
USENIX Association

Proceedings of the
14th Systems Administration Conference

(LISA 2000)

New Orleans, Louisiana, USA
December 3– 8, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Relieving the Burden of System
Administration through Support

Automation
Allan Miller & Alex Donnini – HandsFree Networks

ABSTRACT

The number of computer users with little or no training continues to rapidly increase.
Networks are at the heart of companies large and small. Applications, ever more complex, span
intranets and extranets. This all adds up to an increasing burden on system administrators and end
user support organizations at a time when there is constant downward pressure on support budgets
and a shortage of qualified staff. The result is a technical support crisis with dissatisfied end users,
burned out system administrators, and unhappy support teams. The need for support automation is
critical as it enables the scaling of effective end user support while minimizing the need for
additional resources.

There are significant challenges to automating support, since it is essentially a large
collection of special cases. Different methods have been used to achieve this automation, with
varying degrees of success. This paper describes a software system that automates the solution of
many recurring end user problems, greatly relieving the burden on system administration staff for
mundane issues. We describe the architecture of the system, give examples of its use, demonstrate
its extensibility, and report on our experience using it in the field.

Introduction

The widespread use of computers in mission-
critical functions continues to grow, resulting in their
use by ever-larger numbers of technically unsophisti-
cated end users. At the same time, the software
installed on them gets more complex as competitive
pressures force vendors to incorporate additional
advanced features. To make matters worse, the infras-
tructure itself is becoming inherently more sophisti-
cated: a seemingly simple application such as email
involves the use of network connectivity and routing
that is far beyond the capabilities of an end user to
diagnose and repair. Yet budgets typically do not leave
room for additional support needs, as demonstrated in
[Tol92]. The increasing demand for support services
by end users puts system administrators in a position
where they have to solve more and more repetitive
issues, in addition to dealing with the more complex
enterprise-wide issues they face every day. Often, they
are simply not in a position where they can handle this
additional burden.

Outside the enterprise, the situation is even
worse. With less access to system administration
resources, smaller businesses rely on a combination of
internal resources and third party service providers.
The labor intensive support process used by third
party service providers simply does not scale to the
level being demanded by current and future use. As
evidenced in [DeK99], smaller businesses that cannot
afford a full-time system administrator are increas-
ingly dissatisfied with their support. As software
becomes embedded in more and more consumer

products (such as cell phones or even refrigerators),
the problem continues to worsen and is beginning to
affect home users as well as businesses.

As a result, there is an urgent need for an
increased level of automation in the process of every-
day administration, maintenance, and support tasks for
end users. System administrators must be freed from
the overwhelming load of essentially trivial problems
that recur on a frequent enough basis to interfere with
the solution of more important and challenging prob-
lems. This paper describes a software system that
automates the solution of many recurring end user
problems, greatly relieving the burden on system
administration staff for mundane issues.

Existing Support Automation

One of the indications of the need for automation
of end user support is the existence of a range of prod-
ucts in this space. These products all address the need
to some point, but have various shortcomings that are
addressed by the system described in this paper.

There are a number of products that detect sys-
tem level events, such as processor faults, and attempt
to recover from their effects. These products use a
general mechanism and apply it to all instances of the
problems being detected. However, the general mech-
anism really only addresses the immediate cause of
the problem event, and does nothing to permanently
address the root cause of the underlying problem.

Some products provide automated software
updates to customers. This solves problems caused by
bugs that are fixed in a later release of the software.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 167

Relieving the Burden of System Administration through Support Automation Miller & Donnini

However, many end user issues are not caused by
bugs, but are instead usability issues where the soft-
ware is working as designed but the designers have
not foreseen its obscure behavior in a common cir-
cumstance. In addition, most problems can be
addressed with workarounds that end users can apply
immediately, eliminating the need to wait for the next
turn of the software development cycle of the product.

Virus scanners are important tools for every sys-
tem administrator. They detect system level events and
changes to files, use a database to drive the detection
and removal of viruses, provide reporting functions on
virus detection and elimination, and periodically
update the database automatically. As we will see, the
system described in this paper is similar in some
respects to a virus scanner. However, virus scanners
have a very specific problem domain on which they
focus. They provide no help to a system administrator
for the myriad of other end user issues that arise on a
daily basis.

(QG XVHU 6\VWHP

DGPLQLVWUDWRU

9HQGRU

VXSSRUW

9HQGRU

HQJLQHHULQJ

�� 3UREOHP UHSRUW

�� 3UREOHP FODULILFDWLRQ

�� ��� 3UREOHP

UHVROXWLRQ SURFHGXUH

�� 3UREOHP

GHWHFWLRQ

�� ��� 3UREOHP

UHVROXWLRQ

6ROXWLRQ

GDWDEDVH

�� 4XHU\

�� 5HVROXWLRQ

SURFHGXUH �� 1R

PDWFK

��� 1HZ SUREOHP

UHVROXWLRQ

�� (VFDODWLRQ ��� (VFDODWLRQ

��� 1HZ UHVROXWLRQ

��� 3UREOHP

UHSURGXFWLRQ

��� ��� ��

Figure 1: Support process.

‘‘Self-healing’’ systems provide a facility, either
manually guided or semi-automated, to restore some
or all files back to a previous state. This can be a
powerful device for quickly getting a system back to a
working condition. However, it is most helpful in a
disaster recovery situation, and is not of much help
when a problem must be solved rather than removed,
or when a problem has existed for a long time without
manifesting itself.

Some ‘‘web-enabled support’’ sites provide a
database of known problems and solutions (usually
called a ‘‘knowledge base’’). [Mic00] is a good exam-
ple of a well-built knowledge base. While knowledge

bases have demonstrated their value in providing
quick access to vital information for system adminis-
trators, the concept of their direct use by end users
leaves much to be desired. Most end users have diffi-
culty finding and understanding information in a
knowledge base, and may actually end up doing more
harm than good by attempting to apply inappropriate
solutions. In addition, moving the task of system man-
agement into the hands of an inexperienced end user is
not a very popular option in an enterprise environment
where ‘‘time is money.’’

Help desk software is a key component of an
enterprise solution for end user support. Effective help
desk software can increase the efficiency of an internal
support group and therefore reduce some of the bur-
den on system administrators. In addition, some help
desk software can assist an internal support group in
building a database of problems and solutions, which
can be extremely useful to administrators. However,
the software is of little direct use to those system
administrators by itself.

Some help desk add-ons allow end users to con-
tact a support group electronically, using email or
chat, and facilitate problem resolution through the use
of advanced diagnostics. Some of these products also
feature limited automation of problem resolution
activities and remote support capability, allowing a
support representative to take control of an end user’s
desktop to resolve a problem. This removes some of
the potential for human error in diagnosing and resolv-
ing the problem. These tools can certainly help a sys-
tem administrator maintain a larger number of end
users more efficiently. However, even with these tools,
each end user issue requires individual attention, so

168 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Miller & Donnini Relieving the Burden of System Administration through Support Automation

the system administrator is still forced into the ineffi-
cient role of providing repetitive end user support on
common problems.

‘‘Expert marketplaces’’ match up end users with
consultants who are bidding services to solve desktop
computer problems. This is an interesting ‘‘free mar-
ket’’ approach to providing end user support by out-
sourcing it to a widely distributed support staff. How-
ever, it does suffer from somewhat inconsistent
results, due to the variety of talent bidding the support
services. It is easy to imagine a situation where multi-
ple consultants would inadvertently provide conflict-
ing point solutions to a system wide problem, merely
interfering with the efforts of the system administrator
who is ultimately responsible for the overall solution.

Finally, a number of ‘‘support portals’’ are avail-
able that feature online access to some combination of
the services listed above. These provide convenient
‘‘one stop shopping’’ for those services, but do not
otherwise enhance the automation or scalability of the
services themselves, and are typically geared to a
lower level of expertise than that of a system adminis-
trator.

In summary, while these approaches are all valid
and help with some aspect of the end user support
issues faced by system administrators, none of them
really shorten the administrator’s lengthy task list by
automatically detecting and resolving simple recurring
problems without any manual intervention. The sys-
tem described in this paper addresses many of these
shortcomings and provides a true solution for saving
time and lightening the load on the system administra-
tor.

Automating Support

Figure 1 shows the traditional process for han-
dling end user problems, as exemplified in [RSA00]
and [Smi97]. The process starts when an end user
determines that a problem is happening. The user
contacts1 the system administrator. Through a discus-
sion with the user, the administrator clarifies the
nature of the problem, then searches through a
database of pre-defined problem descriptions for a
match. In many cases, the ‘‘database’’ is simply a
mental list of common problems and solutions. It can
also be an informal written list, or if the system
administrator is using help desk software to manage
the process, it may be an actual database. If a match is
found, the administrator communicates the resolution
to the user, and assists the user in applying it. [Etc98]
describes that this process works well, solving as
many as 80% of the problems encountered by end
users [Sla00, Gil00, Sup00, Sch00, Hon00, CWS99,
Loc00]. For the remaining 20% or so, the system
administrator must become directly involved in the

1This could be a personal contact or a telephone call. In-
creasingly, other forms of interactive electronic communica-
tions are being used.

diagnosis and solution of the problem, and may need
to escalate the process to include the software vendor.
If the problem is escalated, the vendor uses product-
specific knowledge to reproduce the problem and
attempt to resolve it. If the resolution is successful, the
procedure for resolving the problem is communicated
back to the system administrator, who in turn commu-
nicates the resolution to the end user and assists in its
application. In addition, the system administrator now
adds this new problem and resolution to whatever
‘‘database’’ is used for solving common problems. In
that way, new instances of the problem can be
resolved more quickly, without needing either direct
involvement or the assistance of the vendor. The 5%
or so of problems that cannot be resolved by the ven-
dor ’s customer support are escalated internally to the
engineering team at the vendor, where development
resources are brought to bear on diagnosing and
resolving the problem. In this way, the efforts of the
system administrator and the vendor’s customer sup-
port group play two critical roles in the process: keep-
ing the ‘‘database’’ populated with relevant problems
and solutions for common recurring problems, and
providing qualified, valid bug reports to the vendor’s
engineering staff.

Clearly, the amount of human effort involved in
Figure 1 makes it a very labor-intensive and error-
prone process. To make things worse, the ‘‘database’’
in Figure 1 may be simply mental notes, so the system
administrator may be the only person who can drive
problem resolution. Even with a more formalized pro-
cess, the quality of the response is very dependent on
the ability of the person using the database, whatever
its implementation.

Figure 2 shows the process for automated sup-
port. A software client manages the process for the
end user. When the client detects that a problem is
happening, as described later, it searches a local
database for a match to the symptoms of the problem.
If a match is found, the database contains executable
code that the client runs in order to resolve the prob-
lem. Since the database is functionally equivalent to
the database in Figure 1, this solves as many as 80%
of the problems encountered by the user. For the
remaining 20% or so, the client forwards a detailed
description of the circumstances surrounding the prob-
lem to the system administrator, who is made aware of
the problem early on. At that point, the administrator
may choose to solve the problem or may instead want
to escalate it to the vendor. In either case, the informa-
tion from the client can be used to diagnose, repro-
duce, and solve the problem. When a solution is
found, either the system administrator or the vendor
codes and tests a solution for the problem and adds it
to the master database. This master database is used to
update the local database, which the client then uses to
resolve the problem. The 5% or so of problems that
cannot be resolved by the system administrator or ven-
dor ’s customer support group are escalated to the

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 169

Relieving the Burden of System Administration through Support Automation Miller & Donnini

vendor ’s engineering staff. The system administrator
and vendor’s support group continue to play the same
two critical roles as in Figure 1: keeping the master
database populated with relevant problems and solu-
tions for common recurring problems, and providing
qualified, valid bug reports to the vendor’s engineer-
ing staff.

(QG XVHU

6\VWHP

DGPLQLVWUDWRU

9HQGRU

VXSSRUW
�� 3UREOHP

GHWHFWLRQ

�� ��� 3UREOHP

UHVROXWLRQ

/RFDO VROXWLRQ

GDWDEDVH

�� (VFDODWLRQ �� (VFDODWLRQ

�� 3UREOHP

UHSURGXFWLRQ

��� ��� ��

&OLHQW

�� 4XHU\

����� 6ROXWLRQ

0DVWHU VROXWLRQ

GDWDEDVH

���� 1HZ

SUREOHP

VROXWLRQV

��� 'DWDEDVH

XSGDWH

9HQGRU

HQJLQHHULQJ

��� (VFDODWLRQ

Figure 2: Automated support.

It is worth pointing out that some problems can-
not be detected, and some solutions cannot be imple-
mented, by the system outlined in Figure 2. The client
cannot automatically detect problems that completely
disable the system, such as a faulty power supply,
since the system cannot run the client. The client can-
not automatically implement a solution that requires
physical modification of the system, such as replacing
memory. Likewise, the client cannot automatically
detect problems that are not amenable to software
detection, such as poor quality in printer output.
Finally, the client cannot automatically resolve prob-
lems that are caused by a misunderstanding on an end
user ’s part, such as inability to set the margins in a
word processor. However, two powerful techniques
can be used to overcome some of these limitations.
The first is the use of communications between clients
on multiple machines. Even if a problem cannot be
detected directly on the machine where it occurs, its
external effects may be readily identified on other
machines in the network. The second is the use of an
interactive dialog with the user of the machine. Even
when the client cannot test or modify certain aspects
of its environment, it may be able to instruct the user
to do so on its behalf. In the end, even if the client
cannot completely diagnose or resolve a problem, the

information it gathers in doing so will be immensely
helpful to the system administrator ultimately respon-
sible for the problem resolution. Our analysis,
described later, of the most frequently occurring prob-
lems in the Microsoft Knowledge Base, [Mic00], indi-
cate that software configuration issues cause the vast
majority of these problems. This means that the kinds
of problems the client cannot address make up a rela-
tively unimportant fraction of those that actually hap-
pen. Anecdotal evidence also seems to support this
conclusion.

Two important features of automated support are
evident in Figure 2. The first is that up to 80% of the
problems that occur on the end user system are
resolved quickly and accurately, without any human
intervention. The user may not even be aware that the
problem existed in the first place. The second is that
the tasks of the system administrator are driven by the
appearance of new problems, not by the appearance of
new users. This means that the part of Figure 2 that
needs to scale up the most to handle more end users is
the update of the local database from the master
database. An increase in the number of users does not
require a proportional increase in the system adminis-
tration group, so large numbers of users can be sup-
ported without a huge staff.

There are significant challenges to automating
support. By definition, the task is a large collection of
special cases, but software tends to work best with
small sets of algorithms applied to large numbers of
uniform tasks. In addition, the applications that are
being supported cannot implement the support them-
selves, since they are presumably malfunctioning.

170 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Miller & Donnini Relieving the Burden of System Administration through Support Automation

Since nearly any aspect of system operation can be
part of the problem, and part of the solution, the auto-
mated support tool must be as independent as possible
from the system and its applications. At the same
time, it must be aware of most of the details of the sys-
tem operation.

1HWZRUN

6FULS

GDWDEDVH

3URFHGXUHV

([HFXWLRQ

VFKHGXOHU

5HPRWH

LQWHUIDFH
3ULPLWLYHV

(YHQW

GHWHFWLRQ

8VHU

LQWHUIDFH

3HUVLVWHQW

VWDWH

Figure 3: Client Architecture.

These factors make the job of automating sup-
port difficult, but not impossible. Database techniques
can be used to manage the large number of special
cases. Both the diagnosis of problems (‘‘what happens
when you run . . .?’’) and their resolution (‘‘now
change the setting . . .’’) are essentially software tasks
that can be automated. Combining these two consider-
ations, the implementation of automated support
works well with a database containing executable code
for the diagnosis and resolution of problems. The size
of the database is strongly affected by the ‘‘80-20
rule’’: 80% of end user issues that arise can be solved
using only 20% of the entire universe of solutions.
(Note that this is a little different from the 80% and
20% mentioned above, which referred to the fact that
80% of user issues can be resolved using a database.)
The 80-20 rule is well known in support circles
[Che99, Che99a, Gia99, Lan00, Ste99, Sum98]. The
implication is that a relatively small database can be
extremely effective in resolving user issues. We now
describe the use of such a database in an automated
support system provided by HandsFree Networks.

System Architecture

The heart of the system is the client that runs on
each end user machine in the facility. Figure 3 shows
an overview of the client. The database contains a col-
lection of scrips,2 each of which contains executable
code to diagnose and resolve a single problem. A scrip
consists of four major parts: initialization, configura-
tion, symptom, and solution. These major parts are
described in more detail later in this paper.

2The term ‘‘scrip’’ is borrowed from the medical profes-
sion, where it is the working jargon for a prescription. Like
these database entries, pharmaceuticals are used both for di-
agnosing and resolving problems. There is also a connec-
tion to the word ‘‘script.’’

Event detection drives the application of scrips to
problems based on system level events such as win-
dow creation, user input, processor faults, process cre-
ation and termination, device notifications, and timer
expiration. The event detection module efficiently
determines which, if any, scrips should be run as a
result of a sequence of system level events. It is
designed to very quickly dismiss events that do not
trigger a scrip. Since the resulting conceptual model of
a scrip is an interrupt service routine rather than a
polled service, a scrip only uses system resources
when a problem is detected, thereby minimizing its
impact on the system.

The execution scheduler is responsible for
dynamically loading and executing the code for a scrip
on an as-needed basis. It is in charge of managing the
synchronization of scrips that are running in multiple
threads, as well as passing information from detected
events to the scrips. The database also contains proce-
dures that are dynamically loaded when they are
called from a scrip; the execution scheduler manages
the loading and execution of these procedures, as well
as the passing of parameters into and out of the proce-
dures.

Primitives are a library of pre-defined routines
that provide a convenient (and, where possible, system
independent) interface to operating system functions.
They also provide an interface to common utilities
such as memory allocation and string manipulation.
Scrips and procedures in the database use primitives to
accomplish most of their work. From the perspective
of a scrip, the interface to a procedure is the same as
the interface to a primitive, so procedures in the
database serve as a convenient and flexible way to
extend the primitives.

Scrips use the persistent state mechanism to keep
information that must persist across multiple invoca-
tions of the scrip and machine restarts, as well as
information that must be accessed by more than one
scrip. Variables in persistent state have a namespace
that limits their scope, so a scrip author can freely

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 171

Relieving the Burden of System Administration through Support Automation Miller & Donnini

define and use a persistent state variable without con-
cern for interfering with the variables in other scrips.

The remote interface allows scrips to run code
with equal ease on any machine in the network,
including the machine on which the scrip is currently
running. This is accomplished by making every call to
a primitive specify the machine where it should run.
An example of this is described in more detail later in
this paper.

0DVWHU VFULS

GDWDEDVH

$GPLQLVWUDWLRQ

PDFKLQH
,QWHUQHW

(QG XVHU

PDFKLQH

/RFDO VFULS

GDWDEDVH

&RQQHFWLYLW\

VFULS GDWDEDVH

Figure 4: Scrip databases.

A key feature of the client is its portability to
multiple environments. It has been designed from its
inception to have well-defined system dependent and
system independent modules with consistent inter-
faces. One of the authors has architected three major
portable software systems in the past (described in
[Vir97, Ter00, CAS87]), and has brought relevant
experience to bear on this system as well. The current
version of the client runs on many implementations of
the Win32 API (Windows 95, Windows 98, Windows
NT 4, Windows 2000, and Windows Me), and a Linux
version is presently in development.

Much of the value of the system comes from the
fact that the scrip database is updated on a regular
basis, since end user issues change regularly as new
products are introduced and new problems are discov-
ered. As a matter of fact, one of the greatest benefits
of implementing the client using a database architec-
ture is the flexibility in providing this update. For
example, the scrip database can be implemented as a
central database, or a central database with local
caching, or a distributed database, or a redundant
database, or any combination of those options. In this
application, a problem that affects network connectiv-
ity may isolate the client from the network, so a stan-
dalone local database is desirable. A simplified repre-
sentation of the default product configuration is shown
in Figure 4. A centralized master scrip database

contains all available scrips. At the system administra-
tor ’s facility, a local scrip database stores the subset of
the master scrip database that is relevant to the local
hardware and software configuration. At a regular
interval (about once a week), the client on one of the
administration machines initiates an incremental
update of the local database to retrieve any new or
modified scrips. All the machines at the facility
access the local scrip database for the latest versions
of all scrips. In addition, they also have a small
database of scrips to solve connectivity that is repli-
cated on every machine. If a machine cannot access
the local scrip database due to a connectivity issue,
this database helps to solve that problem first. Note
that both the master scrip database and local scrip
database can be replicated for improvements in relia-
bility and performance.

The implementation of security in the system is
of paramount importance. Since the primary function
of the software is to transmit and run executable code,
it would be an ideal virus infection vector. To prevent
this sort of abuse, all network access goes through the
remote interface and uses the HTTP protocol. The
remote interface implements SSL as described in
[Fre96]. For maximum security, it can be configured
to require both client and server authentication. This
encryption protects system integrity by preventing
malicious attacks on the code executed by a client, and
also protects data security by preventing passive
observation of the data communicated between two
clients while executing a primitive remotely. In addi-
tion, all scrips are digitally signed, and the engine can
be configured to only run scrips from a list of trusted
providers. Even without strong (or any) encryption,
the digital signatures prevent the execution of mali-
cious code by a client, since the attacker can forge a
scrip but cannot forge its signature. This protection
works for worldwide deployment of the database,

172 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Miller & Donnini Relieving the Burden of System Administration through Support Automation

since export restrictions on strong security only apply
to data encryption, not to digital signatures.

Interestingly enough, the connotation of a ‘‘cer-
tificate authority’’ for the SSL security in the client is
somewhat different from the normal one. In secure e-
commerce transactions, a certificate authority is sim-
ply declaring that the identity of the entity being certi-
fied is actually correct. A certificate authority for
scrips, on the other hand, is declaring that the entity
being certified is one that can be trusted to produce
reasonably stable and desirable scrips. Presumably, the
certificate authority provides this service by verifying
that the entity has reasonable QA procedures in place,
doing periodic audits of the software production facil-
ity, and doing random independent code reviews and
testing of the scrips themselves. This is quite a bit
more complicated than simply verifying identity, but
is worth correspondingly more as a value added ser-
vice. HandsFree Networks plans to provide this ser-
vice as part of its product offering, but also expects
that third party providers will provide a similar ser-
vice.

Problem Resolution Process

Referring to Figure 2, the problem resolution
process starts when the event detection mechanism
recognizes a certain sequence of system level events
that corresponds to an entry in the scrip database. It
puts together relevant information about the system
level events into an ‘‘event’’ that is passed to the exe-
cution scheduler, along with an identifier indicating
which scrip is being triggered.

The execution scheduler decides when the trig-
gered scrip should be run and loads the scrip symptom
from the database. It runs the code for the symptom,
which does any kind of verification needed beyond the
trigger to ensure that the problem is indeed present. If
the symptom indicates that the problem is present, the
execution scheduler loads the scrip solution from the
database and runs the code for it.

When a problem cannot be resolved locally, an
escalation process prevents the situation where an end
user is left without a solution. Escalation can be initi-
ated by the failure of a solution, which is detected
when a scrip continues to diagnose a problem even
after its resolution has been applied. Escalation can
also be initiated by a ‘‘diagnostic’’ scrip, which
detects a general error condition that does not have a
specific solution supplied by another scrip. A set of
about twenty diagnostic scrips is used to detect errors
that are not resolved by the rest of the scrips. The first
step of the escalation process is to initiate an update of
the local database from the master database. In the
most common case, the problem is a relatively new
one that has been discovered and resolved since the
last periodic update of the local database. For exam-
ple, it might be a compatibility problem caused by
installing a new version of a popular program. In this

case, the new scrip to resolve the problem is retrieved
and applied. If, on the other hand, the problem is being
encountered for the first time, the second step of the
escalation process is to gather relevant information
about the state of the system and the error and forward
it electronically to the system administrator. This is
typically much more complete information than the
system administrator usually gets from end users. The
administrator can then either reproduce the problem
locally to determine its resolution, escalate the prob-
lem to the vendor, or simply contact the user directly
and resolve the problem through more traditional
means. If the user is not local, the system administra-
tor can initiate a ‘‘remote service’’ session, allowing
the use of the remote interface module of the client to
look at specific system state and apply problem reso-
lutions. After understanding and resolving the prob-
lem, either the system administrator or the vendor’s
customer support staff initiates a process to add a new
scrip to the master database. If the problem cannot be
resolved and is escalated to the vendor’s engineering
staff, it follows the same support process that it would
for non-automated support. Once a resolution is avail-
able, however, the system administrator or vendor
adds a new scrip with the resolution to the master
database. In any case, once the new scrip is in the
database, the same problem is always resolved on all
end user machines without further manual interven-
tion.

The software also provides a valuable service for
administrators who are managing multiple end user
sites by providing notification of all detection and res-
olution activities. This can be used simply for account-
ing purposes, so that the administrator can easily pro-
vide activity reports to management demonstrating the
ongoing value of the system administration staff. It
can also be used for isolating trends that indicate a
particularly troublesome hardware or software compo-
nent at a particular site, leading to a replacement of
that component and a resulting improvement in stabil-
ity. Finally, it can be used to provide greater visibility
to the system administrator. For example, the decision
on when to upgrade an application to a new version is
typically made on a fairly arbitrary basis today. How-
ever, with this notification, the administrator is aware
of the number of end user problems occurring that
could be solved by such an upgrade. If the number of
such problems is small, the upgrade can be postponed,
but if it is large, the upgrade might be accelerated.
Since most users rarely, if ever, report this kind of
information, it is extremely valuable to system admin-
istrators. Detailed reporting of problem detection and
resolution activities also gives system administrators
leverage when dealing with vendors’ customer support
groups, since it minimizes the frustrating ‘‘finger-
pointing’’ that typically goes on when problems occur
in the multi-vendor computing environments that
make up nearly all facilities.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 173

Relieving the Burden of System Administration through Support Automation Miller & Donnini

This reporting mechanism is very configurable.
It can be set up on a scrip-by-scrip basis to report
immediately or collect the reports into a single log that
is sent on a periodic basis. An email interface provides
the simplest, most convenient means of reporting. For
system administrators who are maintaining a larger
facility, a web-based interface can log reports by
adding entries to a database. The administrator can
then use a browser interface to peruse the database,
spot trends, and manage user issues remotely.

Scrips

Each scrip consists of four parts: initialization,
configuration, symptom, and solution. The symptom
and solution parts have already been described; both
parts are executable code that is loaded dynamically
and run by the execution scheduler. The code for the
symptom does a conclusive test to see whether the
conditions for the problem actually exist. This is
required since the events triggering a scrip may not
completely define the situation for the problem. For
example, the trigger may be an error dialog, but it may
be necessary to look at some configuration data (in
files or the registry) to determine whether the known
problem is actually happening. The code for the solu-
tion is the actual implementation of the solution. It can
be extremely simple, for example, a solution that
solely involves updating some configuration informa-
tion. It can also be quite complex, for example, a solu-
tion that has to try several different resolutions to see
if any of them work, and must restart the system (and
coordinate this process with the end user) after each
try.

Since the execution scheduler needs to set up the
interface between scrips and primitives (and also
between scrips and procedures) at runtime, the proce-
dure interface across the boundaries of scrips must go
through a thin interface layer that ‘‘interprets’’ the
calls and returns. This has an impact on the perfor-
mance of scrip execution; however, scrip execution
happens at a low frequency and is not time critical, so
the overall impact is negligible. On the other hand,
one large benefit of this architecture is that symptoms
and solutions for scrips can be implemented in any
language for which it is possible to implement this
thin interface layer. Current implementations of scrips
use the ‘‘C’’ programming language, but this is mostly
a matter of convenience, and interfaces for popular
programming languages such as Perl (see [Wal00]) are
being developed.

The initialization part of a scrip has several func-
tions. It registers the scrip with the execution sched-
uler, specifying characteristics about the scrip such as
other scrips with which it must be mutually exclusive
(cannot run at the same time), and other scrips upon
which it depends. Most scrips can work with a default
configuration, but more complex ones can have spe-
cialized requirements. Initialization of a scrip also
defines the persistent state variables used by the scrip.

Finally, the initialization defines the conditions under
which the scrip is triggered. This is done by specifying
the conditions on a sequence of a few fundamental
events. For example, a scrip can register itself to be
triggered when a certain executable is run with a spe-
cific command line, and then a dialog box is created
by the resulting process with a given title.

The timing and order of scrip initialization is left
unspecified. For a client that needs to implement com-
pletely dynamic configuration, the scrip initializations
can be run sequentially as the client is starting. For a
more conventional client (such as one used in desktop
support), the scrip initializations can be run as a pre-
processing step whenever the client is installed or the
scrip database is updated. The results of the initializa-
tion are saved in runtime tables that are read during
client startup to provide fast initialization.

The configuration part of a scrip allows the scrip
author to create user-defined options that control the
function of the scrip. This section specifies classes of
input fields, such as radio buttons, check boxes, and
text strings. Each input field has a default value and a
persistent state variable associated with it. The user
interface module presents the configuration informa-
tion as XML, in a form that can be displayed and
modified by a browser. Once this setup is complete,
the client uses it to initialize the referenced persistent
state variables. When the scrip runs, it uses the values
of those variables to control its operation. In this way,
the scrip author has great flexibility in allowing cus-
tomization of the operation of the system. This facility
also allows customization of ‘‘overall’’ features of the
system, since the persistent state variables that a scrip
configuration modifies are not limited in scope to vari-
ables that affect a single scrip.

There are actually four general types of scrips,
although these types are all implemented the same
way, so the categorization is a conceptual one rather
than an operational one. The scrips that have been
emphasized so far are those that solve a specific
known problem with a well-defined and tested solu-
tion. Another type of scrip is one that detects and
resolves problems that arise as a result of end user
operations, such as installing a new piece of hardware
or software. Still another type of scrip is the ‘‘diagnos-
tic’’ scrip previously mentioned that detects a general
error condition that does not have a specific solution
supplied by another scrip. The fourth type of scrip is
the ‘‘preventive’’ one that performs routine adminis-
tration and maintenance functions that can be auto-
mated. Clearly, this last type of scrip is immediately
useful to a system administrator, even in a system that
is functioning perfectly.

To simplify the management of scrips, and to
allow them to be conceptually classified, a tree-struc-
tured descriptive hierarchy is maintained. This is simi-
lar in concept to the hierarchy that is maintained for
information accessed by a search engine such as

174 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Miller & Donnini Relieving the Burden of System Administration through Support Automation

Yahoo! (see [Yah00]). The hierarchy is expanded as
needed when new scrips are developed, and a single
scrip can be in more than one place in the hierarchy.
The hierarchy is represented in the database contain-
ing the scrips, and the user interface provides a facility
for navigating the hierarchy to get to the configuration
of individual scrips within it. Groups of scrips within
a single branch of the hierarchy can be managed as a
unit. For example, there are a group of scrips that
implement basic functionality within the system, such
as sending periodic logs and updating the client soft-
ware to newer versions. These scrips are required for
proper system operation, and are all part of the group
of ‘‘system’’ scrips within the hierarchy. Implementing
much of the system functionality using scrips makes it
convenient to update the basic operating functions of
the system without requiring software upgrades in the
core software, resulting in a more reliable and flexible
system.

One of the key design goals in the architecture of
the scrip database is to allow authoring of scrips at a
multitude of facilities without any explicit coordina-
tion. In this way, local expertise with certain types of
problems can be captured and disseminated without
having a central authority as a bottleneck. The name-
space for persistent state, along with the self-organiz-
ing features of the scrip initialization and the descrip-
tive hierarchy, combine with the modular nature of the
scrips themselves to make the promise of this widely
distributed development a reality.

Example

A concrete example of a scrip will help to under-
stand many facets of the system. This example scrip
solves a problem that is taken from the direct experi-
ence of one of the authors, a problem that recurred on
a regular basis and was extremely annoying.

The underlying cause of the problem lies in the
shortcomings of the Microsoft Windows print server
architecture. It would not arise in a purely Unix envi-
ronment, but most system administrators recognize the
necessity of managing systems with the popular Win-
dows operating system, and certainly concur with the
desire to quickly and efficiently handle the many prob-
lems it introduces.

This particular problem manifests itself in this
way: the facility has a Hewlett Packard LaserJet 4
printer, driven by one of the file server systems run-
ning Windows. Whenever a new system is installed,
the printer is added as a network printer. Usually,
everything works correctly, but occasionally someone
prints a document and gets a dialog reporting that the
document is ‘‘too complex’’ to print. However, if the
document is transferred to another machine and
printed from there, it prints with no problems.

This problem is acutely frustrating for the end
user, because there is no apparent difference in the two
systems (same printer driver, same document, same

operating system), yet the operation works correctly
on one system but not on the other. In addition, the
workaround of printing the document from another
system is extremely inconvenient, because it disrupts
the workflow of two people: the person trying to print
the document and the person whose system must be
used in order to print it. As a result, the person with
the problem document usually ends up trying to
‘‘tweak’’ it so that it isn’t ‘‘too complex’’ to print,
resulting in wasted time and an inferior document.

The cause of this problem is the fact that the
printer drivers for the HP LaserJet 4 are installed with
a default configuration of 2 MB of memory in the
printer, even if the printer has more memory. This con-
figuration must be manually changed to reflect the
actual amount of memory in the printer, or else the
printer driver will not be able to format the document
to print because of this perceived lack of memory. In
addition, the printer driver has a feature called ‘‘page
protection’’ that must be turned on in order for the
driver to accurately estimate the memory that is
needed in order to print a particular document. Unfor-
tunately, these two configuration changes must be
made every time the printer driver is installed. Since
end users may be installing these drivers themselves, it
is difficult to set up a process that insures the applica-
tion of these configuration changes. The situation is
further complicated by the fact that a long period of
time may elapse between the installation of the driver
and the appearance of the problem. Justifiably, the
reaction of the end user is that everything has worked
perfectly for a long period of time, so there must not
be any problem with the printer setup.

This problem is ideal for solution with a simple
scrip. Doing so provides a systematic way to represent
‘‘institutional’’ knowledge that is typically maintained
informally by the system administration staff. The
problem has a relatively simple method for recogniz-
ing it, a fairly straightforward means to test for its
existence, and a clear procedure for solving it. It is
interesting to note that this problem, like many that are
addressed by system administrators, is not technically
a ‘‘bug’’, in the sense that the software is working as
designed. It is really more of a usability issue.

The scrip for this example will be presented
using ‘‘C’’ as a programming language. The details to
translate it to any particular programming language
are fairly mechanical. The scrip initialization is shown
in Listing 1. The initialization starts by registering the
scrip with the execution scheduler, giving it a title and
the default execution mode, which indicates that only
one instance of the scrip should be run at a time. Then
it sets up a trigger with the event detection mecha-
nism, indicating that the scrip should be run whenever
a dialog is created with the title ‘‘HP LaserJet 4’’ and
the dialog text ‘‘Document too complex’’. Note that
the first parameter for each primitive indicates the
machine where the primitive should be run. In this
case (and in all initialization), the primitives are run

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 175

Relieving the Burden of System Administration through Support Automation Miller & Donnini

on the current machine, which is indicated by the con-
stant CUR.

extern void Init(void)
{

/* Register the scrip with the execution scheduler. Use the
default setup: only one instance of this scrip at a time. */

RegisterScrip(CUR,
"Update HP LaserJet 4 setup to correct Document Too Complex",
STANDALONE);

/* Set up the trigger for the scrip. */
SetDialogTrigger(CUR,

NULL, /* owning process */
"HP LaserJet 4", /* title */
"Document too complex"); /* text */

}

Listing 1: Code for script initialization.

extern BOOLEAN Symptom(TRIGINFO trig)
{

char *setupVal;
BOOLEAN exists, compare;

/* Check to see if the driver is installed, and get setup. */
GetRegistryBinary(CUR, &setupVal, &exists,

"HKEY_LOCAL_MACHINE\\System\\CurrentControlSet\\Control\\"
"Print\\Printers\\HP LaserJet 4\\Default DevMode");

/* If this driver isn’t installed, the scrip doesn’t apply. */
if (!exists) return FALSE;
/* See if it is still the default setup */
CheckMemoryEqual(CUR, &compare, setupVal, DEFAULTVAL, 310);
/* If the comparison is equal, the scrip applies. */
return compare;

}

Listing 2: Symptom code.

The symptom for this scrip is shown in Listing 2.
The symptom gets the value of a specific registry key
that contains the settings for the printer driver. If the
registry key does not exist, then the scrip does not
apply. It checks to see if the settings are the default
ones for the driver, which are represented by a specific
310-byte binary value. If so, then this scrip applies,
because it is designed to solve the problem where the
default value has not been updated to match the actual
properties of the printer. Note that once again, the
primitives are all run on the current system. Also note
that the parameter to the scrip is a data structure
describing information about the circumstances trig-
gering the scrip, but in this case that information is not
needed to determine the applicability of the scrip.

The solution for this scrip is shown in Listing 3.
The strategy for the solution is to assume that the
printer driver settings are correct on the machine
where the printer is installed, and copy the settings
from that machine. It uses a registry key to get the
name of the remote printer, then extracts the name of
the machine. It converts the name into the internal rep-
resentation of a machine identifier, then gets the

registry key for the printer settings. This is an example
of executing a primitive on a remote machine. The
same primitive is used to get the printer settings on the
remote machine as was used to get them on the current
machine in the symptom, but the first parameter indi-
cates the remote machine rather than the current
machine. Finally, the settings found on the remote
machine are used to update the settings on the current
machine. If at any point, the solution cannot proceed,
it returns FALSE, indicating that it has failed. This
failure will initiate the escalation process previously
described. If the solution succeeds, then a successful
problem solution will be logged as described previ-
ously.

Database Feasibility

One important question about the system that
naturally arises concerns the feasibility of creating and
maintaining the database of scrips. We have done sig-
nificant research to address this question. As men-
tioned previously, the 80-20 rule indicates that the
database size need only be about 20% of the total uni-
verse of problems being addressed. Data presented in
[All99, Etc98, IHS00, ITS99, and Rea99] lead us to
expect that 80% of all end user issues will be resolved

176 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Miller & Donnini Relieving the Burden of System Administration through Support Automation

by this database. We have extensively characterized
the Microsoft Knowledge Base [Mic00], focusing on
the major products including operating systems, office
productivity applications, groupware, and Internet
products. Using tools such as FAQs to identify the
most frequently encountered problems, we found that
a database with 2,500 to 3,000 entries should provide
resolution of a large percentage of the recurring prob-
lems encountered by end users in a Microsoft Win-
dows environment.

extern BOOLEAN Solution(void)
{

char *port;
char *machineName;
char *setupVal;
MACHINE mID;
BOOLEAN exists;
/* Get the machine where the printer is installed. */
GetRegistryString(CUR, &port, &exists,

"HKEY_LOCAL_MACHINE\\System\\CurrentControlSet\\Control\\"
"Print\\Printers\\HP LaserJet 4\\Port");

if (!exists) return FALSE;
if ((port[0] != ’\\’) || (port[1] != ’\\’)) return FALSE;
GetSubstring(CUR, &machineName, port, 2, ’\\’);
GetMachineID(CUR, mID, machineName);
/* Get the printer setup from that machine. */
GetRegistryBinary(mID, &setupVal, &exists,

"HKEY_LOCAL_MACHINE\\System\\CurrentControlSet\\Control\\"
"Print\\Printers\\HP LaserJet 4\\Default DevMode");

if (!exists) return FALSE;
/* Use that printer setup on this machine. */
SetRegistryBinary(CUR, &setupVal,

"HKEY_LOCAL_MACHINE\\System\\CurrentControlSet\\Control\\"
"Print\\Printers\\HP LaserJet 4\\Default DevMode");

/* Notify end user of required action. */
NotifyUser(CUR,

"Your printer setup has been updated to correct the "
"’Document too complex’ problem. Please try printing "
"the document again.");

return TRUE;
}

Listing 3: Solution code.

After the database is built, it needs to be main-
tained on an ongoing basis. Figure 5 shows the num-
ber of new entries as a function of time for the cate-
gory ‘‘Windows 95’’ in [Mic00]. Except for an
8-month window around the operating system release,
it shows about 25 new entries every month. Note that
this is a pessimistic estimate, since not every entry in
[Mic00] represents a problem, and even the ‘‘prob-
lem’’ entries do not all represent solutions that require
automation. By way of comparison, Figure 6 shows
the number of new entries as a function of time for the
category ‘‘Windows networks’’ in [Mic00]. This graph
has no particular peak around a product release, but
shows about 10 new entries every month.

It seems reasonable to say that even an extremely
pessimistic assumption for new problem incidence

will be less than 80 problems per month. Our initial
work has shown that coding and testing a scrip takes
less than four work days, so fewer than twenty full
time scrip programmers can maintain the database.

In a way, virus scanners serve as an ‘‘existence
proof ’’ for the feasibility of the scrip database. The
effort involved in obtaining, analyzing, and producing
a solution for a virus is not too different from the
effort involved in understanding a problem and creat-
ing a scrip for it. Current virus scanners have
databases of about 45,000 viruses, so the effort
involved in creating and maintaining the scrip
database should be relatively small by comparison.

Field Experience

An initial version of the software described here
is currently deployed and operational at a number of
customer sites. It has been running at one site, a public
relations firm with about 15 nodes, since February
2000. Starting in March 2000, major functionality
enhancements were released to that site on a weekly
basis, and in April 2000 installations began at addi-
tional customer sites. As of the time of this writing
(September 2000), the software is running at ten cus-
tomer sites.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 177

Relieving the Burden of System Administration through Support Automation Miller & Donnini

The customer feedback has been very positive.
None of the customers have reported any problems or
performance degradation with the software, and the
software has proven its value in identifying major
issues at every single one of the sites. The system
administrator at one site was pleased to report that the
logs have provided information on problems that
would otherwise go unreported. At another site, the
logs indicated a serious problem that was preventing
the virus scanner from running, which had gone unde-
tected for months!

:LQ �� .QRZOHGJH %DVH

�

��

���

���

���

���

���

���

���

0
D
\
��
�

$
X
J
��
�

1
R
Y
��
�

)
H
E
��
�

0
D
\
��
�

$
X
J
��
�

1
R
Y
��
�

)
H
E
��
�

0
D
\
��
�

$
X
J
��
�

1
R
Y
��
�

)
H
E
��
�

0
D
\
��
�

$
X
J
��
�

1
R
Y
��
�

)
H
E
��
�

0
D
\
��
�

$
X
J
��
�

'DWH

1
H
Z
(
Q
WU
LH
V

Figure 5: New Problem Incidence in Windows 95.

:LQ QHWZRUN .QRZOHGJH %DVH

�

�

��

��

��

��

0
D
\
��
�

6
H
S
��
�

-
D
Q
��
�

0
D
\
��
�

6
H
S
��
�

-
D
Q
��
�

0
D
\
��
�

6
H
S
��
�

-
D
Q
��
�

0
D
\
��
�

6
H
S
��
�

-
D
Q
��
�

0
D
\
��
�

6
H
S
��
�

-
D
Q
��
�

0
D
\
��
�

6
H
S
��
�

'DWH

1
H
Z

H
Q
WU
LH
V

Figure 6: New Problem Incidence in Windows Networking.

The feedback from customer sites has also
proved very valuable to our development team. The
client checks every error return and uses its own
reporting mechanism to log unexpected results. This
process has unearthed several non-fatal, but

potentially serious, bugs that were not found during
testing. In early versions of the client, the problem res-
olution capabilities have been limited, so every event
was escalated through the reporting mechanism. These
reports have guided us in our choice of scrips to
implement for the initial database, so we are confident
that we are populating the database with the most use-
ful scrips. One reassuring ‘‘reality check’’ is the obser-
vation that the problems that occur at all ten customer
sites are remarkably similar, even though the busi-
nesses themselves are considerably different.

Open Source Development

The scrip database lends itself very naturally to
an open source development methodology. The initial
commitment to the development of a scrip is small

178 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Miller & Donnini Relieving the Burden of System Administration through Support Automation

since it only takes a few days, and the payback is
immediate since it solves a persistent and annoying
problem in a permanent way. Scrips are likely to be
useful at more than one site, so the code that goes
back into the open source pool will be immediately
beneficial to the user community at large. This
approach also helps to populate the database with the
most important scrips first, since the motivation will
be highest to solve the most severe problems. The
open source methodology also adds a measure of
security, since open review of the scrips will deter any
malicious activity. A more subtle benefit arises from
the fact that scrip development has several distinct
phases, including problem resolution, solution defini-
tion, coding, and testing. These phases require differ-
ent skills and can be completed most efficiently in a
cooperative group environment. For all these reasons,
we are using an open source methodology for scrip
development.

Future Directions

Although this system is primarily focused on
reducing system administration headaches by stream-
lining end user support, it lends itself naturally to sev-
eral other uses that can also make an administrator’s
life easier. As previously described, we have written
scrips both for bugs and for usability issues that are
frequently encountered by end users and are confusing
enough to generate calls for help. In addition, we have
written scrips to automate common administration and
maintenance functions that help to keep a properly
functioning system running smoothly. We also see
great utility in using scrips to distribute security
patches, since the conditions for their use and the pro-
cedures for their application are often complex enough
to warrant code for their implementation.

The technology is flexible and useful enough to
apply to the next generation of ‘‘pervasive’’ comput-
ing devices. As the load on system administrators
expands to include support of mobile and other
embedded computing platforms, the need for auto-
mated support is only going to become more critical.
The lightweight, standards-based client is ideally
suited for these environments as well as the applica-
tions that support them.

Summary

The HandsFree Networks support automation
tool described in this paper relieves system adminis-
trators of the burden of dealing with mundane issues
by automating the resolution of many common recur-
ring problems. It uses a standards-based extensible
architecture to provide a database of solutions that is
applied without manual intervention. An open source
development methodology for the database and a
built-in incremental database update ensures that the
solutions will keep up with the introduction of new
products and the corresponding appearance of new
issues.

Author Information

Allan Miller received a B.S. in Electrical Engi-
neering from Purdue University in 1979 and an M.S.
in Computer Science from Stanford University in
1982. While on his way to a Ph.D. in Computer Sci-
ence from Stanford, he left to start CASE Technology
in 1983, to create and sell electronic CAD software.
After CASE was bought by Teradyne in 1987, he left
in 1993 to start Virtual Music Entertainment, provid-
ing a unique technology that allows non-musicians to
enjoy playing music (the Virtual Music software is
featured on Aerosmith’s 1997 ‘‘Nine Lives’’ album).
Allan likes to bicycle and play the piano, and he plays
drums in the ‘‘well-known’’ Palo Alto band, The Wiz-
ards. He is active in town politics, serving on the Zon-
ing Board of his Hollis, New Hampshire home town.

Alex Donnini has more than 20 years of experi-
ence in the information technology industry. During
the past ten years he has acquired direct, extensive
knowledge of the information technology challenges
faced by small businesses and of their technical sup-
port needs. This led him, together with Allan Miller, to
found HandsFree Networks. Their goal is simple:
deliver the first automated support system initially tar-
geting workgroup and departmental information sys-
tems. Throughout his career, Alex has specialized in
getting products or companies off the ground. Hands-
Free Networks is his third start-up, the second one that
he has co-founded. He received an Honors’ B.S. in
theoretical statistics from the University of Western
Ontario in 1977, and a Master’s degree in Business
Administration from Harvard University in 1981.

References

[All99] M. Allimadi, ‘‘Companies Deploy Multi-Net-
worked Call Centers to Deliver Efficient Cus-
tomer Service,’’ Call Center, http://www.
callcentermagazine.com/article/CCM20000427S0016 ,
June 1999.

[Bra98] T. Bray, J. Paoli, and C. Sperberg-McQueen,
‘‘Extensible Markup Language (XML) 1.0,’’
http://www.w3.org/TR/1998/REC-xml-19980210 ,
Feb. 1998.

[CAS87] CASE Technology, Inc., The CASE Design
System, marketing literature, 1987.

[Che99] A. Chen, ‘‘Sinking support costs,’’ eWEEK,
http://www.zdnet.com/eweek/stories/gen-
eral/0,11011, 409655,00.html, July 1999.

[Che99a] A. Cheng, ‘‘Resurrected Technology for the
Web: Expert Bites; AI Systems in digestible
chunks,’’ Software911 white paper, register at
http://www.software911.com/form/default.asp, 1999.

[Com97] D. Comer and D. Stevens, Internetworking
with TCP/IP, Volume III: Client-Server Program-
ming and Applications, Windows Sockets Ver-
sion, Prentice-Hall, http://www.cs.purdue.edu/
homes/comer/tcpip3w.cont.html , 1997.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 179

Relieving the Burden of System Administration through Support Automation Miller & Donnini

[CWS99] California Child Welfare Services, 1999
Year in Review, http://www.hwcws.cahwnet.gov/
Bulletins%20General/year_inreview.htm , 1999.

[DeK99] J. DeKeles, ‘‘Terror in the Land of Tech Sup-
port,’’ ZDNet AnchorDesk, http://www.zdnet.
com/anchordesk/story/story_3893.html , Sept. 1999.

[Etc98] J. Etchison, ‘‘Paradigm Schmaradigm,’’ IT Sup-
port News, Viewpoint, http://www.itsupportnews.
com/archives/9807_html/9807view.htm , July 1998.

[Fre96] A. Freier, P. Karlton, and P. Kocher, ‘‘The SSL
Protocol, Version 3.0,’’ Internet Draft Memo, http://
home.netscape.com/eng/ssl3/draft302.txt , Nov.
1996.

[Gia99] G. Gianforte, ‘‘Eight Secrets for Successful E-
Service,’’ Supportindustry.com Newsletter, http://
www.supportindustry.com/newsletter/110299.htm , Nov.
1999.

[Gil00] K. Gilhooly, ‘‘Certifying the help desk,’’ IT
Support News, http://www.itsupportnews.com/
july2000/depts/gn/topstory2.htm , July 2000.

[Hon00] Honeywell, Help Desk Services, http://www.
iac.honeywell.com/services/its/call_mgmt/help_
desk.htm , 2000.

[IHS00] IHS Helpdesk Service, Service Level and
Metric Statistics, http://www.ihshelpdesk.com/ ,
June 2000.

[ITS99] Editorial staff. ‘‘Problem Resolution at Work.’’
IT Support News, http://www.itsupportnews.
com/archives/9906_html/9906probres.htm , June
1999.

[Lan00] M. Lane, ‘‘Why does knowledge management
matter?’’ IT Support News, Viewpoint, http://www.
itsupportnews.com/feb2000/depts/si/sistory1.htm ,
Feb. 2000.

[Loc00] Lockheed Martin Services, Inc., Help Desk
Solutions Center, http://www.lmsi-nw.com/it/
helpdesk.html , 2000.

[Mic00] Microsoft Product Support Services, Microsoft
Knowledge Base, http://search.support.microsoft.
com/kb/ , June 2000.

[NCS98] NCSA HTTPd Development Team, The
Common Gateway Interface, http://hoohoo.ncsa.
uiuc.edu/cgi/ , Jan. 1998.

[Rea99] B. Read, ‘‘Outsourcing a Variety of Support
Functions,’’ Call Center, http://www.callcentermagazine.
com/article/CCM20000503S0007 , July 1999.

[RSA00] RSA Security, Call Handling and Escalation
Process, http://www.rsasecurity.com/support/techsup/
escproc.html , May 2000.

[Sch00] Schlumberger, GeoQuest Customer Support,
http://www.geoquest.com/pub/support/RGS/ Houston ,
2000.

[Sla00] D. Slater, ‘‘Call Center Management,’’ CIO
Magazine, http://www.cio.com/archive/040100_
numbers.html , Apr. 2000.

[Smi97] G. Smith, ‘‘Support for all,’’ ComputerScope,
http://www.techcentral.ie/cgi-bin/SiteWrapper.pl?

template=/magazines/ComputerScope/article_template.
html&target=/magazines/ComputerScope/1997/Mar/
Features-0.html , Mar. 1997.

[Ste99] T. Steinert-Threlkeld, ‘‘Chatterbot: New
answers from customer service,’’ Internet Busi-
ness, http://www.zdnet.com/zdnn/stories/news/0,
4586,2188774,00.html , Jan. 1999.

[Sum98] J. Summa, ‘‘How to Build a Knowledgebase
You Can Use!’’ Customer Support Management,
http://www.customersupportmgmt.com/back/nov-
dec98/know.html , Dec. 1998.

[Sup00] ‘‘E.SURVEY,’’ Supportindustry.com newslet-
ter, http://www.supportindustry.com/newsletter/
032800.htm , Mar. 2000.

[Ter00] Teradyne, Product: VICTORY Boundary-Scan
Software, http://www.teradyne.com/prods/cbt/products/
pVICT/pVICT.html , 2000.

[Tol92] L. Tolan, ‘‘Managing the High Cost of Dis-
tributed Computing,’’ Simon Fraser University
Computing Services, http://www.sfu.ca/˜lionel/
Manage_Cost.html , Dec. 1992.

[Vir97] Virtual Music Entertainment, Inc, Products,
http://www.virtualmusic.com/products/ , 1997.

[Wal00] L. Wall, T. Christiansen, and J. Orwant, Pro-
gramming Perl, 3rd Edition, O’Reilly, http://
www.oreilly.com/catalog/pperl3/ , July 2000.

[Yah00] Yahoo, Yahoo! search engine, http://www.
yahoo.com .

180 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

