
USENIX Association

Proceedings of the
14th Systems Administration Conference

(LISA 2000)

New Orleans, Louisiana, USA
December 3– 8, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Network Information Management and
Distribution in a Heterogeneous and

Decentralized Enterprise Environment
Alexander Kent & James Clifford – Los Alamos National Laboratory

ABSTRACT

To promote enterprise-wide information and resource sharing, we have implemented a
network information management and distribution system that gives subscribing systems real-time
access to relevant information changes. Participating systems need little more than a small, single
application to receive the updates. User interaction and data administration require only a web
browser. The resulting system is timely, reliable, secure, easy to support and maintain, and
extensible.

Introduction

In Los Alamos National Laboratory’s distributed
and heterogeneous computing environment of more
than 12,000 users and more than 20,000 computers,
the task of maintaining accurate network services
information is a complex undertaking. Information
such as network accounts, e-mail addresses, login
names, aliases, home-page pointers, privileges, per-
missions, and so on, is constantly changing as people
come and go or change job assignments. Matters are
further complicated when the input data comes from
different sources and must then be distributed across
multiple server systems. To simplify the system
administrator ’s job, we designed a system to make it
easier for network services to get the current and accu-
rate information they need to do their job. We call it A
Real Time Information Management and Update Sys-
tem (ARTIMUS).

If you have attended past USENIX LISA confer-
ences or read the proceedings, the problem and solu-
tion may sound vaguely familiar. The general require-
ments for an account management system have been
nearly the same for over ten years, including: [2]

• Vendor and service independence
• Data flexibility
• Minimal changes to existing software
• Automated account installation
• User access to data

This paper focuses on the unique aspects of the
Los Alamos National Laboratory (LANL) approach.
Specifically, these areas include the database design,
manipulation of data within the central database, prop-
agation of that data to end-hosts and services, and
security. Recent systems differ on whether they use a
‘‘big hammer’’ relational database or not. ARTIMUS,
[1], [4], and [11] do; [2], [7], [9], and [10] do not.

Motivation

Our organization, LANL’s Network Engineering
Group, is the Lab’s Internet service provider. We

provide the usual services: LAN and dialup connectiv-
ity to the Internet, DNS, white pages directory infor-
mation, authentication, e-mail accounts, web page
publishing, and so on. Other LANL organizations
offer compute, storage, print, personnel, training,
library, and many more network services to internal
and remote customers. In addition, organizations
throughout the Laboratory run their own network
servers to satisfy local needs. Each organization, and
even individuals, choose the type and configuration of
computing system(s) that best meets their needs.
While this looks like a recipe for chaos, it also pre-
sents opportunities.

The group needed a sane way to manage people,
accounts, and other network information for our ISP
business. With the right design, we saw that we had a
chance to help the other network service providers too.
Subscribers could participate in the same centralized
account and information management system that we
use on their own servers. These are the requirements
we felt we had to meet to have a viable system:

• Each user should be able to make changes to
his or her own network information. A third
party, like a system administrator, should not be
needed to make the change.

• The end user interface should be intuitive and
consistent. Managing your network profile will
not be a frequent or familiar activity. The goal
here is to allow changes to be entered quickly
and accurately without a call to the help desk.

• Existing subscriber system software should not
require modification. Programs, either shrink
wrap or open software, will still run using
existing data formats and access methods.

• Additional subscriber systems should be easy to
integrate. We will not own or manage many of
these clients. Changes to subscriber systems
must be few and minor in nature.

• Subscriber systems should not be affected by
changes to our data structures and business
rules.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 85

Network Information Management and Distribution . . . Kent & Clifford

• Subscriber systems should not be affected by
failures in the information management system.

• Subscriber systems should be notified of data
changes in near real-time so users can view and
test changes immediately after making them.

• Subscriber systems should get only accurate,
consistent, and current data.

• System administrators should retain control
over their systems. For example, they should be
able to control who gets access and privileges
on their systems. There should also be provi-
sions for system administrators to make local
changes outside of ARTIMUS.

Web
Register

Send C
hange

N
otification

R
eq

ue
st

 R
ec

or
d

C
ha

ng
es

Update user’s record
in database

User requests email
forwarding address
change

Trigger
Event

Daemon

UFRD
inetdSend LDAP

record changes

LDAP
Service
Client

address for given user

Sendmail requests
email forwardingLDAP

Server

R
eq

ue
st

 r
ec

or
ds

 s
pe

cf
ic

to
 L

D
A

P
ch

an
ge

s

Send notification

U
pdate L

D
A

P D
B

Database

Figure 1: Example data flow for a user setting a new
e-mail forwarding address for a given name, and
sendmail requesting the forwarding address.

• System administrators should see their work-
load drop after participating in ARTIMUS.

• ARTIMUS should be extensible. The difficulty
in adding new services and operating systems
should be in step with their complexity.

• ARTIMUS should have high availability.
• ARTIMUS should import corporate data to

eliminate redundant data entry and promote
consistency. For example, employee data from
HR could be used to build organizational e-mail
lists.

• ARTIMUS should be secure. Information
should be readable and modifiable only by
authorized persons.

• ARTIMUS, not subscriber systems, should
implement site policies and business rules.

Overview and Example

Here is a simplified example to demonstrate
ARTIMUS’ data flow, which can be seen in Figure 1.
Suppose Amy wants mail that is sent to the institu-
tional address help@lanl.gov to be delivered to her
departmental server account amy@cic-mail.lanl.gov .
Here is how it is done: Amy uses her web browser to
go to the Network Registry service and logs in to iden-
tify herself. She creates help as a new name which the
Network Registry inserts into the database assigning
ownership to Amy. Then she sets the forwarding
address for help and the web server completes the task
by updating the database. The change to the table con-
taining names triggers a database procedure that
makes a copy of the updated record and notifies the
Trigger Event Daemon (TED) process (see the section
‘‘End Service Propagation’’). TED notifies the sub-
scriber services affected by the forwarding address
change so those systems can update their local copies
of e-mail forwarding information.

System Design

ARTIMUS is a three-tier design of web-based
user interface to central database to end-system propa-
gation. The system is functionally divided into these
three distinct segments to provide maximum security,
flexibility and simplicity.

Web Interface

Users view and change information with
ARTIMUS’ web interface called the Network Reg-
istry. All user modifiable information is updated in
this manner, traditional applications are not used (e.g.,
chfn). This GUI interface is designed to be friendlier
than native system interfaces. In addition, the SSL
web interface encrypts the data between the desktop
and the web server thus protecting the registration
information from capture and modification.

User access to ARTIMUS data is controlled
through the web interface. The user must first authen-
ticate to the Network Registry with an employee iden-
tifier and password. The web interface then enforces
access controls that restrict what the user can change
within the database. Normally users may only change
information they ‘‘own.’’ However, system adminis-
trators may be granted access to change other users’
information. We considered pushing the authentication

86 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Kent & Clifford Network Information Management and Distribution . . .

and access control into the database itself but Sybase,
which we currently use, does not support any appro-
priate external authentication systems like RADIUS or
Kerberos.

In the previous example of Amy changing the
forwarding address of help@lanl.gov, Amy goes to the
URL for the Network Registry and authenticates with
her employee identifier and password. Selecting the
name help she then enters the forwarding address as
seen in Figure 2. The Network Registry then does a
SMTP VRFY on the given forwarding address and
submits an update to the database name table if the
address is valid.

Figure 2: Network Registry page for adding/changing e-mail forwarding addresses.

In addition to e-mail forwarding, the Network
Registry is used to create and remove user accounts on
UNIX and Microsoft-based systems, change pass-
words, and manipulate several other user network
attributes. Additional features and systems are con-
stantly being added to the Network Registry.

The web interface is built upon whiz [8], a
Python-based sequential CGI forms tool that provides
a simple, stateful, and authenticated method of manag-
ing the registry segments and adding additional fea-
tures. Communication to the database is handled
through a locally developed system called sqld which
wraps database traffic with SSL-based encryption
between the Network Registry and the database.
Other, more standard database access libraries could
be substituted for sqld.

The Database

The authoritative copy of nearly all network ser-
vice information is kept in a relational database. The
Network Registry and various corporate repositories,
like human resources’ employee data, are ARTIMUS’
information sources. The database enforces syntax,
consistency, various business rules, and serves as a
central information clearinghouse.

If the information is accurate in the database, it
will be accurate on the servers. And if it is wrong in
the database, it will be wrong everywhere. Because
data integrity is so important, we use the database’s
features such as syntax checking on table fields, inter-
table consistency enforcement, and ‘‘triggers’’ that call
stored procedures to validate record changes. Both
Sybase and Oracle products support these features.
Previously, we tried maintaining consistency by doing
the checking in the web server and other applications
that modified the database. It worked but changes to
table structures and field definitions were more diffi-
cult because several programmers had to modify code
simultaneously. This explains our move to a ‘‘big
hammer ’’ relational database.

The database tables are divided into three pri-
mary categories: one set for person data, one for name
data, and one for authentication/authorization data.
Person data is needed for ownership; i.e., some person
owns each table entry in the database. Person data is
also needed for white-pages publishing. A name has
an owner and may have attributes such as as a for-
warding address, a URL, a UNIX UID, sharing group
members, and mail list members. Authentication and
authorization data include a person’s passwords,
authentication tokens, accounts, and permissions or
authorizations.

A portion of the network information database is
shown in Figure 3. Designing the database tables was
a non-trivial, iterative process. Subscriber require-
ments for data, syntax, and business rules were gath-
ered and database design principles were applied [6].
The resulting design was reviewed by peers and cus-
tomers. Then the process was repeated as more ser-
vices were added and mistakes were uncovered.

Here is how the syntax, integrity, and business
rules are applied in Amy’s e-mail forwarding address
example. Before help is added to the name table, the

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 87

Network Information Management and Distribution . . . Kent & Clifford

auth_access_disable

auth_disable

reason_text

auth_cryptocards

serial_no
zn (FK)

enabled
expiration
challenge
c_key
flags
usages

auth_kerberos

zn (FK)
principal (FK)

enabled
expiration
access_level
acl_group (FK)

auth_ntmad

zn (FK)

enabled
expiration
added_by
add_date

password
force_passwd_change
no_password_change
no_passwd_expire
profile_path
login_script
home_dir_local_path
home_dir_remote_path
home_dir_drive_letter
passwd_expiration
last_modified
last_modified_by

ntuser (FK)
auth_register

priv
zn (FK)

expiration

auth_unixsrv

zn (FK)
service_name (FK)

enabled
expiration
default_group
home_dir
shell
passwd

usrid (FK)

name

name

reserved_name
email
URL
login_name
location
pager
phone
fax
uc_ms
info
expiration
ntmad_group

zn (FK)

name_gid

name (FK)

gid
hpss_group

name_gid_holding

gid

name

expiration
zn (FK)

name_group_members

name (FK)
member (FK)

unix

name_list_config

name (FK)

list_type
administrivia
announce
get_access
index_access
info_access
infotext
intro_access
listpwd
maxlength
moderate
restrict_post
subj_prefix
subscribe_policy
unsubscribe_policy
which_access
who_access

name_list_members

external_member

name (FK)
member (FK)

name_supers

name (FK)
zn (FK)

name_uid

name (FK)

uid

name_uid_holding

uid

name

expiration
zn (FK)

person

zn

person_type
person_status
short_name
last_name
first_name
middle_name
name_suffix
nickname
shrt_job_title
country_desc
clearance
company_name
eis_last_modified
legal_age_flag
line_mgmt_lev
uc_ms
c_ms
work_phone
fax_phone
nts_phone
ta
bldg
room
pager
mobile_phone
drop_point
expiration

auth_disable (FK)

person_dir

zn (FK)

email
URL
PGP_key

name (FK)

service

name (FK)

restricted

Figure 3: Major tables and dependencies within the database.

88 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Kent & Clifford Network Information Management and Distribution . . .

length and characters are checked. Names with @’s or
spaces are rejected.1 Also, names that already exist are
rejected to enforce uniqueness.

hosts

hostname

admin_email
cert_key

service_LDAPinetLocalMailRecip

ID
pass
table_name
action
name
email

hostname (FK)

services

service_name

table_name
hostname (FK)

Figure 4: TED support tables within the database.

Similarly, the e-mail forwarding address,
amy@cic-mail.lanl.gov, is checked before it is added
to the database. This time an @ is required.

The effects of applying the concepts of business
rules and data integrity are more striking in the exam-
ple of an employee leaving. Our first rule is to wait for
seven days after someone’s personnel record disap-
pears before deleting any data. Data entry mistakes
happen and resurrections are simple.2 When a person-
nel record disappears, that individual’s expiration date
is set to today plus seven days in the person table.
Later, a cron job initiates deleting expired people.
Before a person is deleted, the database deletes all of
his or her names. The SQL command delete from name

1Names cannot have a @ because an implicit @lanl.gov is
appended when associated with a forwarding address.

2While not actually removing any information, all authenti-
cation and authorization (UNIX, NT, etc.) accounts for the
person are disabled immediately.

where zn=’Amy’3 deletes all of Amy’s names. But before
a name can be deleted, the database also cleans up
anything that depends on that name. For example,
when help is deleted, e-mail lists are cleaned up with
delete from name_list_members where name=’help’. This
cascaded cleaning keeps the database internally con-
sistent and, even better, reduces bounced e-mail to list
owners.
End Service Propagation

Propagating information from the database to the
subscriber systems is a critical component of
ARTIMUS. The in-house written subsystem that per-
forms this function is affectionately called TED and
UFRD.

The Trigger Event Daemon (TED) feeds
database changes to the Update Fields Real-time Dae-
mons (UFRD) running on subscriber systems. UFRD
passes the changes to local programs that then process
the updates. See Figure 1.

The TED-UFRD subsystem is somewhat similar
to the Project Athena Zephyr Notification System [3]
in terms of providing immediate, reliable, and high
fan-out information propagation. However, the TED-
UFRD design is simpler and specific to transmitting
information from a central source, the database, to end
systems, the subscribers. Data transmission security
and subscriber system data access control are built in.

The TED-UFRD system disseminates informa-
tion changes in near real-time from database tables to
a list of subscriber hosts affected by the changes.
Instead of requiring services to wait for cron jobs to
run or other polling mechanisms, the end services are
immediately notified of information updates. Oracle
has a similar notification facility but requires Oracle
software on each subscriber system [5].

Currently LANL updates the following services
through TED-UFRD with an average of 1500 informa-
tion events per day:

• RADIUS dial-in passwords for the institutional
modem pool (1150+ users)

• CRYTPOCard one-time password token card
accounts (7200+ users)

• Microsoft master accounts domain for the insti-
tution (4400+ users and global groups)

• LDAP white-pages system (19,000+ record
objects)

Additional services will begin using TED and
UFRD over the next few months, including UNIX
account and group management, Kerberos, Entrust,
and DCE/DFS systems.
Trigger Event Daemon

Moving data from the database system to TED
starts with triggers on tables containing information
needed by the subscriber services. In the e-mail for-
warding address example, the trigger is on the name
table. A trigger fires (i.e., calls a stored procedure in

3zn is a unique person identifier, usually an employee num-
ber. Amy is used here for simplicity.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 89

Network Information Management and Distribution . . . Kent & Clifford

the database) when a table is changed. The database

create trigger name_trg
on name for insert

as
-- Begin TED update

declare @tbl_name varchar(40)
,@name typ_name
,@zn typ_zn
,@reserved_name typ_flag
,@email typ_email
,@URL varchar(255)
,@login_name typ_flag
,@location varchar(16)
,@pager typ_pager
,@phone typ_phone
,@fax typ_fax
,@uc_ms varchar(4)
,@info varchar(255)
,@expiration datetime
,@ntmad_group typ_flag

select @tlb_name = "lanl..name"
declare ted_crsr cursor

for select * from inserted
open ted_crsr
ted_loop:

fetch ted_crsr into @name,@zn,@reserved_name,@email,@URL,
@login_name,@location,@pager,@phone,@fax,@uc_ms,
@info,@expiration,@ntmad_group

if @@sqlstatus = 0 begin
exec TED..send_service_LDAPmail_fwd(@tbl_name,

"ADD",@name,@email)
goto ted_loop

end
close ted_crsr

-- End TED update

Figure 5: Insert trigger attached to name table for updating e-mail addresses.

create proc send_service_LDAPmail_fwd
@table varchar(40)
,@action typ_action
,@name typ_name
,@fwd_addr typ_email

as
declare host_crsr cursor

for select hostname from TED..services
where service_name=@service_name

open host_crsr
host_loop:

fetch host_crsr into @host
if @@sqlstatus = 0 begin

insert TED..service_unixsrv values(
@host,0,@table,@action,@name,@fwd_addr)

goto host_loop
end

close host_crsr
exec TED..notify("LDAPinetLocalMailRecip")
return 0

Figure 6: Stored procedure called by triggers attached to name table to move records to TED tables and notify TED
daemon.

allows one trigger per action (add, update, and delete)
per table so TED triggers must coexist with a table’s
integrity triggers.

To remember table changes, TED triggers create
new records in TED service tables with the type of
modification (add, delete, delete-update, or add-
update), the name of the table being modified, a

90 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Kent & Clifford Network Information Management and Distribution . . .

subscriber host name, and the modified fields. A sepa-
rate record is inserted into the service table for each
subscriber host needing the information. The service
table for e-mail forwarding and two other TED sup-
port tables are shown in Figure 4. The trigger sends a

#!/usr/bin/perl
use Net::LDAPapi;
use Sys::Syslog;

Update inetMailRecipient object.
Changes read from stdin look like:
table|action|name|fwd_address
$local_domain = "lanl.gov"
$sep=chr(255); # Separate fields with char 255
$ROOTDN = "cn=root, o=Los Alamos National Laboratory, c=US";
$ROOTPW = "oob";
$ldap_server = "ldap.lanl.gov";

&openlog("ufrd.LDAPmailRecipient",’pid’,’daemon’);
&Sys::Syslog::setlogsock(’unix’);

$ld = new Net::LDAPapi($ldap_server);
if ($ld == -1){

&syslog("err","Connection to $ldap_server failed");
exit 1;

}
if ($ld->bind_s($ROOTDN,$ROOTPW) != LDAP_SUCCESS){

&syslog("err","LDAP bind error: $ld->errstring");
exit 1;

}
while (<>){
chomp;
($table,$action,$name,$fwd_addr)=split($sep);
$ENTRYDN="cn=$name, objectClass=inetLocalMailRecipient";
Treat update add/deletes same as regular add/deletes
if ($action =˜ "DELETE" || $action =˜ "UPDEL"){
if ($ld->delete_s($ENTRYDN) != LDAP_SUCCESS){

&syslog("err","LDAP delete error: $ld->errstring");
exit 1;

}
} elsif ($action =˜ "ADD" || $action =˜ "UPADD"){
%ldapdata = ("cn" => $name,

"objectClass" => "inetLocalMailRecipient",
"mailLocalAddress" => "$name==[@]==$local_domain",
"mailRoutingAddress" => $fwd_addr);
"

if ($ld->add_s($ENTRYDN,%ldapdata) != LDAP_SUCCESS){
&syslog("err","LDAP add error: $ld->errstring");
exit 1;

}
}

}
$ld->unbind;
exit 0;

Figure 7: UFRD client that creates/modifies/deletes LDAP inetLocalMailRecipient objects.

UDP packet to TED with the name of the service table
where the inserts were placed. To simplify the coding,
TED’s triggers actually call a stored procedure to
insert the records into TED service tables. The trigger
for e-mail forwarding attached to the name table can

be seen in Figure 5. The stored procedure called by the
trigger is in Figure 6.

Upon receiving the UDP packet, TED reads the
indicated service table from the database.4 Then TED
sends a UDP packet to each subscriber host it finds in
the service table records. The UDP packet signals the
host(s) to start UFRD. The host’s UFRD makes a TCP

4TED will work with multiple database servers. As a secu-
rity measure, it will only connect to database system(s) in its
configuration file.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 91

Network Information Management and Distribution . . . Kent & Clifford

connection to TED and reads its information updates.
When a change is successfully processed, UFRD
sends TED an acknowledgement and the matching
service table record for that host is removed. A TED
service table record is kept until an acknowledgement
is received so failures with UFRD can be retried.

To handle subscriber hosts that do not request
their information updates, TED periodically reads all
service tables’ unprocessed data records. For each sys-
tem with pending updates, TED sends another UDP
notification since the subscriber host may have been
down or unreachable. To summarize, information
change notifications are sent to subscriber systems in
near real-time and resent until successfully processed
and acknowledged.

Because the information is stored in the
database, state is maintained even if TED or the
UFRD clients should terminate for unexpected rea-
sons. TED will send an e-mail notification to the
administrator listed in the TED’s hosts table if a sub-
scriber has unprocessed requests over two hours old.

Update Fields Real-time Daemon

A UDP packet from TED starts a UFRD on a
subscriber host; on UNIX systems UFRD is started by
inetd. The packet contains a port number to connect
back to on the TED system. UFRD first reads its con-
figuration file to find the encryption key to use with
the TED system that sent the UDP packet. UFRD then
makes a TCP connection to the TED server and sets
up DES3 encryption using the key it found. UFRD
receives the pending information updates and, based
on the table name field, executes the appropriate com-
mand to process the data. The information update
line(s) are passed to the command as standard input
under UNIX and message passing under Windows NT.
If the command exits successfully, UFRD indicates to
TED to remove the corresponding record(s) from the
TED service table.

The commands called by UFRD to update infor-
mation may be written in the most convenient method:
C, C++, Perl, Python, shell script, or some specialized
interface for the service. The Perl code to process e-
mail forwarding address changes is in Figure 7.

UFRD has been ported to several operating sys-
tems including Linux, Solaris, UNICOS, Irix, and
Windows NT. Its simple functionality relying on run-
ning native commands to update local data allows
quick porting to new platforms.

Future Plans

The group has several future improvements
planned for the ARTIMUS system.

Extending ARTIMUS to other network informa-
tion systems is foremost. Generating dynamic DNS
updates is a goal for the next year. Our host informa-
tion is already maintained through a web interface and
kept in a Sybase database but does not use ARTIMUS.

The difficult part will be reconciling the names’ own-
ers.

Offering the service to other Laboratory organi-
zations has begun and will be expanded. Given the
flexible and secure ARTIMUS framework, it is easy to
provide central account management services to net-
work servers throughout the Laboratory. Adding a
Network Registry module, a few database tables, con-
straints, and triggers, as well as writing an update
command for UFRD service to call, is not difficult.

The Network Registry continues to grow. Cur-
rently, we are redesigning much of the look and feel in
attempt to make it easier and more intuitive for the
end-users; user interface design is non-trivial. Various
business and integrity checks continue to be added,
both within the Network Registry and the database.

ARTIMUS needs additional rules to prevent
inappropriate bulk changes from happening. Occa-
sionally, we receive a large, but bogus, data feed from
the corporate data warehouse that must be detected
and rejected.

We would like to get real-time updates propa-
gated from the Lab’s corporate sources to pass along
to end customers. Such real-time linkage would allow
new employees to request accounts upon arrival (and
have them created in real-time as well, thanks to
ARTIMUS), plus automatically disable authentication
and authorization accounts the moment they are termi-
nated in the human resource system.

We would like to examine the use of individual
user accounts within the database and direct authenti-
cation to the database. The tradeoffs of security bene-
fits versus complexity may or may not make this prac-
tical. For various security issues we are considering
moving from Sybase to Oracle and using Oracle’s
Kerberos and RADIUS authentication. Oracle’s
DBMS ALERT package may also be superior to the
current UDP-based database notification mechanism
for TED.

Additional issues, ideas, and plans will come up
as we add new services and think up new methods to
use the system.

Conclusions

The ARTIMUS design, including its web inter-
face, relational database with built in data integrity,
real-time update service, and data protection provides
a solid base for eventually managing nearly all of the
Laboratory’s account and network information data.
We are optimistic the implementation will meet or
exceed the requirements listed in the Motivation sec-
tion and discussed below. Ultimately, we will measure
the system’s success by the number of subscribers it
supports.

User Interface Requirements

Users can manage their own network informa-
tion through the Network Registry. Web based

92 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Kent & Clifford Network Information Management and Distribution . . .

applications with authentication are commonplace at
Los Alamos. Most customers will be able to easily
maintain their own network profiles. Keeping the nav-
igation simple, intuitive and consistent as features are
added will be a challenge.

E-mail forwarding addresses (aliases) E-mail lists*

URL’s Directories for web and FTP publishing*

UNIX accounts Sharing group membership*

UNIX UID and GID’s Windows accounts and sharing groups

LDAP white pages LDAP yellow pages*

LDAP POSIX users and groups* LDAP mail recipients

CRYPTOCard token cards RADIUS accounts and passwords

Kerberos accounts* DCE accounts*

Authorizations* DNS resource records*

SecurID token cards* Entrust PKI certificates*

* under development
Figure 9: Applications that currently have UFRD service interfaces.

Subscriber System Requirements
Adding subscriber systems to ARTIMUS

requires new entries in the TED tables, a UFRD dae-
mon, a UFRD service application, a configuration file,
and a shared DES key. The total installation time is
usually under an hour.

Currently, 99 percent of the changes to the
database are propagated to the subscriber systems in
under two seconds via TED-UFRD. We expect the
mean response time and standard deviation to both
shrink when we retire some frequently run ad hoc
database query applications.
System Administrator Requirements

There are a few system administrator features in
ARTIMUS that are outside the main theme of this
paper. We will briefly mention them here. Common
system names like ‘‘root’’ are reserved, as are UNIX
UIDs and GIDs under 1000. OS, third party, and local
software that define users and groups can coexist with
ARTIMUS. System administrators can define their
subscriber systems as open or closed. Users can add
accounts to open systems but only system administra-
tors or their designees may add accounts to closed sys-
tems. Finally, we have defined organization adminis-
trators who can manage most information for anyone
in an organization, and name administrators who, in
addition to the owner, can change any of a name’s
attributes.
ARTIMUS Requirements

ARTIMUS already supports UFRD on a variety
of operating systems (Figure 8) and services (Figure
9) but not all services are supported on all OSs. The
first UFRD for a UNIX system took about a month to
write and debug. The first UFRD for Windows NT
also took about a month. Bringing up subsequent
UNIX UFRDs is proportional to the time it takes to
locate the necessary system include files and libraries.

UFRD agent scripts as seen in the LDAP e-mail
address example (Figure 7) are usually simple and
straightforward to write. The approach is: read stan-
dard input; split the line into an array (or list); and
execute some existing application to add, delete, or
modify some local data file. A Perl program to man-
age Linux user accounts by calling adduser, deluser,
and moduser is 36 lines long.

Microsoft Windows NT Microsoft Windows 2000*
Linux Sun Solaris
SGI IRIX Compaq Tru64 UNIX*
IBM AIX Cray/SGI UNICOS

* under development
Figure 8: Operating systems where UFRD runs.

The current ARTIMUS implementation is reli-
able. We do health checks on our services every few
minutes throughout the day. When a service is down
for five minutes or more, an on-call person is paged.
The last six months of web, database, and TED error
logs show only four transient failures. Connecting to
the web server failed twice and connecting to the
database also failed twice. There were no prolonged
failures resulting in an alarm page.

Since subscriber systems depend on ARTIMUS
for updates, downtime is only noticeable to users
wanting to make changes. Clearly, the main thing to
avoid is losing the database. Backups and mirroring
are both done.

Oddly, overall network service availability can
actually be improved by adding a central database.
LDAP and RADIUS are important services to the
Laboratory. ARTIMUS makes replicating these
servers as easy as deploying a system and adding a
hostname to the TED host and service tables.

Data integrity is a key feature of ARTIMUS. It is
also the most complex to implement. But, when done
correctly, it promises the biggest rewards from the sys-
tem. Our most difficult and time consuming problems
are usually caused by incorrect, incomplete, or incon-
sistent data on one or more server systems. ARTIMUS

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 93

Network Information Management and Distribution . . . Kent & Clifford

prevents these problems by simply rejecting bad infor-
mation before it goes into the database.

Finally, security is an essential part of the
ARTIMUS design. This system would not be
deployed at Los Alamos if it did not protect users’ net-
work information.

Availability

Due to U. S. encryption export regulations,
release of the source for the TED-UFRD propagation
system must be controlled. Those interested in obtain-
ing the source code may contact the authors directly to
determine the necessary arrangements. Licensing
restrictions beyond the export issue are otherwise lib-
eral.

The web pages and database currently include
many LANL idiosyncrasies. They would probably
require significant changes to work elsewhere and
therefore are not available at this time.

Acknowledgements

The authors would like to thank Los Alamos’
Network Services Team. ARTIMUS is a product of
the entire team’s hard work and expertise. Particular
recognition goes to Mary Gentry for her extensive
work on the database design and implementation and
her extraordinary commitment to detail. Susan
Buchroeder was responsible for the Network Registry
design. Amy Meilander provided the excellent
database figures and lent us the use of her name(s) in
the examples throughout the paper. Thanks to Jerome
Heckenkamp, Elise Lee, and Giridhar Raichur for
their constructive criticisms and thoughtful editorial
comments. Finally, we are grateful to our supportive
manager, Kyran Kemper.

Author Information

Alexander (Alex) Kent is a Systems Software
Engineer for the Network Engineering Group at Los
Alamos National Laboratory. His primary develop-
ment projects include Laboratory-wide authentication
and user account systems, network information propa-
gation, and the Los Alamos firewall system. In addi-
tion, he is a full time graduate student at the Univer-
sity of New Mexico nearing completion of an MBA.
Alex has a BS and MS in CS from New Mexico Tech.
He may be reached via e-mail: alex@lanl.gov or snail
mail: MS B255, Los Alamos, NM 87545.

James (Jim) Clifford is the Network Services
Team Leader and a Systems Software Engineer for the
Network Engineering Group at Los Alamos National
Laboratory. His interests include Internet technology,
Linux, and practical computer security. Jim has a BS
from the University of Michigan. He may be reached
via e-mail: jrc@lanl.gov or snail mail: MS B255, Los
Alamos, NM 87545.

References

[1] Bob Arnold, ‘‘Accountworks: Users Create
Accounts on SQL, Notes, NT, and UNIX,’’ 12th
Systems Administration Conference (LISA’98),
pages 50-61. USENIX, 1998.

[2] David Curry, Samuel D. Kimery, Kent C. De La
Croix, and Jeffery R. Schwab, ‘‘ACMAINT: An
Account Creation and Maintenance System for
Distributed UNIX Systems,’’ Workshop on Large
Installation System Administration. USENIX,
1990.

[3] C. A. DellaFera, M. W. Eichin, R. S. French, D.
C. Jedlinsky, J. T. Kohl, and W. E. Sommerfeld,
‘‘The Zephyr Notification System,’’ Usenix Con-
ference Proceedings, USENIX, 1988.

[4] Jon Finke, ‘‘Invited Talk: Manage People, Not
Userids,’’ 10th Systems Administration Confer-
ence (LISA’96), USENIX, 1996.

[5] Jon Finke, ‘‘Oracle tricks and techniques in sup-
porting systems administration,’’ System Admin-
istrator and Network Security Institute (SANS),
2000.

[6] Candace C. Fleming and Barabara von Halle,
Handbook of Relational Database Design, Addi-
son Wesley, 1989.

[7] J. Archer Harris and Gregory Gingerich, ‘1The
Design and Implementation of a Network
Account Management System,’’ Usenix Confer-
ence Proceedings, USENIX, 1996.

[8] Neale Pickett, ‘‘Whiz,’’ http://starship.python.
net/crew/neale/src/whiz/ .

[9] Paul Riddle, Paul Danckaert, and Matt Metaferia,
‘‘AGUS: An Automatic Multi-Platform Account
Generation System,’’ 9th Systems Administration
Conference (LISA’95), pages 171-180, USENIX,
1995.

[10] Henry Spencer, ‘‘Shuse: Multi-Host Account
Administration,’’ Usenix Conference Proceed-
ings, USENIX, 1996.

[11] Gregory S. Thomas, James O. Schroeder, Mer-
rilee E. Orcutt, Desiree C. Johnson, Jeffrey T.
Simmelink, and John P. Moore, ‘‘UNIX Host
Administration in a Heterogeneous Distributed
Computing Environment,’’ Usenix Conference
Proceedings, USENIX, 1996.

94 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

