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ABSTRACT

When configuring an IP network, changes may need to be made to several devices as part of
one configuration operation. Given an in-band access to the devices where data and control
packets flow on the same network, it becomes imperative to sequence the changes intelligently to
retain connectivity to the devices that need to be reconfigured. In this paper, we present techniques
to sequence configuration operations for IP networks. We describe our experiences with
implementation of the techniques, and experimentally evaluate the usefulness of the proposed
techniques. We demonstrate that automatic sequencing is valuable in IP network configuration.

Introduction

A basic operation performed during network
operations and management is the configuration of the
network. Many configuration and reconfiguration
operations are typically performed from a remote
management station. To maintain consistency, several
devices may need to be updated as part of one config-
uration operation. To complete the configuration
action, the devices to be updated must continue to be
reachable from the management station. Reconfigur-
ing some devices may jeopardize the connectivity to
other devices that need to be configured. Sequencing
is the process of determining the order of updates to
ensure a successful configuration.

In this paper, we present one of the first studies
of automated sequencing in the context of router2

reconfigurations in IP networks. Many deployments
today use an in-band access to the routers for configu-
ration, where the control and data packets flow on the
same network3. In this case, configuration of a router
is done through a telnet to the router. Control (configu-
ration information) and data go over the same physical
and logical network, directed by the same routing
tables. Parameters that an administrator can reconfig-
ure include what we call critical and non-critical
parameters. Changing critical parameters affects how
the router computes and exchanges routing informa-
tion with other routers, and consequently threatens
continued connectivity to the router and other routers.
Examples of critical parameters include routing proto-
col parameters, like the Open Shortest Path First

1Portions of this work were performed while all authors
were at Bell Labs.

2We use the term router to refer to any remotely config-
urable network element.

3A few routers in the network may have an out-of-band
connectivity through the modem or console port of the
router. Some establishments provide an out-of-band access
to all routers in their network.

(OSPF) [10, 12] hello interval, router dead interval,
authentication, and authentication key parameters,
fundamental parameters like IP addresses and subnet
masks, some access list configurations, etc. Non-criti-
cal parameters, on the other hand, do not affect con-
nectivity. Examples include parameters like the OSPF
maximum paths and cost parameters.

One can see that routers can be updated in any
arbitrary order while changing non-critical parameters,
or when an out-of-band access is available to all the
routers. In this case, by out-of-band we mean access
through the console or modem ports of the router.
However, the order in which the updates are commit-
ted (i.e., sequencing) becomes important. Administra-
tors currently try to deduce a sequence manually from
their knowledge of the network topology and their
understanding of protocols. No automated techniques
have been published for sequencing.

In this paper, we study the problem of sequenc-
ing when updating critical parameters, and present
automated methods to compute an order in which to
update the routers. We have implemented the tech-
niques in Java, and conducted experiments that quan-
tify the usefulness of our techniques and the conve-
nience they can provide to the administrator. We
demonstrate that our automated sequencing techniques
speed up network configuration and make it more reli-
able.

The rest of the paper is organized as follows. The
sequencing problem is explored in more detail in the
next section. Our algorithms for sequencing router
configurations are presented thereafter. The imple-
mentation issues we encountered are presented in the
implementation section which is followed by a section
on experiments and results. We then conclude.

Sequencing: The Problem and Assumptions

To illustrate the problem of sequencing more
concretely, consider the network in Figure 1. Let us
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assume that all depicted routers are running the OSPF
routing protocol, and are in the same OSPF Area. (See

NOC

R S

Figure 1: A network of routers and its network operations center (NOC).

NOC
C

Figure 2: Circular dependencies and sequencing.

Appendix 2 for a brief description of OSPF.) Let us
assume that we want to change the OSPF authentica-
tion parameter. The OSPF authentication parameter
should be set consistently for all routers in an OSPF
area to ensure that they exchange routing information.
If during configuration, we update router R before all
routers in the set S, there is a possibility that routers in
set S may become unreachable from the network oper-
ations center (NOC)4. Sequencing ensures that the
routers that remain to be updated will continue to be
reachable. In our example, updating all routers in set S
before router R is a viable strategy.

In our study of sequencing during IP network
configuration, we make certain assumptions. We
assume that the changes are being made to the routers
from a remote centralized network operations center
and that all routers are initially reachable. Further, the
changes to be made are correct; i.e., if the desired
changes are committed to the routers, the routing will
stabilize soon enough, based on the routing protocol
behavior, and to a state as desired by the administrator.
We refer to this as the correctness assumption. The
reachability of routers can be affected by several fac-
tors, some of which are outside the scope of any soft-
ware tool (e.g., power failure at a router). Such issues
are not considered as part of this study of sequencing.
We assume that any unreachability during the configu-
ration operation is only caused due to the configura-
tion changes being made by the administrator.

4We use the terms network operations center and manage-
ment station interchangeably in the paper.

Situations may arise where no sequencing is pos-
sible. Remote configuration of a set of routers could
be theoretically impossible, under some conditions,
mostly stemming from asymmetric routing. Consider,
for example, the situation in Figure 2.

Assume that the routes are set up (e.g., via static
routes) so that all packets can only move clockwise
around the circle C of routers. If a critical update is
made to any router in the circle of routers, one of the
paths (either to the router from the management sta-
tion, or from the router to the management station) is
broken, disabling the ability to reach and configure the
other routers in the circle. Such a routing topology is
unlikely in practice, since most people use routing
protocols that will adapt to network change. However,
this gives some insight into the theoretical limits of
remote in-band configuration and sequencing in gen-
eral. For simplicity, we assume in the following dis-
cussion that the routing in the network is symmetric
(although such a restriction is not really needed for all
our techniques), and elaborate more on such situations
later in a section on asymmetry in routing.

An alternative approach to the problem of
sequencing is to have built-in support in all routers in
the network for scheduling configuration changes.
This means that the software running on the routers
(e.g., the Cisco IOS) must support the scheduling fea-
ture. In this scenario, the required configuration
changes are uploaded to the router and a timer is set
which determines when the changes are executed.
Ongoing work in the area of scheduling and scripting
management information bases [8, 9] can aid in this
problem. However, routers in the marketplace do not
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provide such a feature. Given that in-band remote con-
figuration is becoming increasingly popular for IP net-
works, developing smart automated sequencing tech-
niques is essential.
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(b) Getting the reverse traceroute tree(a) Forward traceroute tree

Figure 3: Forward and reverse traceroute trees.

Context for our Study
This study of sequencing arose in the context of

an IP network configuration tool [5, 13] that was built
at Bell Labs. The tool helps in configuring IP routers,
treating them as a part of the network, rather than con-
sidering them as stand-alone devices. The tool ensures
consistency of configuration and updates several
routers as part of a configuration operation, if neces-
sary. The protocol used to contact the routers for con-
figuration is orthogonal to the issue of sequencing.
Although there are several proposed standards for
management that can be used for configuration [3, 4],
most deployed routers today provide a command-line
interface for configuration. Configuration commands
typically take effect as soon as they are executed.

Our network configuration tool provides a GUI
to the administrator for configuration, and hides all its
interactions with the network and the routers from the
administrator. To interact with the routers for configu-
ration, the tool stores router passwords in an encrypted
form in its database, and uses these passwords to login
to the routers.

Before we present our sequencing techniques, we
introduce the notion of access to a router via indirect
telnet.

Access via Indirect Telnet
An indirect telnet is essentially a proxy telnet.

The basic idea in indirect telnet is to access a (possibly
unreachable) router R through an intermediate router
N, by first telnet’ing to the intermediate router N and
then initiating a telnet to router R from router N.

The usefulness of indirect telnet is best illus-
trated by the case where routers R and N have a
directly connected interface. Since directly connected
IP-configured interfaces are visible to each other, if

router N is reachable, then we can access router R
through its neighbor N. Such a technique for reaching
routers is sometimes used by administrators while
configuring routers manually. The concept can be
extended to hop through several intermediate nodes
en-route to a final destination router. Our tool imple-
ments an automated 1-hop indirect telnet scheme.

Sequencing Techniques

We present two main techniques for sequencing.
The treegen method is a tree generation family of tech-
niques. The treegen method deduces the routing topol-
ogy to determine the order for updates. The reachable
method is a sequential technique that uses indirect tel-
net (described in in the previous section) in an inter-
esting way to perform sequencing. For the following
discussion, we refer to the technique that chooses to
update routers in no particular order (i.e., effectively,
randomly) as the heuristic random; unlike our tech-
niques, the random technique does not aim to update
all the routers.

The treegen Family of Techniques
The basic purpose of the treegen family of tech-

niques is to deduce the routing path tree to the nodes
that need to be updated, and perform the configura-
tions bottom-up in this tree. Such a tree can be built by
performing traceroutes to the routers that need to be
updated. The output of the traceroutes can be put
together (using commonly known techniques, e.g., as
done in [2, 7] for a different problem) to obtain a
directed tree of the routers which depicts how packets
are routed to these routers.

A simple such traceroute tree is shown in Figure
3a; it may have been constructed through a traceroute
from the network operations center (NOC) to router r5
followed by traceroutes to routers r2 and r3. The tech-
nique assumes that the part of the routing tree not yet
updated will be stable for the time required to perform
the configurations. Multiple routes to the same host
may exist, but choosing one is generally sufficient.
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Once the tree is obtained, the sequence is specified
from the leaves to the root of the tree; i.e., all nodes
reachable from a node must appear before the node in
the sequencing order. Such an order can be obtained
from a tree, e.g., by using depth first search techniques
[1]. In Figure 3a, r3, r4, r2, r5, r6, r1, and r5, r3, r6, r4,
r2, r1 are valid sequences. We call our technique
described above as the traceroute method.

While doing a traceroute, if there is no response
to a probe within the specified timeout, a ‘‘*’’ output
is observed. It is not uncommon to see ‘‘*’’ outputs for
all probes, especially at higher time to live values (i.e.,
for probes reaching farther from the host). This slows
down the traceroute method and also makes it less reli-
able. Routers on the network with out-of-band connec-
tivity could be exploited in the sequencing process.
We now present some enhancements to our traceroute
method that deal with some of these issues.

The reverse-tracerouteMethod

If we have access to the routers (i.e., the router
passwords, which are needed for configuration), we
can perform a traceroute from the routers to the man-
agement station rather than to the routers from the
management station. These traceroutes can be put
together to deduce the tree from the NOC to the
routers. If the routing is symmetric, such a method that
does traceroutes from the router would give the same
tree as the generic traceroute method. In this case,
however, we have the advantage that we can do a
restricted traceroute, possibly looking only at the next
hop on the routing path from the router to the manage-
ment station. These {router, next hop} pairs can be put
together to get the full tree. For the example in 3a, the
method to obtain the reverse traceroute tree by con-
ducting one-hop traceroutes from each of the routers is
depicted in Figure3b.

In theory, we need to examine the traceroute
from each router until we hit a router that also needs to
be updated. This ensures that we have the complete
dependency between the routers that need to be
updated. In most cases, however, the set of routers to
be updated is contiguous and looking at the next hop
suffices. If access to all routers exists, the routing table
entries can be examined in lieu of a traceroute. A
traceroute is a simple way to get the route information.

The forward-reverseMethod

The safer method for constructing the tree is to
perform both the traceroute and reverse-traceroute meth-
ods. This will avoid depending on the symmetric rout-
ing assumption. If we get a tree (or a directed acyclic
graph [1]) by putting the trees derived from the tracer-
oute and the reverse-traceroute methods together, the
sequencing order can be determined. A cycle indicates
a possible generic problem in determining a sequenc-
ing order. If such a situation is due to multiple routing
paths in the network, there is no problem, since the
routing path will readjust, if needed. If the situation is
due to forced asymmetric routing (as described in

Figure 2), there is a problem. However, this is a patho-
logical example and most installations do not design
their networks this way.
Other Generalizations

There can be several possible start nodes for ini-
tiating the traceroutes. It is necessary to have access
(i.e., login) to each of the routers and machines from
which a traceroute is to be performed. Furthermore,
there must be a path to the start nodes that does not go
through other nodes that are to be updated. The fol-
lowing nodes are examples of candidates for start
nodes: the machine in the network operations center,
OSPF area border routers, and routers with out-of-
band (e.g., modem or console) connections.

Let S be the set of nodes to which changes need
to be made. Let SN be the non-empty set of possible
start nodes. The output of the sequencing method is an
ordered list of elements: (si, snj), where si is a node
from set S and snj is a node from set SN. The implica-
tion is that configuration changes must be made in the
order specified by the list, and a telnet to node si must
be accomplished from node snj (i.e., via an indirect
telnet strategy).

Conceptually, we build traceroute trees from
each of the start nodes. Each tree can either encom-
pass all nodes in the network, or only the nodes not
covered by already created trees. The dependencies
can be computed from these sets of trees using stan-
dard graph theoretic approaches as in [1]; we omit
these details from this paper. This generalization lends
to interesting extensions of the basic approach, and
techniques that mix pure in-band and pure out-of-band
configuration approaches.
Optimizations

The treegen family of techniques lend themselves
to various optimizations. Nodes that do not depend on
each other can be updated in parallel to improve per-
formance. The traceroutes in the reverse-traceroute
method can be done in parallel to improve perfor-
mance. In some cases, instead of deducing the routing
topology by examining the routing tables or perform-
ing traceroutes, an analysis of the physical topology
can indicate the routing topology (e.g., a simple line
network).
The reachable Technique

Unlike the treegen family of techniques, the
reachable technique merges the processes of determin-
ing the update order and the router configuration
updates. At the ith iteration, the reachable technique
determines the next router to update, updates this
router, and then determines the i + 1st router to
update. The choice of the next router depends on the
current state of the network. The reachable technique
assumes that a one-hop indirect telnet access is avail-
able to reach a router.

The reachable algorithm updates reachable
routers via telnet. If there are no remaining reachable
routers, the process switches to indirect telnet via a
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router whose neighbor is reachable. (Indirect telnet
was explained in an earlier section.) More formally, let
S denote the set of all routers to be reconfigured, let U
denote the set of already reconfigured routers, let TBU
denote the set of routers that remain to be reconfig-
ured, and let R denote the set of routers that are cur-
rently directly reachable from the management station.
Initially, U = Φ, and TBU = R = S. The set R can be
determined at any point in time via pings from the
management station, and TBU is always equal to
S − U. Algorithm reachable uses the following logic to
determine the next router to reconfigure. If there is a
router to be reconfigured that is directly reachable
(i.e., in set R), it updates that router. If there is no
directly reachable router (i.e., R ∩ TBU = Φ), reach-
able reconfigures via indirect telnet a router from set
TBU whose neighbor is reachable (i.e., the neighbor is
in set R). Otherwise, it declares failure. After configur-
ing a router, it updates sets U and TBU, recomputes set
R, and continues, as long as TBU ≠ Φ.

Line Tree Circle

Figure 4: Network topologies for reported experiments.

An interesting property of the reachable algo-
rithm is that under most conditions, it will not fail. In
other words, it will always find a router to update. We
formalize this notion in Appendix 1.

Implementation

We implemented the techniques described earlier
to obtain measurements on their efficacy. The imple-
mentation was done in Java. For our prototype ver-
sion, we adapted a Java telnet implementation [6]
based on Java sockets to contact the routers. The
router passwords were available to log into the router
and perform configuration. We wrote our sequencing
routines as part of the IPNC tool [5, 13]. Our imple-
mentation allowed us to determine information about
neighbors to the routers, and the ability to do one-hop
indirect telnet, perform traceroute from the routers,
generate the correct router commands and perform the
required interactions with the routers.

The treegen Technique
We implemented the reverse-traceroute method

from the treegen family of techniques. We imple-
mented two variants of the method. In the first one,

which we call trace-parallel, after the order is deter-
mined, the routers are updated with maximum possi-
ble parallelism; in other words, at any stage, all leaves
of the tree are updated in parallel. In the second vari-
ant that we call trace-seq, the routers are updated
sequentially. In both cases, the traceroutes from the
routers are executed in parallel to obtain the order of
update speedily. We restricted ourselves to three hops
of output from traceroute. The routers we used did not
allow an easy (non-interactive) way of specifying the
maximum number of hops, and this had to be worked
in from our implementation.

The reachable Technique
Implementation of the reachable technique

required indirect telnet support. We performed pings in
sequence, and hope to move to a parallelized imple-
mentation soon. Coming up with a suitable timeout to
account for routing stabilization is non-trivial; we
approximated with retrying the configuration opera-
tion after waiting five seconds upon a failure, and this
worked for us. We elaborate more on this later in a
section on Running Time Measurements.

Experiments and Results

Experiments were conducted on networks of var-
ious topologies. Measurements on the three basic
topologies (line, tree, and circle) shown in Figure 4 are
reported below. The other topologies we experimented
with were made up of these basic topologies, as are
most networks. The main results from other topologies
we tested were in agreement with what we present
here.

The routers in our experiments were Cisco
routers (25xx, 26xx, 36xx, and 40xx series), running
various versions of IOS (all version 11.3 or higher).
The interfaces were a mix of ethernet, high speed
serial, serial, and token ring interfaces. For our experi-
ments, we enabled the routers to run OSPF, put all
routers in the same OSPF area, and changed the OSPF
area authentication parameter on the routers. (See
Appendix 2 for a brief description of OSPF.) In this
case, a change at a router does not immediately make
itself or other routers unreachable. The protocol takes
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some time to settle depending on other parameters
(like hello and dead intervals) that we could change.
Keeping the hello interval fixed at a low value (e.g.,
1-2 seconds), a high value of the dead interval holds
the network routing virtually unchanged for a long
time, while a low value for the dead interval propa-
gates the effect of the parameter changes quickly. For
each of the methods random, trace-seq, trace-parallel,
and reachable, we obtained measurements on (1) the
number of routers that were successfully configured,
(2) the time it took to determine the sequence order
and (3) the time it took to perform the configuration.
In the case of reachable since the sequencing is inter-
woven with the configuration, we only obtained one
number: the total time to complete the reconfiguration.
We now present our results under various categories.

Line (8 routers) Tree (10 routers) Circle (8 routers)

tseq tconf ttotal tseq tconf ttotal tseq tconf ttotal
Method

trace-seq 16.70 18.92 35.62 27.86 19.63 47.49 23.52 15.06 38.58

trace-parallel 18.16 17.81 35.97 27.87 6.14 34.01 19.83 9.82 29.65

reachable − − 58.92 − − 69.46 − − 56.05

Table 1: Average time to perform sequencing and configuration for the three topologies and the three techniques;
tseq is the time to determine the sequence, tconf is the time to do configuration, and ttotal is the total time taken.
The times are for all routers in the network to be updated. All units are in seconds.

Line (8 routers) Tree (10 routers) Circle (8 routers)

σseq σconf σtotal σseq σconf σtotal σseq σconf σtotal
Method

trace-seq 2.31 0.52 1.79 3.43 0.41 3.35 0.06 0.05 0.11

trace-parallel 0.04 0.65 0.61 3.49 0.12 3.59 4.61 0.15 4.69

reachable − − 0.75 − − 1.15 − − 0.74

Table 2: Standard deviations in time to perform sequencing and configuration for the three topologies and the three
techniques; σseq is the standard deviation in the time to determine the sequence, σconf is the standard deviation in
the time to do configuration, and σtotal is the standard deviation in the total time taken. The times are for all
routers in the network to be updated.

Line (per router) Tree (per router) Circle (per router)

tseq tconf ttotal tseq tconf ttotal tseq tconf ttotal
Method

trace-seq 2.09 2.37 4.45 2.79 1.96 4.75 2.94 1.88 4.82

trace-parallel 2.27 2.23 4.50 2.79 0.61 3.40 2.48 1.23 3.71

reachable − − 7.37 − − 6.95 − − 7.01

Table 3: Average time (per router) to perform sequencing and configuration for the three topologies and the three
techniques; tseq is the time to determine the sequence, tconf is the time to do configuration, and ttotal is the total
time taken. These numbers are derived from Table 1 by dividing the total time by the number of routers, and is
presented here for convenience. All units are in seconds.

Number of Routers Updated
The trace-seq, trade-parallel, and reachable tech-

niques were always successful in updating all the

routers. This was true for all values of hello/dead
interval we tested.

An interesting situation in this case is with the
random technique. With random, since the routers are
chosen in an arbitrary order and no sequencing is per-
formed, some of the routers may fail to get configured.

Depending on the hello and dead intervals and
the random order, up to 60% of the routers failed to
get updated by random. An illustration of this effect is
shown in Figure 5, which presents a plot for a random
sequence. The plot in the figure must be taken with
some caution. By using automated techniques rather
than manual interaction with the router for configura-
tion, quick router configurations were possible. (More
details of the time for configuration appear below.)
The effect from Figure 5 may be vastly different for
manual configurations in that many more routers may
fail to get updated, since each router takes longer to be
updated when done manually. Second, the random
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order is significant, and the plot implicitly says more
about the time for the routing to settle rather than
about the random technique itself. Third, the graph
may look different if a parameter other than dead
interval were chosen for the x axis. We chose the dead
interval since it is a good control variable for how
soon the configuration changes affect the routing.
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Figure 5: Minimum number of routers (out of 10)
updated by random as a function of OSPF dead
interval using a hello-interval of 1 second on the
tree network.

Running Time Measurements
Tables 1-3 show various statistics related to the

time taken by our techniques for determining the
sequence and performing the configuration changes.
All values are derived from 3-4 runs. (We did many
more runs, but they used different topologies and dif-
ferent number of routers. We observed similar results
from those experiments as reported here.) Table 1
shows the total time for all routers in the network to be
updated and Table 2 shows the standard deviation of
the observed times. For convenience, we divide the
total time numbers from Table 1 by the number of
routers in the network to get per router timing num-
bers in Table 3. The topologies have different number
of routers (eight each for the line and circle, and ten
for the tree); in addition, the routers and interfaces
used in the topologies were also slightly different.

The first interesting result is that automation
makes the total time taken to do the configuration very
small (on the average, 0.6-2.23 seconds per router for
trace-parallel as seen from Table 3). This enables rapid
reconfiguration and makes our tool very useful. As a
point of reference, our (informal) study shows that
manual reconfiguration of authentication by experi-
enced administrators may take about 30-45 seconds
per router (excluding times for sequencing), resulting
in 5-7.5 minutes for reconfiguring 10 routers. This
estimate for manual configuration excludes the time to
generate the configuration commands, but includes the
time to type in the commands at the router’s

configuration prompt. In the case of OSPF authentica-
tion, this typically translates to 4-6 commands per
router. In the automated case, the commands are auto-
matically generated and sent to the router by our tool,
and that time is included in the reported numbers.

The automation also lends to easy parallelization
of the configuration operation, when possible. The
performance improvement resulting from the paral-
lelization is visible from the tconf value for the trace-
parallel technique, which shows a 34.6% and 68.8%
improvement over the corresponding tconf time for the
trace-seq technique for the circle and tree topologies,
respectively. No parallelism is possible in the case of
the line. The traceroutes in the case of the trace-seq
and trace-parallel methods were done in parallel, and
the tseq time is dominated by the amount of time it
takes to get a 3-hop output from the traceroute done at
the router (since all other processing on this output is
minimal and in-memory). For random, when it is suc-
cessful in completing the configuration, the tconf = ttotal
and is approximately the tconf value for trace-seq.
From the table, it is difficult to break up the time taken
for configuration alone by reachable. The time for non-
configuration activities (including pings, timeouts, and
indirect telnet) for reachable can be estimated, how-
ever, by

ttotal(reachable) − tconf(trace-seq)/ttotal(reachable)
to be 67-73% for the three topologies.

The comparatively low values for standard devi-
ation from Table 2 suggest that the timing measure-
ments did not vary significantly.

Interestingly, the timing values for trace-seq and
trace-parallel were rather predictable and independent
of the hello/dead interval values (and hence, the time
taken for route changes). However, the same was not
the case for reachable. The time for reachable depends
on the order in which the routers are updated, and how
soon the routes change. In our implementation of
reachable, the order in which the routers were tried for
update depended on the hash function used by Java
(since the router names were initially put into a hash
table). Figure 6 shows how the time for configuration
for ignored: reachable changed with the dead interval in
the network. The increase in time when the routes
change more rapidly (i.e., at lower values of dead
interval) comes from the increase in the number of
indirect telnets performed and the timeouts when per-
forming pings (when the routing is settling down). As
mentioned in Appendix 1 and the implementation sec-
tion, in our experiments, when there was a failure,
retrying after a timeout of five seconds provided a
router as per the condition in Proposition 1 in
Appendix 1.

In rare circumstances (in two cases out of several
tens of tests we ran), we observed that a ping to a
router succeeded, but the routing changed between the
ping’s success and completion of the configuration.
Such occurrences may be more frequent in some net-
works. However, it does not matter to the reachable
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technique from the point of view of correctness, since
it assumes that the router was unreachable. It does,
however, increase the running time of the technique.
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Figure 6: Time taken by reachable to do configuration
as a function of the dead interval using a hello
interval of 2 seconds on the tree network.

Asymmetry in Routing
In most of our topologies, the routing was sym-

metric. In the circle case, both paths around the circle
could be taken by the packets. We did not explicitly
manipulate the routing tables, and left the cost of both
paths to be the same (for OSPF purposes). The
dynamic nature of the routing combined with the
sequencing techniques we used resulted in no configu-
ration problems for the topology using our techniques.
In our experimentation, we concentrated on topologies
and scenarios that we felt were representative of real
networks, and hence did not choose configurations
like in Figure 2.

Conclusions

In this paper we have studied the problem of IP
network configuration. In particular, for the first time,
we have studied the issue of sequencing updates of
critical parameters in a network of IP routers. We
have presented several techniques to sequence the
configuration of the routers to ensure continued con-
nectivity to the routers during the time that it takes to
perform the configuration. We have implemented our
techniques, and have presented experimental results
on the validity of the techniques and measurements of
their performance. We have shown that automated
configuration significantly speeds up time for configu-
ration (from an estimated 45 seconds per router while
done manually to 0.6-2.3 seconds when automated),
and our sequencing techniques make configuration
fast and reliable. Our automated techniques also make

the configuration process convenient for the adminis-
trator. Some of our sequencing techniques are also part
of the IPNC tool [5]. We believe that this significantly
advances the state of the art in a field dominated by
manual configuration of routers. We believe that such
tools and techniques for automated network configura-
tion will prove valuable to the users.

The network configuration tool with appropriate
enhancements is currently available from Lucent
Technologies (http://www.lucent.com) and ISPsoft,
Inc. (http://www.ispsoft.com).
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Appendix 1: Success Criterion for the reachable
Algorithm

The success criterion for the reachable algorithm
is based on the following communication property. In
most cases, nodes that have already been reconfigured,

and that are (topologically/logically) connected will
start communicating with each other, and be reachable
from each other. Given the correctness assumption
from earlier, such nodes will continue communicating
with nodes that do not need to be reconfigured and
that are connected to them. Further, if any one of these
nodes is reachable from the management station, all of
them will be reachable.

While it is not essential that the communication
property hold true, it often is, especially for routing
protocol parameter updates. In such cases, the follow-
ing proposition holds.

Proposition 1: Let the communication prop-
erty be true. If there remain a set of routers to
be reconfigured, there always exists a router in
this set such that either that router or one of its
neighbors is reachable.

Proposition 1 implies that when the communica-
tion property is true, algorithm reachable will always
be successful in its reconfiguration operation. The
validity of Proposition 1 is not hard to deduce; we pre-
sent an informal proof below using Figure 7.

Let a be a type of node that does not need to be
reconfigured (i.e., a node of type a /ε S), bu be a type
of node that has already been reconfigured (i.e., a
node of type bu ε U), and btbu be a type of node that
has not yet been reconfigured (i.e., a node of type
btbu ε TBU). (We use the set definitions from the ear-
lier description of algorithm reachable for simplicity in
exposition.) Take any node x from set TBU (i.e., of
type btbu) and conceptually trace the routing path5

from the NOC to x. (We do not need to know this
path; it is only used for the proof.) Map the nodes on
the path to their types; for the example in Figure 7, we
get a string of the form ‘‘abubuabtbuabubtbu’’. By the
communication assumption, the nodes corresponding
to the initial string matching the regular expression
‘‘(a*bu*)*’’ (in this case abubua) are reachable from
the NOC, and hence a neighbor of the first btbu (i.e.,
the neighbor z of node y) is reachable. If the initial
string ‘‘abubua’’ were empty, then the first node of
type btbu is directly reachable. Note that it is not the
node x we selected initially in our proof that is

5The term routing path is used loosely here. A formal proof
would consider the path packets would take in trying to
reach btbu, even if packets do not complete the journey.
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reachable; all the proposition says is that there exists
some node that is reachable or whose neighbor is.

The communication property does hold for the
update of most routing protocol parameters. Even in
such cases, the routing takes some time to settle down,
and the communication property holds after the rout-
ing has settled down. The algorithm has to incorporate
timeouts and retries to take care of this phenomenon.
Typically, the time taken for the routing to settle down
for a given network after each reconfiguration can be
estimated to be some time t. If there are routers
remaining to be updated, and we are unable to find
any, retrying once after waiting for time t should pro-
vide a router as per Proposition 1. Although t can be
pretty large in theory, in practice it is reasonably
small, and the number of times you need to wait is
expected to be infrequent. Another possible problem
that could arise in practice is that a router is reachable
but becomes unreachable before the configuration
action is completed. We describe our experiences with
these issues in time measurement section.

Appendix 2: Routing and OSPF – A Brief
Overview

Routers are critical network elements of IP net-
works. The most important function of an IP router is
to route data packets. A forwarding table inside a
router is used to decide which route a packet should
take. There are several ways to add entries to a for-
warding table. Typically, a protocol builds this table
dynamically. These protocols are called routing proto-
cols. A routing domain is a collection of routers and
all routers in a routing domain run the same routing
protocol. One or more such routing domains constitute
an Autonomous System (AS). A unique number iden-
tifies this AS to the rest of the autonomous systems.
This number is called AS number. Routing protocols
designed to run among AS are called Exterior Gate-
way Protocols (EGP). Routing protocols designed to
run inside an AS are called Interior Gateway Protocols
(IGP). One of the most popular IGPs is the Open
Shortest Path First (OSPF) routing protocol [10, 11].

OSPF is a hierarchical routing protocol. It can
run in the entire AS. The AS can be divided into
OSPF areas. A unique number identifies each area. An
area identified by number zero is also called the OSPF
backbone. Grouping of routers in an area is a network
planning and design issue, which is beyond the scope
of this paper. A  router is an Area Border Router
(ABR) if it is part of more than one area. Entries in a
forwarding table, i.e. routes, are generally aggregated
at the area level by the ABR so that the processing
burden and storage requirements of the routers in the
other areas are reduced. For OSPF to work correctly,
at least one ABR in an area must be connected to the
OSPF backbone.

Some OSPF parameters used in this paper are
described below.

• Hello Interval. A router running OSPF sends a
‘‘hello’’ packet periodically to inform its neigh-
bors that it is alive. The fixed interval between
consecutive hello packets is called the hello
interval.

• Router Dead Interval. If a  router does not
receive a hello packet during a fixed time inter-
val from a neighbor, it declares that neighbor
dead. This interval is referred as the router
dead interval.

• Area Authentication. A technique used to
ensure that the router sending OSPF informa-
tion is trusted and the OSPF packet has not
been altered.
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