
USENIX Association

Proceedings of the
14th Systems Administration Conference

(LISA 2000)

New Orleans, Louisiana, USA
December 3– 8, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

PIKT: Problem Informant/Killer Tool
Robert Osterlund – University of Chicago

ABSTRACT

When faced with the many problems that arise in a complex of heterogeneous networked
workstations, systems administrators often resort to coding scripts to monitor and problem-solve,
scripts that they then schedule via cron. PIKT is a new and innovative approach to monitor
scripting and managing system configurations. PIKT consists of an embedded scripting language
with unique labor-saving features, a sophisticated script and system configuration file
preprocessor, a scheduler, an installer, and other useful tools. More than just a systems monitor,
PIKT is also a cross-categorical toolkit for configuring systems, organizing system security,
formatting documents, assisting command-line work, and performing other common systems
administration tasks.

The Problem, A Solution

Sysadmins have long wrestled with the task of
writing generalized scripts to monitor systems and
deal with recurring problem situations. As conven-
tionally practiced, this approach has numerous disad-
vantages: it is hard to account for diversity across
machines and operating systems; operations are fragile
and error-prone; scripts for handling simple tasks are
difficult to code, or are hardly worth the effort to
maintain; scheduling and managing scripts are time-
consuming and repetitive; setup is inflexible; activity
and error logging is rudimentary or nonexistent; and
the whole mass of scripts and configuration files is
nearly impossible to keep track of or even compre-
hend.

PIKT attempts to solve some of the problems
observed in more traditional methods of monitor
scripting and managing system configurations. PIKT
is an embedded scripting language and accompanying
script interpreter. PIKT is also a sophisticated script
and system configuration file preprocessor for use
with the Pikt scripting language or any other scripting
language of your choice. Finally, PIKT is a cross-plat-
form, centrally run script scheduler (like cron), cus-
tomizing installer (like rdist), command shell enhance-
ment, and total script and configuration file manage-
ment facility. PIKT’s primary purpose is to monitor
systems, report problems, and fix those problems
whenever possible, but its flexibility lends itself to
quite a few other uses as well.

Overview

In the usual PIKT configuration, you manage the
monitored client (‘‘slave’’) machines from a central
(‘‘master ’’) control machine. On the central control
machine, there are eight controlling config files: sys-
tems.cfg, defines.cfg, macros.cfg, alerts.cfg, alarms.
cfg, objects.cfg, programs.cfg, files.cfg. They define
your entire setup. You invoke the overseeing manage-
ment utility, piktc (for ‘‘pikt control’’) to preprocess

those files, to install client target files, and to perform
other management functions, such as stopping and
restarting daemons.

Two daemons run on each client, piktc_svc and
piktd. piktc_svc listens for and responds to piktc
requests. piktd launches Pikt scripts at specified inter-
vals.

On all clients, piktd wakes up every minute to
check if one or more groups of scripts, also known as
‘‘alarms’’, are due to run that minute. Alarm scripts
are grouped together as ‘‘alerts’’. Alerts run at specific
intervals, e.g., hourly, once daily, once weekly, etc. At
the appropriate time, piktd summons the pikt inter-
preter to run the Pikt scripts for that alarm group. You
can also run Pikt scripts manually at the command
line, but usually they are invoked by piktd.

pikt is the Pikt scripting language interpreter.
Individual Pikt scripts usually monitor just one aspect
of a system. You can monitor a single object, or col-
lections of things listed in the object files, for exam-
ple: system processes, disks, devices, lists, etc.

Each Pikt alarm script gets its input from pro-
cesses, files, or log files. For log files, only new log
entries since the last alarm run are considered.

A typical alarm consists of a sequence of logical
tests. If the current input line satisfies one or more
conditions, actions may or may not be triggered. Con-
ditions might also refer to data in the previous input
line, to data for this line remembered from the prior
alarm run, even to data coming from outside the cur-
rent alarm and pikt process.

Triggered actions might include generating a line
of e-mail. At the end of the current pikt run, queued
lines are e-mailed in a single problem report to one or
more sysadmins. Queued lines might be printed or
logged, whether to syslog, to this alert’s log file, or to
some other special log file. Or commands might be
executed, for example to restart a detected dead sys-
tem process, to chown a file, or perhaps to page the
sysadmins.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 147

PIKT: Problem Informant/Killer Tool Osterlund

For generating alarm script input, for taking
action, also for serving as subroutines, you can
employ auxiliary programs and scripts written in
other, non-Pikt languages.

All external commands are logged for debugging
and auditing purposes. If your alarm script makes ref-
erence to data from the prior alarm run, current data is
stored in history files for looking up next time. And,
very importantly, all errors are logged (including
errors generated by invoked scripts written in other
languages), giving you a complete audit trail when
things go wrong.

You may also employ PIKT to manage system
configuration files, such as inetd.conf, syslog.conf,
sudoers, etc. It becomes much easier, for example, to
enforce consistent access rights across your many sys-
tems.

The PIKT binaries are written using a combina-
tion of C, lex (flex), and yacc (bison). Most of the
sample scripts are written in the Pikt script language,
although several auxiliary Perl, expect, and shell
scripts are also provided.

Configuration

Config Files

Every config file is a sequence of stanzas. A
stanza consists of a stanza identifier, in the first col-
umn, then the stanza body, either on the same line or
in multiple lines following. The stanza body must be
indented, using spaces, tabs, or the #indent preproces-
sor directive.

Almost without exception, and aside from the
above simple rules, PIKT is indifferent to script and
config file layout. In other words, spacing and line
breaks really don’t matter, and you may lay out your
config files in any style that pleases you.

PIKT comments are like those in C++, that is, //
and /* */.

systems.cfg is where you specify host systems,
host aliases, and host groups. Here is an example:
///////////////////////////////////
//
// PIKT systems configuration file
//
///////////////////////////////////

solaris
hosts moscow athens2

berlin milan london
paris paris4 paris5

linux
hosts murmansk firenze

...

milan
aliases bonn rome

...

mailserver
members moscow paris

...

defines.cfg specifies a set of ‘‘defines’’ – logical
switches for including or excluding sections of the
config files. Here are some example defines:
debug FALSE

verbose FALSE

paranoid TRUE

macros.cfg specifies a collection of text substitu-
tions. Macro definitions, but not macro names, may
include embedded macros. Some examples:
behead(N) =sed ’1,(N)d’

offhours (#hour() >= 18 || \
#hour() < 6)

sysadmins brahms|albeniz|liszt

In config files, a macro reference is preceded by
an equal sign, for example: =behead(1), =offhours,
=sysadmins.

Macros may also include macro arguments. As
with simple text-substitution macros, macros-with-
arguments may reference other macros-with-argu-
ments, so all manner of macro nesting is allowed.

In alerts.cfg, you schedule alarm scripts. Here is
an example alerts.cfg stanza:
Urgent

timing 0-45/15 * * * *
drift 5
priority 10
mailcmd "=mailx -s ’PIKT \

Alert on =host: \
Urgent’ =pikturgent"

lpcmd "=lp =piktprinter"
alarms

SysRebootUrgent
FsMountsUrgent
SwapChkUrgent
...

The timing parameters follow the usual cron con-
ventions and then some. One not so usual timing spec
is random timings (for example, ‘timing 20% * * * *’,
which says to run the alert on average every five min-
utes). The random timing spec is especially useful in
security situations, where you want some unpre-
dictability in your monitoring schedules. Still another
novel timing spec is ‘‘drift’’ – how many minutes an
alert launch may randomly occur before or after a
specified time – useful when you don’t want alerts to
‘‘bunch up.’’

As alarm scripts are run, their output is queued.
At the end of the alert run (an alert is a set of alarms),
the queued output may be sent as a single e-mail mes-
sage to one or more sysadmins, or printed out, using
the commands specified.

148 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Osterlund PIKT: Problem Informant/Killer Tool

The alarms.cfg file is a series of Pikt scripts or
alarm definitions. For a more detailed discussion of
Pikt scripts, see the Scripting Language section below.

In objects.cfg, you specify system objects to be
monitored. Object listings can also include data
parameters. For example:

UserDirs
#if kiev2

/pub/mus_disk_5
/pub/mus_disk_6

#elif kiev0
...

#endif

...

SysProcs
...
cron : /etc/init.d/cron start
...

...

The file programs.cfg contains support scripts
written in other scripting languages, with each pro-
gram in its own stanza.

In files.cfg, you can centrally manage system
configuration files (such as inetd.conf, motd, and so
on), and indeed any text file. files.cfg is much like
programs.cfg, except that it can and should contain
non-program files and/or programs external to the
PIKT setup.

Partial Configurations

In a complete PIKT setup, you have all eight
basic configuration files. You might, in addition, have
#include file spinoffs from those basic eight.

It is possible to deploy PIKT in a partial configu-
ration, with subsets of the eight basic config file types.
systems.cfg is always required, but all the rest are
optional.

Here are the most common PIKT setups:
• piktc as rsh/ssh replacement (no macros or

defines): systems.cfg only
• piktc as rsh/ssh replacement (with macros and

possibly defines): systems.cfg, macros.cfg; and
optionally defines.cfg

• piktc as rdist replacement: systems.cfg, files.
cfg; and optionally programs.cfg, macros.cfg,
defines.cfg

• a centrally managed cron replacement: sys-
tems.cfg, alerts.cfg, alarms.cfg; and optionally
macros.cfg, defines.cfg

• system/network monitor (but without system
files management): all config files except
files.cfg

• system/network monitor; rsh/ssh, rdist, cron
replacements: all config files

So, you may utilize all that PIKT has to offer, or
just pick and choose among its many functionalities.

Preprocessing

piktc & piktc_svc

PIKT is managed through the combined action of
the interactive control program, piktc (on the central
master machine only), and the piktc_svc service dae-
mon (on all slave machines).

The piktc command options are shown in
Appendix 1.

When specifying items, you include items with
‘‘+’’ and exclude with ‘‘-’’. For example, ‘‘+A all’’
includes all alerts. ‘‘+A all -A EMERGENCY Info’’
includes all alerts except EMERGENCY and Info.
Another way to achieve the same effect is with just
‘‘-A EMERGENCY Info’’ (leaving out the ‘‘+A all’’,
which is implicit).

This sample command checksums (using MD5)
all files on all user systems except the Linux machines
and any down systems:
piktc -m5v ALL -H nonusersys

linux downsys

Preprocessing

You use piktc to preprocess source configuration
(*.cfg) files on the master machine, and send the post-
processing alert (.alt), object (.obj), program, and
other files over the network to receiving piktc_svc
daemons for installation on the slave systems. Prepro-
cessing entails:

• stripping out meta-comments (comments of the
form // or /* */)

• #include’ing auxiliary files (e.g., a list of Unix
command macros)

• using #if <os|host|hostgroup> #endif preproces-
sor directives, filtering through lines pertaining
only to the current client (e.g., #if solaris)

• using #ifdef <define> #endifdef preprocessor
directives, for including/excluding portions of
the text (e.g., #ifdef debug)

• making macro substitutions (e.g., substituting a
Unix command path, with command options,
appropriate to the current client)

• performing an across-the-board syntax check

Note that, in addition to the Pikt script and con-
fig files, it is possible to use meta-comments,
#include’s, #if’s, #ifdef ’s, and macros in managed sys-
tem configuration files and scripts written in other lan-
guages (e.g., Perl [11], Python [6], AWK [2]). Note,
too, that scripts may rewrite config #include files, rais-
ing interesting possibilities for maintaining dynamic
system configuration files.

Preprocessor Directives

You can customize config files by means of the
#if, #elif, #else, and #endif preprocessing directives.
The format is
#if <machine class>

<lines>
#elif <machine class>

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 149

PIKT: Problem Informant/Killer Tool Osterlund

<lines>
#else

<lines>
#endif

where <machine class> can be a series of host names,
host aliases, or host groups, separated by the |, &, or !
set operators. | indicates set union, & set conjunction,
and ! set negation. You can also use parentheses, (and
), in the class specifications.

Akin to #if, a second class of preprocessor direc-
tives consists of: #ifdef, #ifndef, #elifdef, #elifndef,
#elsedef, #endifdef, #define, and #undefine. The for-
mat is

#ifdef <define>
<lines>

#elifdef <define>
<lines>

#elsedef
<lines>

#endifdef

where <define> is an identifier representing a type of
logical switch that is either defined (true) or undefined
(false).

Logical defines are set (to TRUE) or unset (to
FALSE) in any of three ways: (a) in the file
defines.cfg; (b) in any config file, except systems.cfg
or defines.cfg, by means of the #define and #undefine
directives; or (c) at the command line, by means of
either the +D or -D switches.

Observe that you can set and unset defines on a
per-machine basis in the defines.cfg file, for example

#if dbserver
paranoid TRUE
#else
paranoid FALSE
#endif

as well as nest #ifdef’s within #if’s, and vice-versa,
throughout the config files.

A config file can incorporate one or more other
files by means of the #include directive. Included files
may themselves include other files, but only of the
same basic configuration type (macro files include
macro files, for example). Here is an example
#include directive:

#include <security_alarms.cfg>

Includes are especially useful for compartmental-
izing across different systems administrators (where
each has his/her own sub-config file), and across func-
tions (e.g., security alarms in one file, network alarms
in another), and for including files contributed by out-
siders. Includes are also good for quarantining infor-
mation particular to different operating systems.

There are other preprocessing directives, but the
ones described above are the most common.

Scripting Language

Script Outline

The general outline of a Pikt script is:
<script name>

init
status active|

inactive
level emergency|

urgent|
critical|
...

task "<text>"
input proc| "<process>"

file| "<file>"
logfile "<logfile>"

filter "<process>"
seps "<char(s)>"
dat <var> <spec>

...
keys <var> [...]

begin
<statement>
...

rule
<statement>
...

...
end

<statement>
...

Init Section

In the init section, you lay the basis for subse-
quent script actions.

The alarm is given one of eight severity levels,
analogous to syslog’s severity levels.

The primary alarm input is the output of a pro-
cess, the full contents of a text file, or logfile updates
(new info since the previous alarm run). If a process, it
can be any system process (including multiple pro-
cesses tied together by pipes) yielding text output. Pikt
does not deal with binary input. Input may also be
passed through an optional filter.

One or more dat statements map input data to
variables. The dat statement takes one of three forms:

dat <var> x [ordinal]
dat <var> x,y [columnar]
dat "<regexp>"

For ordinal input, ‘‘seps’’ specifies a field sepa-
rator (or separators) other than the default (whites-
pace).

Concluding the init section, the optional keys
line lists variables used as database lookup keys when
referring to history values (values stored from previ-
ous script runs).

Begin, End, and Rule Sections

Next come action statements, grouped into
begin, end, and rule sections.

150 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Osterlund PIKT: Problem Informant/Killer Tool

The heart of a Pikt script is the main processing
loop: A line of input (from a proc, file, or logfile) is
read in, then acted upon, the next line is read in and
acted upon, and so on until the input is exhausted.
Before input processing, you might have a begin sec-
tion, to initialize some variables or take some other
preliminary actions. You might also have an end sec-
tion for input processing followup. (You can achieve
additional data processing loops within a Pikt script
using a combination of #fopen(), #popen(), #read(),
and #fclose(), and/or #pclose().) In other words:

begin [optional]
<statement>
<statement>
...

[while there’s input] [optional]
rule

<statement>
<statement>
...

...
[endwhile]

end [optional]
<statement>
<statement>
...

The input processing loop consists of one or
more rule sections. A rule section usually groups
together program statements pertaining to a single
attribute of the current input line. Strictly speaking,
there is never a need to break up the set of input pro-
cessing statements into separate rule sections, but
doing so helps clarify program logic.
Data Types

Pikt has three basic data types: strings, numbers,
and file handles (or proc handles).

Pikt supports both ‘‘associative’’ (string-indexed)
and numeric (numerically-indexed) arrays. Array
indices are computable (e.g., a concatenation, or the
sum of two functions). Numerical arrays are (for now)
limited to at most three dimensions. Note that, unlike
with many other languages, Pikt array indices start at
1, not 0. (In Pikt, generally speaking, all indexing, in
whatever context, begins with 1.)

Variables come in three different time forms.
‘‘$’’ and ‘‘#’’ as variable prefixes refer to current val-
ues (strings and numbers respectively). ‘‘@’’ (e.g.,
@uid) signifies the value for this variable for the pre-
ceding input line. ‘‘%’’ (e.g., %usage) signifies the
value for this variable during the previous script run.

So, in Pikt, there is no need to save input data
values from one line to the next. Values from the pre-
vious input loop are stored automatically for you. The
same is true with so-called ‘‘history variables.’’ Pikt
stores values in a data file for recall the next time the
alarm script runs. If a value is tied to a particular input
data variable (specified in a dat statement) and a par-
ticular line of input, Pikt does a keyword lookup
(specified in a keys statement) to find the appropriate
data value.

Other Language Features

In general, every Pikt object serves a semantic
purpose. Hence, and for example, parentheses are not
required around an if condition or the arguments to a
for statement. Nor are semicolons or end-of-lines
required to signal the end of a program statement.

Pikt provides the usual operators, and a few not
so usual. They mostly follow the Perl and AWK mod-
els.

Pikt offers a wide variety of built-in functions.
An unusual feature of Pikt functions is that they are
data-typed: their return value type is signified by
either the ‘‘$’’ prefix (for string; e.g., $trim()) or ‘‘#’’
prefix (for number; e.g., #median()). Pikt does not cur-
rently support user-definable functions, although you
can write pseudo functions using macros-with-argu-
ments to achieve much the same effect.

Pikt comes with a panoply of flow control struc-
tures, most usual, and a few not so usual (e.g., ‘again’,
for repeating the current rule; ’leave’, for leaving the
current rule). Every Pikt statement begins with a key-
word (e.g., ‘set’, ‘if’, etc.). Statement blocks are indi-
cated by a keyword-keyword combination, for exam-
ple, if-endif, for-endfor.

Pikt uses AWK and GNU RX-style regular
expressions.

Several Monitoring Examples

It should be emphasized that the examples fol-
lowing are not an intrinsic part of PIKT. They are
solutions that you might implement, not that you are
forced to adopt.

Case Study 1: IdleUserSession

IdleUserSession is a short Pikt script to kill aban-
doned user sessions. Listing 1 is the source version on
the master control machine as it would appear in the
alarms.cfg file.

We have decided that this needs to be run every
other hour or so, so we group it with other ‘‘critical’’
alerts in the alerts.cfg file:
Critical

timing 30 0-22/2 * * *
drift 5

#if moscow | munich
priority 10

#else
priority 0

#endif
mailcmd "=mailx -s ’PIKT \

Alert on \
=pikthostname: \
Critical’ \
=piktcritical"

alarms
...
IdleUserSession
...

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 151

PIKT: Problem Informant/Killer Tool Osterlund

We would install this alarm, along with the other
alarms in the Critical alerts group, with the command

IdleUserSession

init
status active
level critical
task "Terminate idle user sessions."
input proc "=w | =nawk ’/[1-9]day/ {gsub("\\/","\\\\/"); \

print $1 " " $2}’"
dat $user 1
dat $tty 2

rule
=execwait "=kill ‘=ps -ef | =nawk ’/$user.+$tty/ {print \$2}’‘"

Listing 1: IdleUserSession (source version).

IdleUserSession
init

status active
level critical
task "Terminate idle user sessions."
input proc "/usr/bin/w | /usr/bin/nawk ’/[1-9]day/ \

{gsub("\\/","\\\\/"); print $1 " " $2}’"
dat $user 1
dat $tty 2

rule
exec wait "/usr/bin/kill ‘/usr/bin/ps -ef | \

/usr/bin/nawk ’/$user.+$tty/ {print \$2}’‘"

Listing 2: IdleUserSession (target version).

piktc -iv +A Critical -H downsys

processing madrid2...
installing file(s)...
Critical.alt installed

...

We have defined macro command paths in
macros.cfg like so:
#if solaris
...
kill /usr/bin/kill
...
nawk /usr/bin/nawk
...
#endif

If the current client were defined as a solaris sys-
tem in the PIKT systems.cfg file, the piktc preproces-
sor installs this script on the client (in the Critical.alt
file) with the macros resolving to the appropriate
solaris command paths, as in Listing 2, for example.

Note how macro substitutions have inserted the
appropriate paths for the w, nawk, ps, and kill com-
mands. If this were for one of the other supported
operating systems, different paths would be inserted.

You no longer have to concern yourself with
specifying the correct path for this or that command in
your scripts, either by maintaining separate script ver-
sions or by inserting per-OS case statements into your

code. Simply define the path once and for all in the
macros.cfg file, then use the =nawk macro (for exam-
ple) ever after in all of your scripts (including scripts
written in other languages, such as Perl, AWK, etc.).
PIKT will automatically substitute the correct version
for you.

Input data results from the command ‘‘=w’’, i.e.,
‘‘/usr/bin/w’’. Here is a sample input line:

bach pts/4 29Jun98 3days 3:25 2 zsh

We pass this input along to nawk with the
instructions: match lines showing idle time in days;
transform, for example, ‘‘pts/4’’ into ‘‘pts\/4’’; output
just the first and second fields.

Pikt maps the nawk output ‘‘bach pts\/4’’, setting
$user to the first field and $tty to the second.

This alarm has but one rule: We exec a kill com-
mand to terminate the idle session in question. (The
exec is automatically logged for auditing and debug-
ging purposes.)

You could, if you want, add rules to kill root ses-
sions only, or to kill after midnight and on weekends,
or if certain other conditions are met. Instead of
killing, you could send e-mail alerts to the system
administrators, who could then decide if manual ses-
sion kills are required.

Case Study 2: FileStatChk

One thing you would certainly want to monitor is
the state of essential system files: Have they

152 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Osterlund PIKT: Problem Informant/Killer Tool

disappeared? Do they have the right ownerships and
permissions?

SysFiles

#if linux

/etc/group -rw-r--r-- 644 root root
/etc/passwd -rw-r--r-- 644 root root
...

#endif // linux

...

// local stuff

#if moscow
/etc/mail/classalias -rw-r--r-- 644 root other
...

#endif

...

Listing 3: SysFiles.

FileStatChk

init
status active
level critical
task "Detect critical file access deviations on system files."
input file "=sysfiles_obj"
dat $fil 1
dat $prm 2
dat $mod 3
dat $own 4
dat $grp 5
keys $fil

rule
if ! -e $fil

output mail "$fil not found!"
next

endif

rule
do #split($list, $command("=lld $fil"), " ")

rule
if $list[1] ne $prm

=execwait "=chmod $mod $fil"
=outputmail "$fil permissions $list[1] are wrong" . \

$if(#defined(%list[1])," (were %list[1]),",",") . \
" changed to $prm"

endif

[similar rules follow]

Listing 4: FileStatChk

We start by listing those files, together with their
desired attributes, in objects.cfg (see Listing 3).

If we had adjusted the files list for the moscow
system only, we would refresh the SysFiles objects set
on that system with the command:

piktc -iv +O SysFiles +H moscow
processing moscow...
installing file(s)...
SysFiles.obj installed

We could refresh all objects files on all active
systems with the command
piktc -iv +O all -H downsys

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 153

PIKT: Problem Informant/Killer Tool Osterlund

It should be clear by now that the file
/etc/mail/classalias would appear in moscow’s Sys-
Files.obj file and in no other system’s.

Listing 4 is a script to enforce those file
attributes.

rule
output log "=swapchk_log" $inline()

end // only report if use is very high and increased by at
// least 5% since last time (hence don’t report when
// swap use is high but declining)
set #use = (#blksum-#fresum)/#blksum
if (#use >= 80%)

&& ((! #defined(%use))
|| (%use < 80%)
|| (#use - %use >= 5%)

)
output mail "swap utilization is $text(100*#use,0)%:=newline"
output mail "swapfile dev swaplo blocks free"
for #i=1 #i<=#innum() #i+=1

output mail $line[#i]
endfor
output mail =newline
output mail $command("=dfk /tmp | =behead(1)")
=dutop(10, /tmp)
output mail "contents of /tmp:=newline"
do #popen(LL, "=ll /tmp", "r")
while #read(LL) > 0

output mail $rdlin
endwhile
do #pclose(LL)
output mail =newline
=toptop(20)

endif

Listing 5: SwapChk (fragment)

For the first input line, ‘‘/etc/group’’ would be
assigned to $fil, ‘‘-rw-r--r--’’ to $prm, ‘‘644’’ to $mod,
and so on.

In the first rule, if the file fails the existence test,
that gets reported, and we move on to the next input
line.

In the next rule, we take the output of the ‘ls -l’
command and #split() and assign the component parts
to the $list[] array.

In the third rule, if the actual file permissions,
$list[1], do not equal the desired permissions, $prm,
we fix and possibly report this.

The doexec define lets us control whether actions
are exec’ed else a report of intent is e-mailed only. If
this is a new PIKT installation, we might want to see
what PIKT would do before committing PIKT to actu-
ally doing it. We could handle the conditionality this
way:
#ifdef doexec

exec wait "=chmod $mod $fil"
#elsedef

output mail "=chmod $mod $fil"
#endifdef

But defining the following macro
execwait
#ifdef doexec

exec wait
#elsedef

output mail
#endifdef

in macros.cfg is more elegant, because now we can
more succinctly write

=execwait "=chmod $mod $fil"

and either ‘‘exec wait’’ or ‘‘output mail’’ will be pre-
processed in depending on how we defined doexec
earlier.

In most circumstances, we simply want the file
permissions fixed and don’t need to be told about it.
Sometimes, however, we want a full report of all that
PIKT is doing. We control this by setting, in
defines.cfg, the define verbose to be TRUE or FALSE.
By defining the outputmail macro in macros.cfg as
outputmail
#ifdef verbose

output mail
#elsedef

output log "/dev/null"
#endifdef

154 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Osterlund PIKT: Problem Informant/Killer Tool

we can concisely write

=outputmail "$fil permissions
[...]"

If verbose is set to FALSE, the message is logged to
/dev/null, that is, just thrown away.

Note the $if(#defined(%list[1])," (were %list[1]),",",").
If we have run this script before, we have a record of
the actual file permissions the last go-around in
%list[1]. PIKT remembers this for us automatically.
So if #defined(%list[1]) is true, we report what they
were, and in any case report what they have been
changed to – but only if we have set verbose to TRUE.

PIKT ALERT
Thu Aug 17 21:20:14 2000

paris6

URGENT:
SwapChk

Report when swap use is high

swap utilization is 98%:

swapfile dev swaplo blocks free
/dev/dsk/c0t0d0s1 32,1 16 1003184 24384
/pub/perf_disk_20/swap - 16 524272 0

swap 803568 757800 45768 95% /tmp

758376 /tmp/SAS_worka0000420D
8 /tmp/screens
240 /tmp/ups_data
...

contents of /tmp:

total 544
drwx------ 2 freil perf 629 Aug 17 21:18 SAS_work
drwxr-xr-x 2 root other 69 Aug 16 06:15 screens
-rw-rw-r-- 1 root sys 239160 Aug 16 11:12 ups_data
...

last pid: 17014; load averages: 0.20, 0.23, 0.23 21:20:21
54 processes: 46 sleeping, 3 zombie, 4 stopped, 1 on cpu

Memory: 128M real, 1576K free, 738M swap in use, 7984K swap free

PID USERNAME THR PRI NICE SIZE RES STATE TIME CPU CMD
16845 freil 1 35 0 12M 3336K sleep 4:27 9.28% r3
16909 freil 3 35 0 6432K 1464K sleep 1:37 5.21% sas
16969 root 1 33 0 4872K 2792K sleep 0:00 2.80% pikt
...

Listing 6: SwapChk (sample report).

Case Study 3: SwapChk

Another thing we monitor is if systems run out of
swap space. For that purpose, we use the SwapChk
script, a portion of which is shown in Listing 5.

The input for this script comes from input proc
"=swap -l | =behead(1)". The last rule above logs all
input. This might come in handy some day if we need
data to justify purchase of additional RAM.

At the end of all input, we compute #use as a
percentage. If #use is equal or greater than 80%, or if
%use is not defined (because this is the first alarm run,
say), or if %use was less than 80% previously, or #use
has gone up by at least 5% over the previous %use, we
format a report and send it off as alert mail. Listing 6
is a sample report.

PIKT has assembled for us automatically all the
diagnostic information we need to assess the situation.
Moreover, after we have identified user freil as the
memory hog, we can simply add some extra com-
ments to the top of this alert e-mail and forward it
along to freil – demonstrating one advantage of using
e-mail as PIKT’s primary notification mechanism.

We could also, at least under certain circum-
stances or on certain systems, augment swap space on
the fly by adding the appropriate Pikt exec statements.

Case Study 4: ProcCountsChk

Recently, we have faced a crisis where a bug in
the current version of our Web-based e-mail client has

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 155

PIKT: Problem Informant/Killer Tool Osterlund

ProcCountsChk
init

status active
level emergency
task "Report unusually high counts of per-user procs."
// note: a defunct process might show an empty comm field
// below, so we pipe the ps output through the awk filter
input proc "=ps -eo user,comm | =behead(1) | =awk ’NF==2’ | \

=sort | =uniq -c"
dat #count 1
dat $user 2
dat $proc 3

begin // read in process and threshold data from objects file
if #fopen(PROCCOUNTS, "=proccounts_obj", "r") != #err()

while #read(PROCCOUNTS) > 0
if #split($rdlin) == 5

set #lgcnt[$1] = #val($2) // log thresholds
set #alcnt[$1] = #val($3) // alert thresholds
set #pgcnt[$1] = #val($4) // page thresholds
set #klcnt[$1] = #val($5) // kill thresholds

// else send an error message?
fi

endwhile
do #fclose(PROCCOUNTS)

else
output mail "Can’t open =proccounts_obj for reading!"
quit

fi
rule

foreach #keys($pr, #lgcnt)
if $proc =˜˜ "$pr$" // ’=˜˜’, not ’eq’, so that ’*’

// works as a default
if #lgcnt[$pr] && #count >= #lgcnt[$pr]

// for gathering diagnostic stats
output log "=proccounts_log" $inline

fi
if #alcnt[$pr] && #count >= #alcnt[$pr]

output mail $inline
if $proc eq "imapd" // special case

=archive_mail_file($user, #true())
fi

fi
if #pgcnt[$pr] && #count >= #pgcnt[$pr]

exec wait "echo ’=pikthostname: $inlin’ | \
=mailx -s ’=pikthostname: $inlin’ \
=pagesysadmins"

pause 5
fi
if #klcnt[$pr] && #count >= #klcnt[$pr]

=kill_user_proc($proc, $user, #true())
fi
next // next input line

fi
endforeach

Listing 7: ProcCountsChk

the imapd, under occasional and mysterious circum-
stances, spawning instances of itself every second or
so. For a handful of users, we are seeing occasional
‘‘imapd storms’’ with per-user imapd counts reaching
into the dozens, hundreds, and sometimes even thou-
sands! At about the same time, but for different rea-
sons, we began seeing ‘‘ypserv storms’’. Not only do
these storms risk losing user mail files, they also

imperil the entire system. Listing 7 is a Pikt script we
have put into operation to deal with these sorts of
problems.

The input proc statement yields input like

34 root /usr/lib/sendmail
404 chico imapd
1 zeppo imapd

156 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Osterlund PIKT: Problem Informant/Killer Tool

In the begin section, we read data in from the
ProcCounts.obj file (see Listing 8).

ProcCounts

// 0 signifies take no action; 1 signifies always take action

// proc log alert page kill

if moscow
imapd 10 100 1000 100

endif
if mailserver

sendmail 50 100 200 200
else

sendmail 5 10 20 40
endif
if nisserver

ypserv 2 3 3 0
endif

crack 1 1 1 1
sniffit 1 1 1 1

// ...
// wild card should be last in ProcCounts list

* 10 20 40 0

Listing 8: ProcCounts (objects.cfg fragment).

kill_user_proc(P, U, M)
// kill off all instances of a given process for a given user
// (P) is the process name (e.g., $proc, or "imapd")
// (U) is the user (e.g., $user, or "root")
// (M) is whether or not to output mail (e.g., #true())
set #killcount = 1 // initialize
while #killcount > 0

set #killcount = 0
do #popen(KILL, "=ps -eo pid,user,comm", "r")
while #read(KILL) > 0

if #split($readline) != 3
cont

fi
if $2 eq (U)

&& $3 eq (P)
#ifdef debug

output log "=proccounts_log" "$1, $2, $3"
output log "=proccounts_log" "(P), (U), $text((M))"

#endifdef
exec wait "=kill -9 $1"
set #killcount += 1

fi
endwhile
do #pclose(KILL)

endwhile
if (M)

output mail "killed all (U) (P) processes"
fi

Listing 9: kill_user_proc()

In the script’s only rule, we check to see if the
actual per-user process count exceeds the thresholds
we set in the begin section, also if the threshold is
non-zero.

Instead of foreach #keys($pr, #lgcnt), we could
have used for $pr in #keys(#lgcnt). These accomplish the
same purpose but with somewhat different syntax.
Variety of expression and keyword synonyms are typi-
cal of Pikt. Did you notice the use of if ... endif in Case
Studies 2 and 3 as opposed to if ... fi in the current case

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 157

PIKT: Problem Informant/Killer Tool Osterlund

study? Another example: elif, elsif, elseif are synony-
mous, and all achieve identical effect.

UserActivity

init
status active
level critical
task "Report and/or log suspicious after-hours activity."
input proc "=w -hs"
=wdata

begin
exec wait "=touch =useractivity_log" // forced update

#ifdef worried // or paranoid
if #false() // never quit this alarm if we’re

// worried (or paranoid); monitor
// activity at all hours

#elsedef
if #hour() >= 8 // 8 AM to midnight only

#endifdef
quit // don’t monitor, move on to next alarm

endif

rule
#ifdef worried // or paranoid

if #true() // all users
#elsedef
if nonusersys

if #true() // all users, on admin systems
else

if $user eq "root" // root only, on user systems
endif
#endifdef

&& (#length($idle) == 0
|| $idle =˜ "ˆ[0-9]+$" // idle time in minutes,

// not hours or days
)

// escalate notification at higher levels of security
output log "=useractivity_log" $inline

#ifdef cautious // or worried or paranoid
output syslog $inline
output mail $inline

#endifdef
#ifdef worried // or paranoid

output print $inline
#endifdef
#ifdef paranoid

exec wait "echo ’=pikthostname: $inlin’ | =mailx -s \
’=pikthostname: $inlin’ =pagesysadmins"

#endifdef
endif

Listing 10: UserActivity.

If the #lgcnt[] threshold is non-zero and if the
process count exceeds the #lgcnt[] threshold, we log
some diagnostic statistics for post-mortem analysis. If
the process count exceeds #alcnt[], we send alert mail
reporting that fact. In the case of imapd only, we also

backup the user’s mail file by means of the
=archive_mail_file() macro (not shown).

If #count exceeds #pgcnt[], we send a short alert
message to =pagesysadmins, a macro that resolves to
the sysadmins’ pager numbers.

Finally, if #count exceeds #klcnt[], we kill off the
user processes by means of the =kill_user_proc()
macro (see Listing 9).

158 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Osterlund PIKT: Problem Informant/Killer Tool

Here is a sample alert message:
PIKT ALERT

Tue Apr 25 00:17:02 2000
moscow

URGENT:
ProcCountsChk
Report unusually high counts \
of per-user procs.

404 chico imapd
saved user mail file as
/var/mail/arc/chico.956639822

killed all chico imapd \
processes

(We still don’t have an understanding of these prob-
lems, much less fixes, but at least we are not losing
any more user e-mail, and our mail server is coping.)

UserActivityLogChk

init
status active
level critical
task "Report all new security incidents in UserActivity log."
input logfile "=useractivity_log"

#ifndef cautious // or worried or paranoid
begin

quit
#endifdef

#ifdef cautious // or worried or paranoid
rule

output syslog $inline
#endifdef

#ifdef worried // or paranoid
rule

output mail $inline
#elsedef // only cautious

rule
if $inline =˜ "root"

output mail $inline
fi

#endifdef

#ifdef paranoid
rule

output print $inline
// page also?

#endifdef

Listing 11: UserActivityLogChk.

Before leaving ProcCountsChk, note that by
defining all count thresholds to 1 across the board, we
can guard against users running ‘‘dangerous’’ or ‘‘for-
bidden’’ programs such as Crack or Sniffit.

Case Study 5: UserActivity

You can use PIKT’s define feature to achieve
precision control over your security setup. Consider
these security settings in defines.cfg:
attentive TRUE // lowest level

// of security

cautious
#if misscritsys | cssys

TRUE
#else

FALSE
#endif

worried
#if misscritsys

TRUE
#else

FALSE
#endif

paranoid FALSE // highest level
// of security

Listing 10 shows how you might use them in an
alarm to monitor suspicious, after-hours user activity
(some per-OS customizations were omitted for
brevity).

We can also apply these defines to the UserAc-
tivity.log file produced by the UserActivity alarm.
Here is a sample log entry:
Aug 3 01:36:01 CRIT: root p0 1 -csh

Listing 11 shows the log monitoring script.

As security conditions change, we can generate
more or fewer log entries by changing our security

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 159

PIKT: Problem Informant/Killer Tool Osterlund

defines (from TRUE to FALSE, or vice-versa) for dif-
ferent systems, then using piktc to reinstall the modi-
fied scripts on those systems. This gives us pinpoint
control over our security setup.

#if usersys
ftp stream tcp nowait root /usr/tcpd/tcpd in.ftpd
telnet stream tcp nowait root /usr/tcpd/tcpd in.telnetd
...

#else
#ftp stream tcp nowait root /usr/tcpd/tcpd in.ftpd
#telnet stream tcp nowait root /usr/tcpd/tcpd in.telnetd
...

#endif

Listing 12: files.cfg (fragment).

Other Uses

Those are just a very few of the things you can
use PIKT to monitor. We use it for all kinds of sys-
tems administration tasks, including: clearing out /tmp
files; reporting system crashes; monitoring changes in
critical system files, directories, and devices; detecting
passwd and shadow file anomalies; running a mail
quota system; reporting ‘‘orphaned’’ accounts and
home directories; detecting bad e-mail list addresses;
clearing out user Web browser caches; removing core
files; rotating and retiring system log files; reporting
full file systems; reporting runaway processes; reviv-
ing vital system processes; reviewing security log files
– the list goes on and on.
Working with Other Scripting Languages

If you prefer to use a different scripting lan-
guage, that is no problem. Here is a short Pikt wrap-
per script around a much longer, and very complicated
Perl script, =mailchk (/pikt/lib/programs/mailchk.pl):
MailChk

init
status active
level warning
task "Check for mail \

errors, such as \
forwarding loops."

input proc "=mailchk 2>&1"

rule
output mail $inline

mailchk.pl yields output which the Pikt MailChk
script captures in a PIKT e-mail alert. If you wish, you
could let your Perl script handle all the reporting, but
still have PIKT deal with scheduling and logging,
using the minimalist Pikt script:
MailChk

begin
exec "=mailchk 2>&1"

We have a suite of over two dozen account man-
agement programs, almost all of them written in Perl,
that we maintain within our programs.cfg file. We
don’t use Pikt or piktd at all to run these. Rather, we

use PIKT to manage the per-OS and per-machine dif-
ferences, to install, and to monitor script integrity.

Config Files Installation and Management

Listing 12 is a portion of our files.cfg, the section
configuring inetd.conf.

Turning services on and off is as easy as editing
the central files.cfg, then reinstalling inetd.conf with
the appropriate piktc command.

Recently, a CERT advisory was broadcast advis-
ing against running the rpc.ttdbserverd service with
root privileges. For the rpc.ttdbserverd line, we substi-
tuted ‘‘daemon’’ for ‘‘root’’ (the line was already com-
mented out anyway), then updated inetd.conf and
reconfigured inetd on all Solaris systems with:
piktc -iv +F inetd.conf \

+H solaris -H downsys

piktc -xv +S SigHupInetd \
+H solaris -H downsys

where SigHupInetd is a Pikt script written expressly
for that purpose.

Another problem we have faced is keeping up-
to-date our sudoers file – especially the list of part-
time Computer Assistants. We do it in files.cfg by
means of an include file:

User_Alias PARTTIMERS=\
#include <sudo_parttimers_files.cfg>

where the sudo_parttimers_files.cfg file might be:
larry,moe,curly,sporty,\
ginger,baby,posh,scary,\
john,paul,george,ringo

We have a separate script that rewrites the
sudo_parttimers_files.cfg file nightly based on an
authoritative and up-to-date GNU Mailman list. The
result: a dynamic sudoers config file!

Remote Command Execution

You can use piktc for remote program execution
as an alternative to rsh or ssh. The command
piktc -Xv +C "<command(s)>" \

+H <systems>

executes the given command(s) on the specified sys-
tems.

You can insert PIKT macros within +C com-
mand strings. See Listing 13, for example.

160 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Osterlund PIKT: Problem Informant/Killer Tool

Note that kiev0 is a SunOS system. We want ‘df
-k’ to run on the Solaris systems and just plain ‘df’ to
run on the SunOS systems. The macro =dfk resolves
to the desired path and command option.

piktc -x +C "hostname; =dfk /tmp" +H mus
kiev0
Filesystem kbytes used avail capacity Mounted on
/dev/sd0e 993006 17 893689 0% /tmp
kiev
Filesystem kbytes used avail capacity Mounted on
swap 769096 296 768800 1% /tmp
...

Listing 13: piktc Command Example

for sys in ‘piktc -L +H solaris -H piktdevsys no_usr_local downsys‘
> do
> echo $sys
> ssh $sys "/pikt/lib/programs/svcstart.pl -k; \
cp /pikt/bin/pikt* /pikt/bin/bak; \
cp /usr/local/pikt/bin/solaris/pikt* /pikt/bin; \
/pikt/lib/programs/svcstart.pl -r"

> done

Listing 14: System Lists

System Lists
With perhaps the simplest but still useful PIKT

setup imaginable – the piktc binary and a systems.cfg
file – you can maintain custom system lists, whether
for referencing within other programs, as in this Perl
statement

@hpsys = ‘piktc -L +H hpux \
-H downsys‘;

or for command-line work, as in a command loop we
use to upgrade our Solaris PIKT binaries (see Listing
14).

The uses of PIKT really are limited only by your
imagination!

Security

The current PIKT security model is fairly trust-
ing. There are things you can do now to tighten secu-
rity, while other things – Kerberos-style client-server
authentication and data encryption, for example – are
under study and planned for implementation in the
near future.

In PIKT.conf, which functions roughly like a
.rhosts or .shosts file, you set various access parame-
ters (e.g., uid, gid, master, domain, master_address,
etc.) and service rights (e.g., all_services, kill_service,
install_service, etc.). By careful and judicious use of
these settings, and in combination with other measures
(firewalling, running piktc_svc only when necessary,
etc.), you can achieve a level of security sufficient in
many situations.

When you issue a piktc command, the slave
(remote) host and requested service are registered with
the master (local) piktc_svc. Upon receiving the

service request, the slave piktc_svc checks its local
access authorizations in PIKT.conf. If the service
request is authorized, the slave piktc_svc then does a
‘‘callback’’ – a second, independent TCP connection
– to the master piktc_svc, seeking to verify the
request. If it verifies – i.e., both slave host and service
request match – only then does the slave piktc_svc
perform the requested service. It then returns the out-
come of the service request to the requesting piktc.
Finally, the slave host and requested service are dereg-
istered on the master piktc_svc. Please see Figure 1.

piktc and piktc_svc do complete service request
logging, and piktc_svc marks denied requests as
‘‘ERROR’’. It is not difficult to set up log monitoring
scripts (and scripts to monitor the monitoring scripts,
etc.) to spot attempted security break-ins. Remember
that you can log to syslog and special logs, and dump
to a printer, besides sending out e-mail alerts. Scripts
can also call pagers in security emergencies. You can
even have a monitoring script kill the local piktc_svc
under suspicious circumstances.

You can use PIKT for security in at least the fol-
lowing six ways:

1. As just a centrally managed scheduler. Have
piktd invoke your preferred security tools
according to the schedules in piktd.conf.

2. The above, plus have PIKT manage other secu-
rity tools’ config files (the inevitable per-
machine and per-OS customizations).

3. All of the above, plus use PIKT #ifdef’s to acti-
vate and deactivate different security tools as
changing conditions warrant.

4. All of the above, plus use PIKT to handle your
security log file analysis and incident reporting.

5. All of the above, plus employ PIKT alarms and
data objects as supplements to the standard
tools. (For example, have PIKT do things that
COPS or Tiger don’t do.)

6. Use PIKT exclusively.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 161

PIKT: Problem Informant/Killer Tool Osterlund

PIKT is especially adept at points one, two, and
three above.

As for point four, there are good solutions out
there already for analyzing your security log files, but
PIKT might be superior due to its more powerful and
flexible built-in scripting language.

As for point five, extending one tool requires you
to learn Perl, another to get intimate with the Bourne
shell, while five others require you to learn five differ-
ent cryptic and proprietary command languages. Learn
those languages and modify those tools on their own
terms where that makes the most sense, but when sen-
sible resort to PIKT.

MASTER SLAVE

piktc<------------------------------+
| (2) send request |
| (7) return result |
| |
| (1) register slave & request |
| (8) deregister slave & request |
V V

piktc_svc<---------------------->piktc_svc
(4) callback (3) check authorizations
(5) reply (6) perform service

Figure 1: callback.

As for using PIKT exclusively, in spite of its
great virtue of involving just one system and com-
mand language to learn and use, I don’t propose that
PIKT do everything! For many purposes, there are
some really excellent alternatives available. I therefore
suggest that the optimum solution lies somewhere
around points three, four or five.

Security should be systematic, flexible, and easy
to manage. These are areas where PIKT excels. At the
very least, PIKT is a general framework on which to
build your security efforts.

Future Plans

PIKT could use a GUI, not so much to overlay
piktc management as to handle incoming alert mes-
sages. This could take form as, for example, a Tk/Tcl
or Java front-end acting on syslog messages sent to the
console machine.

Although there are methods to program against
endlessly repeating nuisance messages (so-called
‘‘nagmail’’), PIKT would benefit from more auto-
mated ways to do this. Message routing could also be
improved.

PIKT has a steep learning curve, and setup can
be daunting. A project is underway to put together a
PIKT ‘‘standard library’’ of ready-to-run defines,
macros, alerts, scripts, programs, and objects sets. We
need to improve the user’s ‘‘out-of-the-box’’ experi-
ence.

The weakest link in PIKT’s chain is the script
interpreter, pikt. Although it gets the job done, it is not

fast or feature-complete. Pikt is not a stand-alone, all-
purpose scripting language, and you cannot effectively
call Pikt scripts from programs written in other script-
ing languages. Pikt was designed to aid in systems
administration and to run ‘‘fast enough’’ in a small
memory space within the broader PIKT system. Plans
are to rewrite Pikt’s underlying engine, perhaps using
GNU Guile or embedded Perl.

PIKT requires a thorough security audit, and its
client-server communications need to be made iron-
clad secure. Adding encryption and Kerberos authenti-
cation is under consideration. We also plan to imple-
ment a comprehensive security package of PIKT
defines, macros, scripts, and objects sets to work alone
or in concert with other security products.

PIKT has an Introduction and comprehensive
Reference Manual but lacks a Getting Started guide,
also an Operations Manual.

Other Solutions

PIKT is often compared to Cfengine [3]. In the
words of its author, Mark Burgess,

Cfengine ... is a very high level language for
building expert systems which administrate and
configure large computer networks. Cfengine
uses the idea of classes and a primitive form of
intelligence to define and automate the configu-
ration of large systems in the most economical
way possible.

In Cfengine, you create a configuration file (or
files) describing the ideal setup for all of your hosts.
When run, the cfengine program will check the actual
machine configurations against the ideal and, if
desired, fix any deviations.

Cfengine and PIKT address generally the same
problem but in significantly different ways. Cfengine
is a high-level, declarative or descriptive language (a
single statement might set permissions on hundreds of
files, for example), while Pikt is a low-level, procedu-
ral language. Cfengine tends to provide specific solu-
tions to specific problems, while PIKT tends to be
more general. Cfengine’s specificity (it has built-in
support for configuring network interfaces, for exam-
ple) would be out of place in base PIKT. (With PIKT,

162 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Osterlund PIKT: Problem Informant/Killer Tool

you would write a script to configure the network
interface calling the usual UNIX networking com-
mands.)

While Cfengine achieves per-OS and per-
machine customization by means of classes, for exam-
ple,

FTPserver.Sunday.Hr00::

/local/iu/xferlog rotate=3

which means to run xferlog at midnight Sunday if this
system is a FTPserver, PIKT would achieve a similar
effect as follows (in the alerts.cfg file):
Notice

timing 0 0 * * 0
...

alarms
...

#if ftpserver
LogFileChkNotice

#endif
...

Cfengine has its own unique keywords, syntax,
macro and variable forms, etc. Although Pikt has
some unique elements, much of it should be familiar
to any Perl or C programmer, especially the idea of
preprocessing. If PIKT has a steep learning curve,
Cfengine’s is equally steep, if not steeper.

Cfengine tries to anticipate many of your needs,
but when you veer off the beaten path, Cfengine is not
quite so helpful. In many situations, you will still need
to write your own scripts. With PIKT, you script
everything. This makes PIKT inherently more flexible
and applicable to a broader class of applications – not
just fixing broken system configurations and execut-
ing routine tasks, but also reacting to errant dynamic
processes.

Cfengine is quite good at what it is designed to
do. It would be especially useful (and superior to
PIKT) for configuring a new system or restoring a sys-
tem after a crash or cracker break-in. One really nice
Cfengine feature is that ordinary users can invoke it,
attempting to fix a broken configuration if the system
administrator is unavailable. (PIKT is typically just for
root use.)

In work first presented at the LISA 1999 Confer-
ence [4], Alva Couch and Michael Gilfix have

... created a system administration library that
allows one to perform system administration
tasks in Prolog. This is much more powerful and
flexible than using other current tools, and has
the advantage that the resulting Prolog programs
are much closer to describing actual policies than
CFEngine configuration files or PIKT scripts.

Perhaps because their comments were based on
earlier, less mature versions of PIKT, I feel that they
underestimate the power, flexibility, and expressive-
ness of Pikt scripts, especially the fully documented,

macro-enhanced versions found in the central configu-
ration files (as opposed to the preprocessed, uncom-
mented versions installed on the slave systems).

Their Prolog-based approach to systems adminis-
tration is intriguing and potentially far-reaching, but it
suffers from one significant problem: Unless one
attains proficiency with Prolog (not a widely used lan-
guage, to say the least), their system is a ‘‘black box,’’
closed to the do-it-yourselfer who demands complete
control over, or at least complete understanding of, the
system. In any case, at this time, source code is not yet
available for public distribution, so it is hard to evalu-
ate their approach effectively.

There are other systems monitoring packages out
there, including: Big Brother [7], and its clone Big
Sister [1]; Mon [9]; NetSaint [5]; and still others.
These tend to focus more on performance statistics
and problem reporting, less on systems configuration
and problem solving. To their credit, they rely on
standard scripting languages, but they don’t deal
specifically or as extensively with the problem of per-
machine and per-OS customization like PIKT,
Cfengine, and the Prolog-based library do.

I have no experience using any of the high-
octane, very expensive commercial packages (like
Tivoli [8] or CA Unicenter TNG [10]) and can’t ven-
ture any comparisons or opinions about them.

Parting Thoughts

The heart and soul of PIKT is its preprocessor,
piktc, and all the special scripting and file manage-
ment facilities it provides: per-machine and per-OS #if
directives; the #ifdef family of logical switches;
#include files; macros; pinpointed file installation;
central scheduling; and so on. PIKT moves scripting
toward the kind of full-featured development environ-
ment that users of ‘‘more serious’’ languages have
long enjoyed.

The Pikt scripting language offers some unique
features, or features better tailored to the job of day-
to-day systems administration: automatic previous-
line (@foo) and prior-run (%foo) value references; a
clean, uncluttered syntax; free-form, flexible layout;
keyword synonyms; automatic logging of everything
of consequence; a cautious approach to script execu-
tion (no assumed variable defaults; serious errors trig-
ger automatic script shutdown); a built-in input loop
(much like AWK’s); many standard input and output
options.

On the other hand, people have a right to ques-
tion whether the world needs Yet Another Scripting
Language. Also, scripting language preference is often
a highly personal, even emotional matter. Pikt, the
scripting language, is just the first among equals in
PIKT, the sysadmin toolkit. Use of other languages
within the PIKT system is encouraged, and embedding
other scripting languages within PIKT is actively
being considered.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 163

PIKT: Problem Informant/Killer Tool Osterlund

But the point bears repeating: the piktc prepro-
cessor and control program is at the center of PIKT. It
is what sets PIKT apart from other scripting languages
and other system monitors. PIKT is more than just
another systems monitor and Yet Another Scripting
Language. When confronted with its multi-functional-
ity, one Web administrator didn’t quite know where to
list it, saying that he might have to invent a whole new
category for PIKT. If ever a tool were more than the
sum of its parts, PIKT is that tool. The PIKT combina-
tion is a very powerful, wide-ranging, and ambitious
toolkit indeed.

Availability

PIKT’s homepage is: http://pikt.uchicago.edu/pikt,
where you will find not only the distribution package
but also complete on-line documentation, sample con-
figuration files, a comprehensive test suite (with over
600 validation tests), and other useful items. PIKT is
also available for download at a number of ftp sites.
pikt-users and pikt-workers mailing lists have been
formed. Operating systems now supported include
GNU/Linux, Solaris, SunOS, FreeBSD, OpenBSD,
AIX, HP-UX, and IRIX.

Acknowledgments

I need to thank the following persons for their
helpful criticisms, suggestions, bug reports, and in
some cases code: Bardur Arantsson, Michel Blanc,
Jim Botts, Leon Breedt, Chris Halverson, Magdalena
Hewryk, Rich Hoffer, Kelsang Wangden, James Low,
David Masterson, Miguel Armas del Rio, Roland
Roberts, Raul Alexis Betancort Santana, Mike Schei-
dler, Joe Siegrist, and especially Harlan Stenn, who
implemented the PIKT autoconf/automake and who
has helped out in other innumerable ways. I owe a
huge debt of gratitude to the authors and maintainers
of gcc, gdb, and make, as well as GNU flex (lex) and
bison (yacc), upon which PIKT relies quite heavily. I
am also very grateful to Will Partain and Kelsang
Wangden for providing thoughtful and incisive sug-
gestions for improving this paper.

Author Information

In a former life, Robert Osterlund earned a cou-
ple of economics degrees from the University of
Chicago and worked as an economist and college
teacher while serving as a U.S. Peace Corps Volunteer
in the Philippines. After making a mid-life career
switch to computing, he took computing courses for a
while at the University of Illinois at Chicago, then
returned to the Philippines to organize and head the
computer department at a small college there. He was
employed for five years as Senior Programmer Ana-
lyst at the University of Chicago’s Social Sciences and
Public Policy Computing Center, and has worked as
Unix Systems Manager at the University’s Graduate
School of Business since 1995. You can mail him at:
Robert Osterlund, Graduate School of Business,

University of Chicago, 1101 E. 58th Street, Walker
309, Chicago, Illinois 60637, USA. Or send e-mail to:
robert.osterlund@gsb.uchicago.edu.

References

[1] Thomas Aeby, Big Sister, http://bigsister.graeff.
com/ .

[2] Alfred V. Aho, Brian W. Kernighan, Peter J.
Weinberger, The AWK Programming Language,
Addison-Wesley, 1988.

[3] Mark Burgess, GNU Cfengine, http://www.iu.
hioslo.no/cfengine .

[4] Alva Couch and Michael Gilfix, http://www.
eecs.tufts.edu/˜couch/prolog/ .

[5] Ethan Galstad, NetSaint, http://www.netsaint.
org .

[6] Mark Lutz, Programming Python, O’Reilly &
Associates, 1996.

[7] Sean MacGuire, Big Brother, http://bb4.com .
[8] Tivoli, http://www.tivoli.com/ .
[9] Jim Trocki, Mon (Service Monitoring Daemon),

http://www.kernel.org/software/mon .
[10] Unicenter TNG, http://www.ca.com/ .
[11] Larry Wall, Tom Christiansen, Randal L. Schwartz,

Programming Perl, O’Reilly & Associates, Inc.,
1996.

164 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Osterlund PIKT: Problem Informant/Killer Tool

Appendix 1: piktc Command Options

Usage: piktc <-cCdefGhikKlLm#rRstTvxX>
[+|-D <define(s)>]
[+C <command(s)>]
[+|-A|S[f] all|<alert(s)/script(s)>]
[+|-P[f] all|<program(s)>]
[+|-F[f] all|<file(s)>]
[+|-O[f] all|<object(s)>]
+|-H all|<host(s)>
[ALL]

-c syntax check all config files
-C syntax doublecheck all config files
-d disable alert(s)
-e enable alert(s)
-f diff alert/script/program/file/

object file(s)
-G run in debug mode
-h show program help
-i install alert/script/program/file/

object file(s)
-k kill alert daemon (piktd)
-K kill service daemon (piktc_svc)
-l list alert/script/program/file/

object file(s)
-L list alert/script/program/file/

object or host/os/group/alias
command-line item(s)

-m# checksum alert/script/program/file/
object file(s), where # is
checksum level 1-5

-r (re)start alert daemon (piktd)
-R (re)start service daemon (piktc_svc)
-s show alert(s) status
-t delete alert/script/program/file/

object/history/log file(s)
-T run in test mode
-v run in verbose mode
-x execute alert(s)/script(s)
-X execute alert(s)/script(s)

with no wait
+|-D <define(s)> define/undefine define(s)
+C <command(s)> include command string(s)
+|-A|S[f] all|<alert(s)> include/exclude (fix) alert(s)
+|-P[f] all|<program(s)> include/exclude (fix) program

file(s)
+|-F[f] all|<file(s)> include/exclude (fix) other

file(s)
+|-O[f] all|<object(s)> include/exclude (fix) object

file(s)
+|-H all|<host(s)> include/exclude host(s)/os(es)/

group(s)/alias(es)
ALL +A all +S all +P all +F all

+O all +H all

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 165

