this reason, LxA seeks to reduce to
an absolute minimum the time and problems involved
in upgrading systems with new software. The typical
LxA system will have its root filesystem and configu-
ration files on one or more pieces of removable media,
so upgrading the system can be accomplished instantly
and reliably by simply halting the system and replac-
ing this easily handled media.

The boot and configuration filesystems can be
extensively tested before distribution to remote loca-
tions to ensure a smooth upgrade, and in the event of a
malfunction it is trivial to just replace the old media
and restore the system to a working state until further
troubleshooting can be performed. The desire to facili-
tate this rapid and easy roll-forward and roll-back of
system configurations was a primary incentive to the
development of LxA.

By avoiding completely the typical hard-disk
based installation procedure, LxA systems also
encourage rapid deployment of updated software once
it has been tested, since mass upgrades and down-
grades involve drastically reduced time and risk of ser-
vice interruption. Additionally, the backup of the sys-
tem binaries and configuration files of an LxA system
becomes almost trivial since it means simply produc-
ing and storing one or more copies of the boot and
root disk images before distribution. This type of
backup allows almost instantaneous recovery to
known good states both from system failure and from
system compromises or intrusions. Disaster recovery
becomes simply a matter of obtaining suitable hard-
ware instead of the time consuming and error-prone
process of rebuilding a complete system from what-
ever notes are available (or even worse, from mem-
ory).

Reduce System Complexity
This was one of the primary motivations behind

the early development of LxA systems. One of my
original targets was to produce a working and useful
Linux system composed of the absolute minimum
number of pieces and, in the process, to gain an under-
standing of exactly what each piece provided and
required. A second motivation was to reduce dramati-
cally the amount of time and effort needed to thor-
oughly document the configuration and function of
critical systems. All too often documentation is
neglected or completely forgotten due to the time and
effort required both to research and prepare it.

One can easily see that a Linux based firewall
system such as LFA (Linux Firewall Appliance) com-
posed of only around 40 files is far easier both to
understand and to document than one based on a typi-
cal general purpose distribution which might include
hundreds or even thousands of files after even a

230 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Shaffer A Linux Appliance Construction Set

minimal installation. It is my belief that administrators
are most likely to produce reliable and secure systems
when they thoroughly understand all the components
involved, and LxA seeks to facilitate this understand-
ing by dramatically reducing system complexity.

Reduce Probability And Impact Of Hardware Fail-
ure
A typical small LxA system such as LFA will

often boot from a floppy and will run entirely from a
RAM disk once started. In such minimal configura-
tions, there is no need for either a hard drive or a CD-
ROM. This obviously eliminates at least two compo-
nents which can fail, and the omission of these devices
will also aid the longevity of the system power supply
by reducing the strain placed on it. For systems such
as LPA-CD with larger filesystem space requirements,
it is still possible for the system to operate without
employing a hard drive, depending on the application.

In some cases a fixed disk is the most efficient
solution to certain requirements such as the need for
swap or spooling partitions, but even in these situa-
tions the system can still be upgraded without the need
to manage the internal storage. LxA systems typically
feature some simple procedures in their startup scripts
to optionally format, mount, and populate any neces-
sary swap or spooling areas at boot time, and LPA-CD
includes examples for using RAM disks, network
filesystems, or fixed disk partitions for these purposes.
If desired, LxA systems can even partition their own
fixed disks at boot time through the use of a non-inter-
active partition editor such as sfdisk in their startup
scripts. These features facilitate easy and rapid
replacement of failed parts or even whole machines
since LxA configurations can be easily tuned for no-
install or self-install behavior on new hardware.

Principles

In pursuit of the goals stated above, LxA systems
are generally designed to adhere to the following prin-
ciples:

• Build systems by composition, not reduction
• Run from read-only and/or removable media
• Omit login and run-time configuration
• Use modern and standard software components

The next sections detail these principles.

Build Systems by Composition, Not Reduction
This means developing a set of practices for

identifying the minimal set of components required for
any given capability and then adding exactly those
components to a base or minimal LxA prototype
image.

Run From Read-only and/or Removable Media
Although some LxA configurations make exten-

sive use of fixed disk partitions for /var, /tmp, and
swap areas, the general rule is to keep all system bina-
ries and configuration files on removable and prefer-
ably read-only media. The boot and root partitions
may be made effectively read-only by loading them

into RAM disks at run time, mounting devices such as
floppy disks in read-only mode, or using physically
read-only media such as write-once recordable CDs.
While floppy and CD-ROM media are readily accessi-
ble and familiar to many users, some applications may
benefit from the employment of alternative boot and
root devices such as flash ram drives or cards.1

Omit Login and Run-time Configuration

This principle not only helps to save valuable
kilobytes on boot media, but also makes the system
much more tamper-proof in potentially hostile envi-
ronments. Obviously this approach also requires the
administrator to perfect the system configuration dur-
ing staging. This concept perhaps more than any other
distinguishes LxA from other small Linux systems
such as the Linux Router Project [11]. Certainly this
approach will not work well for all applications, but a
machine configured in this fashion is a true network
appliance, running only exactly what it needs to per-
form its designated functions. While console login
facilities are often omitted in production LxA configu-
rations, the example packages also include simple pro-
cedures for installing a minimal set of interactive tools
and a console shell on the system for troubleshooting
during staging.

Use Modern and Standard Software Components

In contrast to other mini Linux distributions,
LxA uses the most modern and standard components
available wherever possible. The Linux Router Project
(See [11]), for example, employs the Linux 2.0 kernel,
libc5, and the BusyBox POSIX tools package [2] to
provide a wide range of capabilities while maintaining
the smallest possible disk and memory footprint. Cer-
tainly there are a number of good reasons for using
older components including smaller binary size,
greater maturity, and often a more sedate pace of
development. In fact, one of the greatest advantages of

1Discussions with LxA users during the writing of this pa-
per led to the idea of building LPA systems based on a com-
bination of a 48MB CompactFlash card, a CompactFlash to
IDE adapter available from the Tuscon Amateur Packet Ra-
dio organization (See [16]), and commonly available hot-
swap hard drive carriages for standard size hard drives. This
configuration should feature higher reliability than either
CD-ROM or floppy based systems while still affording am-
ple capacity for typical configurations. As of this writing,
8-128 MB CompactFlash cards are available at reasonable
price points. This option requires little modification to exist-
ing LxA configurations since the TAPR device makes a
CompactFlash unit appear to a PC system as a standard IDE
drive, and the benefits of easy system upgrades will be pre-
served since the removable hard drive carriage will make it
easy to swap flash cards. Finally, this style of system would
have the benefit of somewhat higher physical security than
CD or floppy based configurations since many swappable
drive carriages feature key locks, and the logistics of media
distribution may even benefit slightly from the much smaller
size and greater ruggedness of CompactFlash compared to
floppy disks. Complete details of the outcome of this effort
will be documented on the LxA project site [12].

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 231

A Linux Appliance Construction Set Shaffer

using open source tools in my experience is that stable
versions of products tend to remain viable for a very
long time due precisely to the availability of source
code that can be compiled for older platforms even
when binaries are no longer readily available.

Nevertheless, I decided to avoid the use of older
and non-standard components wherever I could. When
pressed for space on small capacity boot media such
as floppy disks, my approach was to save kilobytes by
eliminating components entirely rather than recompil-
ing, patching, or down-grading them. Usage of an
older kernel and C library requires that all components
be compiled specifically for that environment, and I
wished to avoid forcing users to compile anything just
to get a new LxA system running. Also, while older or
customized components would undoubtedly save sig-
nificant amounts of space on LxA systems, the bene-
fits of using them would become completely negated
if I wished to add a tool or service that depended on
more modern and bulkier components such as glibc.

This principle represents a significant difference
in philosophy between LxA and several of the other
mini distributions available. LxA provides not so
much a specific distribution of Linux as a framework
for assembling this sort of mini system from any cur-
rent Linux distribution at hand. Using standard com-
ponents allows more users to modify the system in
unforeseen ways and should also allow LxA to track
new developments in the Linux kernel, major libraries,
and applications much more closely than distributions
which rely on heavily patched or custom components.2

Issues

Remote Administration

Since LxA configurations consistently use stan-
dard binaries and libraries from more conventional
Linux distributions, they frequently leave little space
on small media such as floppy disks for remote or
even local administration tools. The floppy based con-
figurations such as LPA (Linux Printing Appliance)
simply have no space for components such as sshd or
inetd. In fact, in the case of LPA, there is no room for
even a a minimal shell environment. In comparisons
with other Linux distributions, even those of the mini
variety, this could be considered a serious disadvan-
tage for LxA.

2Even as I was finishing this paper, I was working on up-
grading all the LxA example configurations to linux kernel
version 2.2.17, glibc 2.1.3, and the latest versions of all the
binaries included. The total effort involved was a couple of
kernel compiles, some work with find and cp to copy new bi-
naries into the root filesystem trees, and re-making of the
distribution tarballs. Other projects such as the Gibraltar
firewall [5] have almost completely automated this process
by employing scripts to find and assemble all required bina-
ry components on the fly from the machine on which the
configuration is performed. Such an option would probably
be a valuable addition to LxA and may be added in the fu-
ture.

On the one hand, I consciously decided up front
to eliminate console and remote login capabilities
wherever possible both for increased security and to
free up disk space desperately needed for other things.
On the other hand, for configurations such as LPA-
CD, I have in fact included both a proper login shell
and sshd3 to allow the possibility for remote adminis-
tration if desired. So, the lack of remote administration
facilities can perhaps be seen as either an advantage in
disguise or as a non-issue depending on the configura-
tion and applications involved. In some repects
addressing this issue may simply require an adjust-
ment of perspective. LxA was intended to address pre-
cisely those situations where remote administration
capabilities are of little use, so what appears to be an
advantage for other systems may in fact not be as sig-
nificant as it seems in the environments for which
LxA was designed.
System Logs and Spool Areas

The options LxA presents regarding boot-time
management of fixed disks or the use of RAM disks
for writable filesystems obviously raise the question of
how to store persistent accounting information such as
system logs. The typical LxA system is not one
intended for hosting interactive logins, so it is
assumed that most information of value would be
included in the messages recorded by the system and
kernel logging daemons. There is nothing to prevent
an LxA system from using startup scripts that re-for-
mat the system log partitions only when absolutely
necessary, and this would allow persistence of system
logs for later analysis and troubleshooting in the event
of problems. Alternatively, in certain environments it
may be desirable to have LxA based machines send
their log messages to one or more remote syslog hosts.
Remote logging is often an excellent method for facil-
itating diagnosis of severe system failures or compro-
mises and is commonly recommended in any event.

Another issue which may arise is that use of the
automatic partition and format features would result in
the loss of any pending jobs on filesystems such as
print spool areas. In general, LxA simply leaves it to
the individual administrator to evaluate their applica-
tion for a system such as LPA-CD and determine what
balance of resiliency, persistence, and hardware
requirements fits their environment best. For example,
the following three scenarios might be considered
when deploying print spooling and format conversion
servers based on LxA:

1. Booting from a CompactFlash device and using
only RAM disks for spooling areas. This option
would require careful consideration of the
anticipated printing load, especially if a signifi-
cant number of PostScript jobs would be
spooled to non-PostScript printers. A configu-
ration for moderate to heavy loads might bene-
fit from the inclusion of 512-1024MB of RAM.

3Sshd will be a standard component of LPA-CD by the
time this paper is published.

232 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Shaffer A Linux Appliance Construction Set

This would allow an ample 128-256MB for
working set and leave 384-768MB for a /var
filesystem on a RAM disk.
While this might at first seem like an extrava-
gant amount of memory, consider that the result
would be an entirely solid state print server that
would likely perform extremely well, limited
only by the speed of its CPU. Recent trends in
hardware prices would make this only a moder-
ately expensive configuration for most organi-
zations. The obvious disadvantage of this con-
figuration is that it makes no allowance for per-
sistent spool areas, meaning all pending jobs
would be lost in the event of a power failure or
other serious event. In some cases this disad-
vantage may well be outweighed by the
ruggedness, reliability, and extremely low
maintenance requirements that such a configu-
ration would present. This would probably
work well for distributed print servers that need
to be scattered throughout a building, campus,
or region with little on-site system administra-
tion attention.

2. Booting from CD-ROM and using local hard
drives for spooling, log, and swap area. This
option is probably the easiest for the typical
UNIX system administrator to evaluate and
provision, and would probably work well in the
a computer room or departmental environment
where the desire is simply to have a standard
and easily replicated configuration. Despite its
conventional approach, this configuration still
presents some options with regard to manipula-
tion of the fixed disks at start up time.
Simply mounting a pre-formatted and popu-
lated /var filesystem provides for a simple
startup and complete persistence but requires
that spool disks be partitioned, formatted, and
populated manually at setup time or in a sepa-
rate machine. Automatic partitioning and for-
matting, on the other hand, would provide for
extremely quick setup and allow instant
replacement of failed spool disks, and this
might be a good choice if the cost of loosing
spooled jobs and log files is felt to be out-
weighed by the consequent reduction in mainte-
nance effort.

3. Booting from CD-ROM and using NFS exports
for spooling and log areas (with perhaps file
based swapping over NFS as well). This option
features a mix of advantages and disadvantages
from each of the two options above. On the one
hand, it relies on having a network infrastruc-
ture already in place including at least one
machine providing exported filesystems over
NFS. On the other hand, if such an infrastruc-
ture is available, this option allows the simple
startup and complete persistence of the second
option, permits a completely solid-state hard-
ware configuration for the print servers

themselves as in the first option, and doesn’t
require either a huge amount of RAM or any
local hard disks to be procured for individual
print servers. The critical element to consider in
evaluating this option is obviously the reliabil-
ity and speed of the network and NFS file ser-
vices available. Across a computer room,
building, or even a small campus environment
with widespread switched 100Mbit ethernet
networks, this option could work nicely even
for distributed print servers. An obvious disad-
vantage of this configuration is that a failure of
the spool area file server or its network segment
could potentially cripple a large number of print
services, but the same could also be said of the
centralized print spooling servers used in many
more conventional arrangements.4

The main point the reader should note from these
examples is that LxA by design makes choosing or
even switching between all three of these alternatives
almost trivial. Leaving aside the issue of hardware re-
configuration for a moment, consider the effort that
would be required to configure a typical Linux distri-
bution for either the first or third options, and then
consider that with LxA choosing between them means
changing just a few lines in one startup script. The
whole intent of LxA is not to dictate or assume a cer-
tain pattern of operation but to make many different
options available with as little effort as possible.

Older Hardware
While the low resource requirements of LxA sys-

tems may allow the use of hardware that would other-
wise be considered obsolete, it is important to note
that older hardware is often more prone to failure and,
more significant for many organizations, no longer
supported by warranties or service agreements. On the
other hand, the upgrade cycle for end-user systems in
many organizations makes available a significant
number of systems each year that are due for retire-
ment. These systems increasingly often pose an
expensive and troublesome disposal problem for their
owners. Given the right application and software load,
some of these machines can be successfully re-pur-
posed as departmental, standby, or load-sharing

4Upon reflection, the reader may reasonably ask what ad-
vantage there could be in this option over a more conven-
tional, centralized print server. After all, if anything, this
option introduces more hardware rather than less into the
picture when compared to using a single massive machine
for the job. One example might be a situation where an or-
ganization wishes to make a number of existing non-net-
work and/or non-PostScript capable printers available for
network printing throughout a building or campus. If a
sufficient number of existing obsolete machines with net-
work cards and CD-ROM drives are available, a configu-
ration like this would allow upgrading these printers with
both network direct and PostScript capabilities by con-
necting them via serial or parallel ports to LPA-CD ma-
chines distributed to wherever the printers physically re-
side.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 233

A Linux Appliance Construction Set Shaffer

servers complete with a ready supply of spare parts
from any unused machines in the pool to counter the
greater potential for failure and lack of support.

dpkg -l ’*samba*’

Desired=Unknown/Install/Remove/Purge/Hold
| Status=Not/Installed/Config-files/Unpacked/Failed-config/Half-installed
|/ Err?=(none)/Hold/Reinst-required/X=both-problems (Status,Err: uppercase=bad)
||/ Name Version Description
+++-=============-=========-===
ii samba 2.0.7-3 A LanManager like file and print server for UNIX
ii samba-common 2.0.7-3 Samba common files used by both clients and server
ii samba-doc 2.0.7-3 Samba documentation.
pn task-samba <none> (no description available)

Listing 1: Package management query: samba.

Tools and Techniques

I decided when creating LxA to start with an
empty system and add features through composition
instead of trying to cut down an existing distribution
or system through a process of reduction. This
approach, I felt, would result in a smaller, easier to
understand system with less development time. I
wanted to create and document a system in which I
could explain the purpose of every single file and pro-
cess. In addition to learning more about Linux and
UNIX systems through this exercise, I hoped to also
develop a toolbox of general principles and techniques
for building other minimal systems in the future.

Assembling Services
This is a general description of the tools and

techniques I use to figure out the necessary compo-
nents for a given service. I usually begin, of course by
locating and examining the binaries for the service I
want. For this example I’ve chosen to use Samba, the
NetBIOS file and print service for UNIX-like systems.
I always start by installing and configuring the desired
service on a staging machine before I try to decon-
struct it for a mini system. Of course, any available
man pages, web sites, mailing lists, and other available
documentation for the service in question should be
considered required reading throughout this process.

Distribution Package Managers

Most Linux distributions employ some sort of
package management tools for installing and remov-
ing software. The two most commonly used package
management tools are rpm (the RedHat Package Man-
ager) and dpkg (the Debian PacKaGe manager). Distri-
butions employing rpm include RedHat, SuSE, Man-
drake, and many others. Debian, Corel Linux,
Stormix, and a few others use dpkg.

The maintainers of package files have usually
put a great deal of work into determining the depen-
dencies of each particular package, so I will start there
if a distribution package is available for a particular
service. The first step is to use the package manager’s
’list files’ function to see exactly what files are

installed on the system by a particular package. To
query for the files installed by the rpm package for
Samba, I would employ a command such as:
rpm -ql samba
/etc/logrotate.d/samba
/etc/pam.d/samba
/etc/rc.d/init.d/smb
/etc/smbusers
...
/usr/doc/samba
...
/usr/sbin/nmbd
/usr/sbin/samba
/usr/sbin/smbd
/usr/sbin/swat
/usr/share/swat
...
/var/lock/samba
/var/log/samba
/var/spool/samba

Newer dpkg based distributions will often split ser-
vices and their clients up into several packages to min-
imize dependencies and resource requirements for
each package, so I start by querying the package man-
agement database to see what installed packages might
be related to Samba; see Listing 1. This reveals four
packages, and I can tell from the descriptions that I am
probably only interested in the first two for the sake of
an LxA system. To query for the files installed by each
Samba package, I would next invoke dpkg with the -L
option for each interesting package:
dpkg -L samba

/.
...
/usr/sbin/smbd
/usr/sbin/nmbd
...
/var/samba
...
/etc/init.d/samba
/etc/cron.daily/samba
/etc/cron.weekly/samba

dpkg -L samba-common

/.
...
/etc/samba/codepages
...

234 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Shaffer A Linux Appliance Construction Set

/etc/samba/smb.conf
...
/etc/pam.d/samba
...

In general, for the purposes of an LxA system, I
ignore any files installed under /usr/doc, /usr/share/
doc, /usr/man, /usr/share/man, and /usr/local/man .
These files are simply the documentation and man
pages and are not necessary for functioning of most
services. Other files which are probably not necessary
are headers placed in /usr/include or
/usr/local/include . Files I give the most attention to
are those placed in /etc, /bin, /sbin, /lib, /usr/bin,
/usr/sbin, /usr/lib, /libexec, /usr/libexec, and /usr/share
(outside of /usr/share/doc or /usr/share/man). Many
services will install cron jobs (typically in
/etc/cron.daily or /etc/cron.weekly), and these may or
may not be necessary for an LxA system. Many times
these cron jobs serve only to rotate logfiles, and such
actions are not necessary for example when using a
remote syslog host. On RedHat the files installed
under /etc/logrotate.d may also be safely ignored for
similar reasons unless the logrotate utility will be used
on the mini system. In the example shown here, the
RedHat Samba package includes the swat web based
administration tool for Samba, whereas the Debian
package seems to leave it to a separate installation.
The decision to include or exclude utilities such as
these will depend mostly on the size constraints of the
boot media for the target system and the anticipated
usefulness of the individual tools. Since I hardly ever
use swat for managing Samba machines and it presents
significant space requirements, I chose to omit it.

The rpm and dpkg package managers, in addition
to providing information about specific packages, will
usually also provide a list of other packages which a
service requires or suggests for proper operation. To
query for the description and dependencies of a pack-
age using dpkg:
dpkg -p samba

...
Depends: samba-common (= 2.0.7-3),

libc6 (>= 2.1.2), libncurses5,
...

Once again, if the specified dependencies are not
already present on the LxA base system image, they
must be located and added. The Debian package man-
ager lists dependencies in terms of other packages that
must be installed, whereas the RedHat package man-
ager may list either other packages or individual files.
Both package managers provide version information
for dependencies as well; stating whether each
required package must be of some exact version or
simply greater than a certain version for compatibility.
If a dependency is itself a complex package, it may be
necessary to repeat the process of exploration until all
levels of dependencies have been satisfied. An exam-
ple command for listing dependencies using rpm
would be:

rpm -q --requires samba
pam >= 0.64
samba-common = 2.0.6
/sbin/chkconfig
/bin/mktemp
/usr/bin/killall
fileutils
sed
/bin/sh
ld-linux.so.2
libc.so.6
libcrypt.so.1
libdl.so.2
libnsl.so.1
libpam.so.0
libreadline.so.3
libtermcap.so.2
/bin/csh
/bin/sh
/usr/bin/awk
libc.so.6(GLIBC_2.0)
libc.so.6(GLIBC_2.1)

Both of the package manger listings included a
dependency on a package named samba-common, so
further exploration of this package would be necessary
in this case.

Although the package manager file listing
reveals a large number of accessories and configura-
tion tools, I know from experience with this service
that the actual file and print service portion of Samba
needs only two basic binaries to function, namely
smbd and nmbd. Unfortunately, I have found that in
making this sort determination, there is little substitute
for experience and careful observation, although well
documented services may prove easier to analyze than
those which are not. As a final step before copying the
binaries into my LxA image tree, I use the ls command
just to check if they have any unusual permissions or
modes set which may need to be preserved:
ls -al /usr/sbin/*mbd
-rwxr-xr-x 1 root root 338092

Jul 27 03:56 /usr/sbin/nmbd
-rwxr-xr-x 1 root root 738556

Jul 27 03:56 /usr/sbin/smbd

In this case there appears to be nothing out of the ordi-
nary.
Ldd

After an initial survey using the package man-
ager, man pages, and ls, I typically use ldd to see what
system libraries the service components are linked
with and where they are located:
ldd /usr/sbin/*mbd

/usr/sbin/nmbd:
libdl.so.2 => /lib/libdl.so.2

(0x2aac3000)
libcrypt.so.1 => /lib/libcrypt.so.1

(0x2aac7000)
libc.so.6 => /lib/libc.so.6

(0x2aaf4000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2

(0x2aaab000)

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 235

A Linux Appliance Construction Set Shaffer

/usr/sbin/smbd:
libdl.so.2 => /lib/libdl.so.2

(0x2aac3000)
libcrypt.so.1 => /lib/libcrypt.so.1

(0x2aac7000)
libc.so.6 => /lib/libc.so.6

(0x2aaf4000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2

(0x2aaab000)

lsof | grep mbd

nmbd 405 root txt REG 3,66 338092 41150 /usr/sbin/nmbd
nmbd 405 root mem REG 3,66 85238 4116 /lib/ld-2.1.2.so
nmbd 405 root mem REG 3,66 10224 4167 /lib/libdl-2.1.2.so
nmbd 405 root mem REG 3,66 20340 4163 /lib/libcrypt-2.1.2.so
nmbd 405 root mem REG 3,66 936696 4119 /lib/libc-2.1.2.so
nmbd 405 root mem REG 3,66 32104 4178 /lib/libnss_files-2.1.2.so
nmbd 405 root 3w REG 3,66 804 923745 /var/log/nmb
nmbd 405 root 4ww REG 3,66 20 878636 /var/samba/nmbd.pid
nmbd 405 root 5u inet 3016 UDP *:netbios-ns
nmbd 405 root 6u inet 3018 UDP *:netbios-dgm
nmbd 405 root 7u inet 3022 UDP lazarus.hammes-chasn.com:netbios-ns
nmbd 405 root 8u inet 3024 UDP lazarus.hammes-chasn.com:netbios-dgm
...
smbd 407 root txt REG 3,66 738556 41149 /usr/sbin/smbd
smbd 407 root mem REG 3,66 85238 4116 /lib/ld-2.1.2.so
smbd 407 root mem REG 3,66 10224 4167 /lib/libdl-2.1.2.so
smbd 407 root mem REG 3,66 20340 4163 /lib/libcrypt-2.1.2.so
smbd 407 root mem REG 3,66 936696 4119 /lib/libc-2.1.2.so
smbd 407 root mem REG 3,66 32104 4178 /lib/libnss_files-2.1.2.so
smbd 407 root 3w REG 3,66 500 923748 /var/log/smb
smbd 407 root 4ww REG 3,66 20 878637 /var/samba/smbd.pid
smbd 407 root 5u inet 3030 TCP *:netbios-ssn (LISTEN)

Listing 2: Using lsof to find resources used.

If the libraries listed are not already present in the /lib
directory of the LxA configuration I am working on, I
would use something like:
cd /lib
ls -al libcrypt*

-rw-r--r-- 1 root root 20340 Nov 1
13:56 libcrypt-2.1.2.so

lrwxrwxrwx 1 root root 17 Nov 9
19:03 libcrypt.so.1 -> libcrypt-2.1.2.so

find libcrypt* | cpio -pvd \
/usr/local/linutopia/root/lib

to add them. I recommend using find and cpio instead
of cp since these tools usually do better job of preserv-
ing permissions, modes, and linkages.

Lsof

If problems arise or I suspect that the service
requires more than just the explicitly linked libraries
shown by ldd, I will try executing lsof while the
selected service is running to view a comprehensive
list of file handles, sockets, and other resources the
service has open. This command usually produces
rather lengthy output, so I have snipped some irrele-
vant details from the example in Listing 2. I observe

from this listing that both daemons are accessing
another library which ldd didn’t say anything about,
namely libnss_files. They also appear to have some pid
files and such open in /var/samba and /var/log, so I
would make a note to make these directories available
in the /var filesystem of the mini system. Finally, they
have some network ports open that they are listening
on, namely netbios-ns, netbios-dgm and netbios-ssn. I
would certainly take these into account when working
out any ipchains rule sets for the mini system.

Once the binaries, all required libraries, and any
working directories are in place in the filesystem tree
for the mini system, I would copy the /etc/samba
directory contents over to the new /etc directory and
modify them appropriately. When I really get stuck
trying to figure out what obscure file or directory a
daemon is missing in the mini configuration, I usually
fall back on the old faithful strace utility. While this
tool produces even more profuse and cryptic output
than lsof, it is often the only means of identifying
exactly what resources a process uses. Many utilities
will open files or devices only briefly during startup or
other phases of their operation, and this can sometimes
foil efforts which rely solely on the snapshot view of
system handles provided by lsof. The output from
strace is a complete ‘diary’ of all system calls made by
a process, and usually looking for calls to open(),
stat(), read(), write(), socket(), connect(), send(),
recv(), mmap(), and munmap() will reveal all the
filesystem and network objects in use by the traced
process. A typical invocation of strace would be:

strace -o smbd.txt /usr/sbin/smbd -D

236 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Shaffer A Linux Appliance Construction Set

This example would write its output to the smbd.txt
file.

Source Code

Of course, one should never forget the one
unique resource available to all users of open source
software, namely the source code. While reading the
source code for system utilities undoubtedly requires
the most significant investment in time and effort of
any technique discussed here, it also ultimately yields
the most significant and longest lasting results in
terms of experience, understanding, and confidence
when practiced regularly. Based on my own experi-
ence, I steadfastly maintain that acquiring and practic-
ing even basic programming and code reading skills
will make any system administrator much more capa-
ble, flexible, and confident when dealing with new
systems, unfamiliar problems, and unusual configura-
tions.

Configuring a Read-only Root File System
Actually, a workable read-only root file system

for most Linux applications differs little from the typi-
cal hard disk based root file system. LPA-CD uses a
slightly different file system layout from many Linux
systems, but that’s only for the sake of simplicity. The
specific things that I found which needed attention
included:

The /var file system

Many processes place run time files in /var .
Even a completely CD based system that uses no con-
figuration floppy will still require at least a small
RAM disk mounted on /var so that processes like smbd
have somewhere to save their PID and temp files.
Usually I will make /tmp a symlink to /var/tmp to
keep all writable areas under one mount point. When
an LxA system is configured to format and mount a
/var file system automatically at each startup, the nec-
essary files and directories may be populated within it
either by using tar to unpack a skeleton image or by
running a simple script of mkdir, touch, chown, and
chmod commands. LPA uses the latter approach since
it has no room for the tar binary whereas LPA-CD uses
the former to make modifications easier.

Sockets in /dev

A few processes, notably syslogd and lpd, create
sockets in the /dev directory to listen for their clients.
Fortunately, syslogd poses little problem since it
accepts a -p option specifying an alternative path for
the socket that it usually opens at /dev/log. For LPA-
CD, I typically start syslogd with a command line such
as:
syslogd -p /var/run/syslog.socket

I then create a dangling symlink from /dev/log to
/var/run/syslog.socket in the read-only root file system
to direct syslog clients to the real socket.

BSD lpd, on the other hand, presents consider-
ably more trouble since it offers no command line
argument to specify its socket path like syslogd. I was

forced in this case to break down and recompile the
entire lpr package from source after changing a hard-
coded #define in the lpr source code from /dev/printer
to /var/run/lpd.socket. Again, I created a symlink from
/dev/printer to /var/run/lpd.socket in case any clients
outside the lpr package expected this socket to exist.
When tracking down issues like this, I usually find lsof
and strace to be indispensable.

Various Files in /etc

The only files in /etc I know of that a Linux sys-
tem tries to write to under normal conditions are
/etc/mtab and /etc/ioctl.save . I took the easy way out
with mtab and just made it a symlink to /proc/mounts
which the kernel maintains automatically. This change
allows df and mount to work correctly, and the system
will simply discard anything written to /proc/mounts .
The ioctl.save file is read and written by init and is used
to set console parameters when the system enters sin-
gle user mode. While init normally creates this file at
boot time, it does not actually require it and will func-
tion perfectly well in its absence. All the other files
typically found in /etc can either be read only or can
just be symlinks to something on another file system if
preferred. The one command that I haven’t found any
way to use with a read-only /etc directory is passwd.
Because of the way passwd shuffles files around while
changing an entry in /etc/passwd, it doesn’t seem pos-
sible to use it successfully unless it can write to all of
the following: /etc, /etc/.pwd.lock, /etc/npasswd, and
/etc/passwd.

If the /etc directory will be populated with sym-
links, then there are exactly two files which must be
physically present in this directory in order for init to
start: /etc/inittab and /etc/rc.init. The /etc/inittab file
cannot be relocated unless init is recompiled. Addition-
ally, /etc/inittab must specify the path to the system
startup scripts, and these scripts must exist on the root
file system since nothing else will be mounted at this
point. In the case of LPA-CD, I created an /etc/rc.init
script which mounts the media for the /local file sys-
tem so that all the dangling symlinks in /etc become
valid. After running this script, LPA-CD’s inittab
hands off control to /etc/rc.local, which is actually a
symlink to /local/rc.local, and this script handles the
remainder of the system initialization.

Boot Process and Initrd Image

The Linux kernel contains support for a unique
feature known as initrd or the Initial RAM Disk [9].
This capability is of critical importance to space con-
stricted LxA configurations such as LPA since it
allows a system to load and mount a small root
filesystem image from a device that the kernel may
not even contain drivers for. This mechanism requires
only that the kernel have support for both RAM disk
devices and initrd devices built in and places the bur-
den on the boot loader to get the root filesystem image
loaded and unpacked in memory along with the ker-
nel. Thanks to this feature, the standard kernel for

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 237

A Linux Appliance Construction Set Shaffer

floppy based LxA configurations is able to defer sup-
port for both floppy and ide devices to loadable kernel
modules for a moderate savings in kernel size. The
typical boot sequence for Linux systems using the ini-
trd mechanism is:

1. BIOS loads first stage boot loader from a mas-
ter boot record into memory

2. First stage loads and executes second stage
boot loader

3. Second stage boot loader (usually lilo or sys-
linux) loads the kernel and initrd image into
memory and uncompresses both

4. Linux kernel executes the script /linuxrc on the
initrd image if present

5. Linux kernel creates the first userland process
by executing /sbin/init

6. The init process executes system startup scripts (
rc.init and rc.local for LxA)

The original purpose for the initrd mechanism
was to allow booting from devices such as SCSI disks
using a standard modular kernel without support for
these devices built in. The idea was that the /linuxrc
script could be exploited to load required driver mod-
ules from the initrd root filesystem image and then
mount the real root filesystem from another device.
LxA actually doesn’t use the /linuxrc script at all but
instead just runs the whole system from the initrd
image. For the floppy based LxA configurations, the
standard script for producing an initrd image from a
root filesytem tree is:
#!/bin/sh
rm -f ./disk/initrd
rm -f ./disk/initrd.gz
dd if=/dev/zero of=./disk/initrd \

bs=1024 count=$1
losetup /dev/loop0 ./disk/initrd
mkfs.minix -i $2 /dev/loop0
mount /dev/loop0 /mnt
cd ./root
find . | cpio -pud /mnt &> /dev/null
cd ../
umount /mnt
losetup -d /dev/loop0
gzip -9 ./disk/initrd
exit 0

Creating a Bootable CD
Like most things PC, the mechanism for

bootable CDs is a hack. While most PCs aren’t all that
good at booting from CD-ROM drives, they are really
good at booting from floppies, so that’s what they do.
To make a CD bootable, I would first produce a floppy
disk that boots the way I want it to. For instance, I
would use a a script similar to the following:
superformat /dev/fd0
syslinux /dev/fd0
mount -t msdos /dev/fd0 /mnt
cp vmlinuz /mnt
echo "prompt 1" > /mnt/syslinux.cfg
echo "timeout 100" >> /mnt/syslinux.cfg
echo "default vmlinuz" \

>> /mnt/syslinux.cfg
echo "append root=/dev/hdc" \

>> /mnt/syslinux.cfg
umount /mnt

Now, I would reboot my test machine using the
floppy to see that it loads the kernel properly and
mounts the correct root device (/dev/hdc in this exam-
ple). If all seems well, then I would make an image of
the floppy with dd using a command like:
dd if=/dev/fd0 of=boot.img

The file boot.img should then be placed within the
directory tree from which the ISO file system image
will be created. Finally, the -b option of mkisofs will
cause it to place a special entry in the ISO9660 catalog
pointing to this floppy image file. What the PC’s
BIOS actually will do at boot time is map this file on
the CD to an ’emulated floppy’ and then try to boot
from it as if it were a real floppy disk. The rest of the
BIOS and any boot loader residing on the floppy
image are usually completely fooled. Of course, once
the Linux kernel is loaded, the whole illusion evapo-
rates and the CD-ROM goes back to being an ordinary
device like /dev/hdc. The following commands would
be typical for creating the actual ISO image using
mkisofs:
cp boot.img CD/boot/boot.img
mkisofs -v -R -b boot/boot.img \

-c boot/boot.catalog \
-o img/lpacd.iso CD

Note that the path given in the -b option should be the
path relative to the root of the CD file system. At this
point the only remaining task would be using cdrecord
to actually write the ISO image to a blank recordable
CD:
cdrecord -v speed=4 dev=2,0,0 \

img/lpacd.iso

This command is typical of what I would use on my
own machine, but the speed= and dev= parameters are
specific to the particular hardware in use. The -scanbus
option to cdrecord will show what devices are available
and what value to pass in the dev= parameter for each
particular drive. The speed= parameter should be set to
a value compatible with the capabilities of both the
drive and media used. The mkisofs utility has a number
of other options for specifying boot disk and kernel
images when creating bootable images. Although the
LxA example configurations have not yet been built
for Sparc hardware, bootable ISO images for that plat-
form can be produced as well. For more comprehen-
sive details regarding the usage of mkisofs and cdrecord
[13, 7].

One important choice that must be made when
creating boot and root disks on recordable CD-ROM
media is whether to use CD-R (write-once) or CD-RW
(re-writable). Despite the obvious penalties for mis-
takes when using a write-once media, I prefer to use
CD-R unless I am completely sure that all target
machines have CD-RW compatible drives installed.

238 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Shaffer A Linux Appliance Construction Set

Many older CD-ROM drives are not capable of read-
ing or booting from CD-RW disks, but if the drive
includes ’Multi-Read’ compatibility in its specifica-
tions it should read either media with no problem.

#!/bin/sh
PATH=/bin:/sbin
export PATH
Mount /proc filesystem first
mount -n -t proc proc /proc
Parse custom command line parameters from /proc/cmdline
eval ‘cat /proc/cmdline | awk ’{ match($0, /lxa_lfs=[ˆ]+/); \
printf("LXA_LFS=%s ; export LXA_LFS;\n", \
substr($0, (RSTART + 8), (RLENGTH - 8))); }’‘

eval ‘cat /proc/cmdline | awk ’{ match($0, /lxa_ldev=[ˆ]+/); \
printf("LXA_LDEV=%s ; export LXA_LDEV;\n", \
substr($0, (RSTART + 9), (RLENGTH - 9))); }’‘

Mount /local filesystem
echo -n ’Mounting ’$LXA_LDEV’ on /local as type ’$LXA_LFS’...’
mount -n -t $LXA_LFS $LXA_LDEV /local
echo ’done.’
exit 0

Listing 3: The rc.init script used for LPA-CD.

Using the Kernel Command Line
In order to allow the maximum amount of flexi-

bility for booting an LPA-CD image without requiring
changes to the rc.init script burned onto the CD, I
decided to employ a couple of custom kernel com-
mand line parameters to pass information to rc.init
through the boot loader. The basic idea when using the
kernel command line on Linux is to insert whatever
parameters are required into the append= parameter of
the boot loader and then take advantage of the Linux
/proc/cmdline node to extract these parameters from
the kernel at runtime. For the sake of LPA-CD, two
parameters were required, the block device and the
filesystem type for the /local filesystem. The com-
mand line parameters are read from the file syslinux.cfg
by the syslinux boot loader at startup time and are spec-
ified as follows:
append root=/dev/hdc lxa_lfs=vfat \

lxa_ldev=/dev/fd1

These parameters are then passed on the the kernel by
the boot loader and may be retrieved from the
/proc/cmdline node with various utilities such as awk.
The actual rc.init script used for LPA-CD and illustrat-
ing this technique is shown in Listing 3. Any number
of utilities such as cut, sed, or grep, or even perl can be
used for this sort of task, but I chose awk since it was
the smallest binary which provided a general purpose
scripting and text processing tool available on my
development system.

Example LxA Configurations

LRA: Linux Routing Appliance
This system provides: a DHCP server, local and

caching DNS, dial-on-demand PPP, firewalling, and

masquerading for a local network. The entire system
boots from a single floppy and runs from a RAM disk.
The minimum hardware requirements are: a 486 CPU,
16MB RAM, an ethernet card, a 3.5’’ floppy, and a
modem. LRA was the first configuration developed
and seems from analysis of the LxA site access statis-
tics to be the most popular among users.

LFA: Linux Firewall Appliance
LFA requires little more than a floppy disk drive,

an ethernet card, a CPU, and some RAM. Users of
LFA have reported that it works adequately with as lit-
tle as 6MB of RAM even with the interactive login
package added. All of the work of this system is done
by the kernel’s own firewalling and routing modules,
and user reports suggest that LFA can function well
for moderate traffic loads across one or two 10Mbps
ethernet segments even with only a 486 CPU. Heavy
loads, more segments, or 100Mbps ethernet would
definitely require at least 16MB of RAM and a Pen-
tium class CPU for satisfactory operation. LFA is, I
believe, almost as minimal a Linux system as one
could possibly assemble and still perform useful work.
After the startup scripts have run the only processes
besides the kernel and init on this configuration are
syslogd and klogd. Because of the minimal process
load, LFA is extremely stable, runs entirely from a
RAM disk, and leaves little opportunity for compro-
mise or failure. This system can provide firewalling,
routing, and masquerading between two or more ether-
net networks. For many small businesses or isolated
departments, a commercial hardware or software fire-
wall package may be excessively costly and present
many features that would go unused. In situations such
as these, LFA can provide a secure and reliable alter-
native which supports many of the most useful fea-
tures of a commercial firewall or router at much lower
cost. Excluding the /dev directory, the root filesystem
for this configuration contains only around forty files
and directories; see Table 1.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 239

A Linux Appliance Construction Set Shaffer

Path Comment

/bin location for user binaries

/bin/sh ash, an interpreter for startup and other scripts

/bin/hostname sets and echos the system hostname

/bin/echo used for writing configuration settings into /proc filesystem nodes and
displaying boot messages

/etc location for system configuration and boot files

/etc/inittab configuration file for /sbin/init

/etc/fstab list of active filesystems, their locations, and options

/etc/hostname contains the system hostname

/etc/syslog.conf configuration file for /sbin/syslogd

/etc/hosts local hostname to IP address mappings

/etc/rc.init first setup script executed by /sbin/init

/etc/rc.local main system startup script

/etc/networks local network name to IP subnet mappings

/etc/services mapping of port numbers to service names

/etc/protocols mapping of protocol id numbers to protocol names

/etc/passwd list of local user accounts

/etc/group list of local user groups

/etc/nsswitch.conf configuration file for GNU C library map functions such as gethostby-
name()

/lib location for dynamically linked libraries

/lib/ld-linux.so.2 the dynamic library loader, used by all dynamically linked executables

/lib/libc.so.6 the standard GNU C runtime library, huge but essential

/lib/libnss_files.so.2 name service switch module used by C library for lookups from files such
as /etc/hosts

/lib/modules location for kernel modules

/lib/modules/* any required drivers for devices such as ethernet adapters

/linuxrc optional pre-init script executed by the kernel at startup (not used by LxA)

/proc mount point for the kernel’s proc pseudo filesystem

/sbin location for system binaries

/sbin/hwclock used to sync system time with hardware clock

/sbin/ifconfig configure network interfaces

/sbin/init process id 1 started by the kernel at boot time

/sbin/ipchains used to configure the kernel’s IP firewalling rules

/sbin/mount used to mount and remount /, /proc, and any other filesystems

/sbin/route used to configure network routing tables

/sbin/insmod used to load modules such as ethernet drivers

/sbin/syslogd system message logging daemon

/sbin/klogd kernel message logging daemon

/tmp location for working and scratch files

/var location for spool and log files

/var/run location for lock and pid files

Table 1: Root filesystem.

240 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Shaffer A Linux Appliance Construction Set

Due to its extremely minimalistic nature, I have
also found LFA useful as a baseline configuration for
creating things like custom rescue and repair diskettes.

LPA-CD: Linux Printing Appliance on CD-ROM

System Requirements

LPA-CD is a complete Linux system which will
boot and run directly from the ISO image provided on
the LxA project site. The minimal system require-
ments for an LPA-CD system are: a 386 or 486 CPU,
4MB RAM, an ethernet card, a floppy disk drive, a
CD-ROM drive, and obviously at least one printer.
Recommended but optional items include a fixed disk
or Zip drive for temporary files and swap space and as
much RAM as the budget will allow for better perfor-
mance and higher load capability. While LPA-CD
contains many more capabilities than LFA, it benefits
slightly in terms of RAM requirements as a result of
mounting its root file system from the CD-ROM
instead of a RAM disk. The minimal configuration has
proven to work well for a light load such as a dozen
Windows clients printing small to moderately sized
documents through client side PCL drivers to PCL
printers. Situations involving large numbers of clients,
large print jobs, or conversion of complex, color
PostScript jobs will benefit from as much CPU, RAM,
swap, and spooling space as the system can hold. Only
evaluation of the anticipated system load can dictate
what hardware configuration can be considered mini-
mal for a given situation.

Features

An LPA-CD system will spool, convert, and out-
put print jobs from either UNIX lpr or Windows
Samba clients. This package allows easy setup and
management of print spooling hosts for mixed plat-
form networks. LPA-CD is not based on any particular
distribution, but the original sample configuration
included components from the Debian 2.2 (Potato)
system with the Linux kernel version 2.2.14 and glibc
version 2.1.3. In the current release, LPA-CD includes
the option for a minimal but complete set of interac-
tive tools and a sulogin shell for use during staging.
Since the system includes tools like vi, it is possible to
save configuration changes to onto the local configu-
ration floppy while the system is operating (something
that is not possible with many of the more resource
restricted configurations such as LRA, LFA, and
LPA). This allows an LPA-CD box to be started and
configured completely standalone if desired. Basic
features in the current release of LPA-CD include:

• Linux kernel version 2.2.17
• Glibc 2.1.3
• Linux ipchains kernel firewalling
• PAM (Pluggable Authentication Modules)
• Samba for serving Windows printing clients
• BSD lpr for UNIX printing clients
• Ghostscript for conversion of PostScript/PDF

print jobs to printer-native output

• Netpbm for conversion of various graphics for-
mats to printer native output

• Magicfilter for easy and flexible configuration
of print job conversion based on file magic
numbers

LPA-CD uses the standard BSD lpd for spooling
of print jobs, and can support both directly connected
serial or parallel printers as well as network attached
devices such as HP JetDirect adapters. LPA-CD fills a
unique application niche since it provides both print
job spooling and automatic conversion of many job
formats for UNIX as well as Windows clients. The
TODO list for LPA-CD also includes adding support
for MacOS clients via the Netatalk package in the near
future.

System Configuration

An LPA-CD system is comprised of two disk
images, a bootable CD-ROM and a bootable floppy.
Either may be used to bootstrap the target machine
since many older machines don’t have a BIOS capable
of booting from a CD-ROM drive. The result is the
same in either case; the root filesystem will be the
ISO9660 filesystem found on the CD, and all configu-
ration files that would need to be changed locally
reside on the floppy image which will be mounted on
/local at system startup. LPA-CD offers two choices
for a quick start; using disk images or using a tarball.
If the environment will require only changing some
configuration files, then the disk images are probably
easier to start with. If, however, extensive changes or
additions to the CD image are anticipated, then the tar-
ball will prove more suitable. The CD image and boot-
strap procedures are intended to work well for the
majority of typical setups, and the tarball is probably
only appropriate if the configuration requires unusual
features or extensive changes. In either case, of
course, either a CD-R or CD-RW drive is required for
actually writing the ISO image to a CD-R disk.

System Startup

The rc.init script included on the CD image is
responsible for mounting the appropriate filesystem on
/local, and the /local/rc.local script actually does most
of the work of starting up an LPA-CD machine. This
script should be tuned for the specific machine on
which it will be run. Only a summary description of
the script is provided here. The phases of startup
include:

• Loading modules: Near the top of the file are
several invocations of modprobe which load
driver modules for devices such as the ethernet
adapter.

• Preparing and activating the /var filesystem:
After any required modules are loaded, there
are several alternative sections in the rc.local
script showing examples of how to create
and/or mount various types of filesystems for
use as temp and spooling areas. Only one of
these alternatives should be used, and the others

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 241

A Linux Appliance Construction Set Shaffer

may be removed or ignored. As mentioned in
the Issues section, a careful evaluation of the
resources available and the anticipated load
should be made before choosing this option.
Examples for each alternative are shown here:
RAMDISK
dd if=/dev/zero of=/dev/ram0 \

bs=1024 count=4096
mkfs.minix -v -i 8192 /dev/ram0
mount -t minix /dev/ram0 /var

LOOPBACK IMAGE
losetup /dev/loop0 /local/var.img
mkfs.minix -v -i 8192 /dev/loop0
mount -t minix /dev/loop0 /var

LOCAL DISK
mkfs.minix -v -i 8192 /dev/hdb1
mount -t minix /dev/hdb1 /var

NFS
modprobe nfs
mount -t nfs \

spoolhost:/spool/linprinter /var

Unpacking /var filesystem image
tar -C /var -xvzf \

/local/var.tar.gz

The -v option to mkfs.minix causes a Minix V2
filesystem to be created which is necessary for
volumes over 64MB in size. The -i 8192 option
causes allocation of 8192 inodes in the new
filesystem which is a somewhat larger number
than the default. If volumes of more than
256MB will be used, then the ext2 filesystem is
probably a better choice.

• Activating network interfaces: This section
includes standard ifconfig and route invocations
to set up the interfaces and routes as necessary
for the particular environment.

• Configuring ipchains rulesets: The default
ipchains statements included install a fairly
strict set of filters allowing only the traffic nec-
essary for lpr and Samba clients to connect.
The rules also allow clients on the local net-
work to ping and be pinged by the LPA-CD box
to aid in diagnostics.

• Starting services: This section at the end starts
syslogd, klogd, nmbd, smbd, and lpd.

Sulogin Shell

The CD image contains a minimal but mostly
complete set of tools for system setup, monitoring,
and diagnosis.5

5In production configurations many of these tools may go
unused, but they are included in the ISO image for LPA-CD
by default since the cost to add them is relatively much high-
er for a write-once media like CD-R versus a re-writable
media such as a floppy. The floppy based configurations
such as LRA include in their configuration scripts the option
to add a login shell if desired.
The only non-standard tool included with LPA-CD is cryptwd
which is a small utility designed to help replace the ordinary

• Interactive/miscellaneous commands: awk bash
clear cryptwd echo sh vi

• File operations: cat cp chmod chown dd find grep
less ln ls mkdir mv rm touch

• Filesystem maintenance: df dosfsck e2fsck fdisk
fsck fsck.ext2 fsck.minix fsck.msdos fsck.vfat losetup
mkdosfs mke2fs mkfs mkfs.ext2 mkfs.minix
mkfs.msdos mkfs.vfat mkswap mount swapoff
swapon umount

• File archive maintenance: cpio gzip tar
• System status: date dmesg free hostname lsmod

lsof ps strace uname
• System/process Control: halt hwclock insmod kill

modprobe reboot rmmod setserial shutdown tunelp
• Networking: ifconfig ipchains netstat ping route
• Samba: mksmbpasswd smbclient smbpasswd smb-

spool smbstatus testparm
• BSD print spooling: lpc lpq lpr lprm lptest pac
• Print job file format conversion: magicfilter bmp-

toppm djpeg dvips fig2dev giftopnm gs pngtopnm
pnmtops rasttopnm sgitopnm tiff2ps

Conclusions

Open source operating systems present unique
opportunities for creation of ultra light systems tuned
to specific tasks. By exploiting the flexibility and rich
knowledge base of systems like Linux, FreeBSD,
OpenBSD, and other open source systems, administra-
tors can greatly reduce the time required to set up,
maintain, and upgrade the systems under their control.
LxA facilitates this process by providing documenta-
tion, tools, and ready-to-run reference implementa-
tions for several useful Linux based network appli-
ances. By taking a different approach to composing its
Linux based platform, LxA reduces system complex-
ity while increasing security and reliability. In addi-
tion, LxA will hopefully be able to quickly incorporate
new versions of critical system components when
available due to its use of standard components wher-
ever possible. When compared to commercial UNIX
systems, Linux presents more options for the average
system administrator in building unusual or small sys-
tem configurations due primarily to the following fea-
tures:

passwd tool. As discussed previously, the standard passwd
utility will not function correctly with a read-only /etc direc-
tory, and this obviously causes problems for a CD based root
filesystem. The cryptwd tool (in combination with vi) will al-
low the changing of user account passwords on a standalone
LPA-CD system. To use cryptwd, one would first open the
/etc/passwd file in vi and then use an ex command like the
following: :r ! cryptwd <newppassword> .
This will place a string representing the crypted version of
the password specified into the current editing session. If it
is necessary to include special characters in the password
string, they may be escaped with a ‘\’ like this: :r !
cryptwd \%\&chevy . Of course, this command can
also be used at a shell prompt if the crypted version of some
string is needed. This utility chooses a crypt salt for the
password randomly, so there is no need to specify one on the
command line.

242 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Shaffer A Linux Appliance Construction Set

• A standard and flexible RAM disk device
• The initial RAM disk boot capability
• Ease of composing minimal systems suitable

for running from removable media
• Generally more sophisticated tracing tools
• Free access to source code for troubleshooting

and modifications where necessary
• An overall system ethos focused on flexibility

and hackability

The LxA project has definitely succeeded in pro-
viding me with a more thorough understanding of the
components involved in bootstrapping and running
Linux and other UNIX-like systems. In more practical
terms, LxA configurations have made it feasible for
me to continue supporting customers located at great
geographic distances from my new home without
excessive travel or expense. As with any open source
project, it is difficult to estimate accurately any rate of
deployment or success for LxA outside the realm of
my own experience. I can say, however, that there
have been approximately twenty to thirty thousand
visits to the LxA project site since it was first created
around December of 1999. Of those who have visited,
at least several thousand have taken the time to down-
load one or more of the sample configurations. Of the
several dozen users who have sent me email regarding
LxA, all have reported positive results and at least
several have suggested new features and configura-
tions which they would find useful. I have received at
least a dozen replies to a request for usage reports so
far, with those responding most often finding a use for
the LRA and LPA-CD configurations. Purely subjec-
tive observation suggests that a large proportion of
active LxA users are from outside the U.S., and I
would suppose that this can be attributed to the
emphasis the project places on its relatively low
resource requirements and the prevalence of older
hardware platforms in many areas of the world.

Future Work

TODO List

• More elegant make scripts and better support
for RedHat based host distributions.

• Analysis scipts to automate the process of iden-
tifying and collecting all the components and
dependencies of new services for LxA configu-
rations

• A simple console dialog and/or X based GUI
configuration utility for building LxA root file
system trees and disk images.

• Enhancement of the LPA-CD root file system
image with additional components to form a
more general-purpose ‘LxA Platform CD’. This
will include sshd for remote administration as
well as the netatalk package for support of
MacOS printing clients and some other services
such as dhcpd and pppd.

• Integration of the Linux kernel 2.4 when
released.

Alternative Configurations

• LLA (Linux Lynx Appliance): Useful for turn-
ing ancient 386 class machines into text based
POS terminals, etc.

• LMA (Linux Mozilla Appliance): Another CD
based configuration; the classic thin client for
creating web and Java based network applica-
tion systems.

• LCDA (Linux CD-ROM Tower Appliance)
• LTSA (Linux Terminal Server Appliance)
• LVA (Linux VPN Appliance)

Availability

All of the disk images, documentation, and other
materials related to LxA are publicly available via the
Internet [12]. All software associated with LxA is cov-
ered, as are the components on which it is built, by the
GNU General Public License [6]. Everything docu-
mented in this paper is freely available for any use as
long as the distribution requirements of the GPL are
followed.

Errata

Any corrections or additions to this paper will be
posted on the LxA project site [12] where the full text
of this paper will be posted and maintained in HTML
format as well.

Author Information

Michael W. Shaffer has worked as a system
administrator, software developer, and system engi-
neer for a variety of companies and has been using
Linux since he first discovered it in mid-1993. He
studied Spanish, English Literature, Philosophy, and
most recently Computer Science at the University of
South Carolina in Columbia, SC. Although he was
born in Connecticut and grew up in South Carolina, he
has recently moved to Silicon Valley and currently
works as Hostmaster, Postmaster, and Security Officer
for the Research Computing Services department of
Agilent Laboratories in Palo Alto, CA. Reach him at
Agilent Labs RCS; 3500 Deer Creek Road; Palo Alto,
CA 94304; USA. His phone number is +1
650-485.2955. His email address is:
shaffer@labs.agilent.com .

References

[1] Bastille Linux Project; http://www.bastille-linux
.org/ .

[2] BusyBox; http://busybox.lineo.com/ .
[3] Embedded Linux Stargate; http://linux-embedded.

com/ .
[4] Floppix; http://floppix.ccai.com/faq.html .
[5] Gibraltar Firewall Project; http://www.

gibraltar.at .
[6] GNU Project General Public License; http://

www.gnu.org/copyleft/gpl.html .
[7] Linux CD Writing HOWTO; http://www.linux.

org/help/ldp/howto/CD-Writing-HOWTO.html .

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 243

A Linux Appliance Construction Set Shaffer

[8] Linux Kernel HOWTO; http://www.
linux.org/help/ldp/howto/Kernel-HOWTO.html .

[9] Linux kernel source tree documentation (includ-
ing initrd.txt and other files in the Documenta-
tion directory); http://www.kernel.org .

[10] LOAF; http://loaf.ecks.org/ .
[11] LRP (Linux Router Project); http://www.

linuxrouter.org/ .
[12] LxA Project Homepage; http://equusasinus.com/

lxa/index.html .
[13] Mkisofs and cdrecord documentation (including

cdrecord(1), mkisofs(8), and README.eltorito);
http://www.fokus.gmd.de/research/cc/glone/
employees/joerg.schilling/private/mkisofs.
html .

[14] OpenBSD Project; http://www.openbsd.org .
[15] Open Directory Tiny Linux Page; http://dmoz.

org/Computers/Software/Operating_Systems/Linux/
Distributions/Tiny_Linux/ .

[16] TAPR CompactFlash/IDE adapter; http://www.
tapr.org/tapr/html/Fcfa.html .

[17] Trinux; http://www.trinux.org/ .
[18] Yahoo! Linux Distributions Page; http://dir.yahoo.

com/Computers_and_Internet/Software/Operating_
Systems/Unix/Linux/Distributions/ .

244 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

