
USENIX Association

Proceedings of the
14th Systems Administration Conference

(LISA 2000)

New Orleans, Louisiana, USA
December 3– 8, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

User-Centric Account Management and
Heterogeneous Password Changing

Doug Hughes – Auburn University

ABSTRACT
There are a plethora of password changing programs available for users and systems

administrators to use. Most of the existing password changers, however, fall short in some way.
Either they are still text based, requiring users to use unfamiliar tools in unfamiliar environments,
or they are part of an all encompassing framework – designed to completely supplant the entire
existing account creation, maintenance and distribution process. Our program is designed, first, to
be usable without training or human support. Second, it is designed to use existing distribution
databases such as NIS and LDAP. We integrate many of the features of prior password changers
such as the Cracklib library, character classes, and rules for password selection. We try to provide
easy extensibility both in terms of database support and by providing other user-focussed
programs that use the same authentication framework.

Introduction

Auburn University College of Engineering has
two primary platforms for supporting a broad clien-
tele. These are Windows boxes which use SMB [1] for
file service, and UNIX boxes which use NFS for file
service. In order to use any network services, a user
must be authenticated. For the UNIX side, this means
NIS, NIS+, or LDAP.

To provide authentication to NT boxes we use
Samba [2]. To do this semi-securely [3] requires a sep-
arate encrypted password database. In their respective,
encrypted formats, the UNIX password and the
Microsoft password are incompatible, irreversible one
way hashes; there is no method to generate one from
the other. This means neither system’s builtin pass-
word changing mechanisms can be used. This irre-
versibility problem can be applied by extension to
other one way password formats such as BSD44,
Apple formats (e.g., CAP [4]) and several Linux for-
mats.

Early in 1999 we decided that we should replace
the existing – functional but archaic – text-based pass-
word changer with a Web-based mechanism. The old
system required users to login to a UNIX machine to
change their passwords. Many of our new users had
no experience with applications like telnet, ssh, or
even UNIX. Text based solutions requiring login to
an unfamiliar environment were difficult to support. A
Web design allowed greater platform availability and
improved usability over our previous system. We also
had an opportunity to revise the entire password
changing system and integrate other services such as
email forwarding.

We wrote our code primarily in PHP [5]. Some
functions required a PHP loadable module written in
C. One helper program was written in Perl.

Prior Art

A lot of work has been put into account manage-
ment systems over the years. Many USENIX, LISA,

and even ;login: articles have been written concerning
these works. Nearly all of them have a systems admin-
istrator focus, which is natural when one considers
that systems administrators are always trying to make
their jobs easier. However, the works tend to focus on
systems administrator specific tasks such as creating,
adding, deleting, and ongoing maintenance of
accounts. When usability was addressed, it was usu-
ally most evident from a systems administrator’s point
of view: make less work; provide more scalability.

Auburn University College of Engineering (here-
after referred to as AUCOE) already had account
maintenance tools in place with no obvious need for
wholesale replacement. We required an intuitive user
interface – to allow users to be able to do simple tasks
on their accounts without any sort of training – and
minimal support.

The main differences between the AUCOE
framework and prior implementations are:

1. It integrates prior work and tools such as
Cracklib [6], character classes, etcetera. (some,
but not all, of the others also do this.)

2. It provides easy extensibility to other formats
such as LDAP and custom databases.

3. It is much simpler in scope than the others.
Some of them are enormous and handle every-
thing from account creation to interfacing with
a human resources database. The AUCOE
changer provides a means for users to easily
change their passwords.

4. Our main focus is user usability vs. administra-
tor usability.

5. The incremental approach builds on top of
existing frameworks such as NIS, NIS+,
Samba, and flat files, rather than replacing
them.

6. Decoupling password choosing from distribu-
tion and propagation allows us to not have to
worry as much about locking and conflict reso-
lution.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 67

User-Centric Acct Mgmt & Passwd Changer Hughes

The author was not able to gather meaningful
data – because of age and lack of access to the original
papers – on these password and account management
systems: Maryland [7], ACMAINT [8], Apollo [9].
References are provided at the end for those having
hardcopy proceedings.

Design Database Distrib./
Philosophy Type Sync.

Name Extensibility

Shuse [14] uses expectsync accts across
mult mach’s with
central database

custom, central NFS, NIS, FTP,
sockets

Agus [15] acct. over multi
archs using CCSO
[13]

custom (fixed?) Kerberos, VMS,
Unix, etc.

fixed DB but godo
for new accounts

NAMS [16] client/server dae-
mon with modules
replaces NIS

custom but open
(ASCII key & da-
ta)

TCP/IP socket
(client/server)

modular design

Accountworks [17] ease hiring process
and account cre-
ation

Sybase (other..) central client/serv-
er but no passwd
sync

probably difficult

Ganymede [18] provide central DB
push to NIS,
LDAP, etc.

Central, RAM, OO NIS, NIS+, LDAP,
etc

properly changing
schemas not for
timid

Auburn COE Provide usability
atop existing dist.
mechanisms

use existing (NIS,
etc.)

use existing (NIS,
etc)

Use PHP, module,
or other (e.g.,
TCP/IP)

Table 1: Survey of similar systems.

Many of the features of the following command-
line, pro-active password checkers have been inte-
grated into our password changer: npasswd [10],
passwd+ [11], ANLpasswd [12], Epasswd [13]. The
password vetting routines from these programs tend to
be tightly coupled with an existing command-line
interface and propagation mechanism. Rather than
extracting the proactive changing logic and rules from
any of these programs, it was easier for us to use
Cracklib and construct the various password rules and
classes in native PHP.

Information about current availability of and
updates to other user account management systems
was difficult to collect. Some of the systems listed
may have had updates more recent than the author was
aware. Some of them were designed to manage access
control where certain users are only authorized to use
certain machines, or the home directory may differ
based upon the machine. All of them had, as a primary
focus, the goals of modernizing and automating the
maintenance of user accounts at a site; password
changing, password synchronization, and usability, if
mentioned at all, were typically secondary. The most
currently relevant systems are compared in Table 1
based upon the following criteria:

• Design philosophy
• Custom database vs. existing database (e.g.,

NIS, LDAP)
• Distribution and synchronization methods for

accounts and passwords
• Extensibility – perceived degree of difficulty of

adding a new output format, heterogeneous
machines, configuration intricacies, etc.

• User interface focus
• Language(s) written using and/or configured

with
• Release status (may be out of date)
• Other characteristics that may be of interest

Genesis

The framework used by the AUCOE password
changing system came into being ad hoc. The project
that originated the framework provided a means by
which users could forward their email. The previous
forwarding program was text-based and required users
to login to a UNIX machine to run it. The number of
users wishing to forward their email was growing. The
time spent supporting these non-UNIX users was
growing proportionately.

We desired to avoid CGI and its inherent security
difficulties and call-out overhead. After a short period
of investigation, comparing the tradeoffs of mod_perl
[19] versus learning PHP, a new language, the author
chose PHP. PHP combined C and Perl syntax without
the special variable cruft. PHP had support for persis-
tent file handles. Finally, PHP appeared to be easier
for non-experts to learn and use quickly.

68 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Hughes User-Centric Acct Mgmt & Passwd Changer

In keeping with the tenets of user-interface
design, the password change form was designed to be
simple but usable. User feedback was incorporated to
make the form what it is today (Figure 1). The results
were positive both in terms of user satisfaction and
reduced support by administrative staff. We were
encouraged to try again: with passwords.

User Construct/ Release Other
Interface Config Status Features

Name

Shuse [14] text based Tcl/Expect with a
little bit of C

Only Sheridan
College

Agus [15] unknown 90% Perl, 10% C N/A at publication account clusters,
fine-grained ma-
chine access con-
trol

NAMS [16] account clusterstext based (cus-
tomized npasswd)

C daemons, ASCII
DB config

prev.
ftp.cs.jmu.edu

Web basedAccountworks [17] DB driven + Perl,
sybperl, Notes, sh,
etc.

not available designed for non-
techies; huge scope

Ganymede [18] Java Applets,
count on training

140K+ java lines,
web-based config

www.arlut.utexas.
edu/gash2

DB limits, good
access control

Auburn COE Web forms PHP, some C www.eng. auburn.
edu/˜doug

easy to add new
features, e.g., for-
ward mail

Table 1b: Survey of similar systems, cont.

Design Goals

Our system for changing passwords was
designed to meet certain goals:

• It must have universal accessibility.
• It must be secure.
• It must be easy for novices to use.
• It must not rely upon extensive online help.
• It should have access to online help for users

having trouble.
• It must not inhibit expert users.
• It must be scalable.
• It must provide clear and meaningful, jargon-

free responses.
• It should build upon existing distribution and

synchronization mechanisms: NIS, NIS+,
Samba, LDAP.

• It should be easy to extend as other distribution
and synchronization mechanisms become avail-
able.

• It should borrow techniques from prior pass-
word changing implementations.

We now provide finer detail on these goals. Why are
they here? How are they achieved?

It Must Have Universal Accessibility
In other words, use the Web. It is time consum-

ing to develop clients for various architectures. The
flexibility and speed of dedicated, platform-dependent
password clients was not indicated.

It Must Be Secure
Because users are providing information that

gives access to their accounts, and because secure,
local access cannot be assumed (though it could be
enforced), it is imperative that no information be
transmitted over the network in the clear. There are
multiple paths of transmission involved. See the Secu-
rity section for more details.

The Web server must verify the username and
old password for authenticity. Our implementation
provides multiple ways to do this.

1. Make the Web server a NIS slave.
PHP can directly access DBM files, so verify-
ing passwords by giving the Web user account
read-access to the encrypted password database
is possible. (Before anybody gets apoplectic,
please continue reading.) If your Web server is
single-purpose, contains no extra CGI, no other
user scripts, and no unknown functionality, this
is relatively safe.

2. Use the provided pwcheck daemon.
The pwcheck daemon uses a secure algorithm
to verify the username and password. If neither
is correct, a non-specific negative result is
returned: users are informed that either their
username or password is incorrect.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 69

User-Centric Acct Mgmt & Passwd Changer Hughes

3. Use another authentication mechanism.
While not provided, it would be fairly easy to
interface with LDAP, NIS+, or another authen-
tication database to verify a user’s identify.
One of the difficulties of this approach is
choosing between the lesser of two evils. Do
you wish to give your Web user root access to
the entire authentication database or do you
wish to provide a setuid root helper program
that becomes the user prior to checking the
encrypted password? This is the primary reason
why the pwcheck mechanism is provided. It is
discussed in more detail in the Security sec-
tion.

Figure 1: Sample user interface.

It Must:
Be Easy For Novices To Use
Rely Upon Extensive Online Help, and
Provide Access To Online Help For Users
Having Trouble

These three goals are complementary, and
might even be merged into one. The distinctions

among ease of use, having online help, and relying
upon online help, though subtle, are important. The
interface must be intuitive. One of the well-known
facts of user-interface design is that users rarely, if
ever, read any online help before attempting to do
something. They usually dive in oblivious to the cir-
cling sharks. The interface must be intuitive.

If a user cannot sit down and use a password
changing program without training or referring to a
manual, the program should be re-evaluated. We
have gone through several iterations of user feed-
back and modification. There is, however, a differ-
ence between using the program without requiring a
manual and referring to supplemental help should
the password choice be insufficient. We avoid the
requirement to read online help before-hand by pro-
viding abbreviated rules for choosing a password
right at the top of the Web form. The rules (Figure 2)
are specific enough to be easily understood, but
small enough to fit entirely on the form and in the
browser window.

70 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Hughes User-Centric Acct Mgmt & Passwd Changer

After each rejection of a password based upon
the given rules, the user is given the opportunity to
follow a link which gives suggestions for and exam-
ples of choosing a password. Failure messages are
communicated in bold red letters in a larger font and
written at the top of the page as the form is redrawn,
giving clear visual feedback about problems.

Figure 2: Password verification and update flowchart.

It Must Not Inhibit Experts
By providing a short set of rules, but not over-

whelming the user with extensive directions, the
interface is usable by experts.

It Must Be Scalable
Most of the scalability (and locking) issues are

pushed back to the distribution mechanism and thus
avoided. The interface must still, however, be able to
handle the case where a number of users connect
simultaneously. The worst case scenario can proba-
bly be attributed to university environments when
new accounts are generated at the beginning of each
term. Even in this scenario, however, it is extremely
unlikely for more than a few users to change their
passwords at a given time. Many of our users opt to
keep the random FIPS-181 [20] style passwords that
they are issued. Even if there was a Freshman com-
puter lab where the instructor dictated that all stu-
dents must change their passwords, changes would
still not be simultaneous. People read, type, and
think about their passwords at different rates. The

worst case would probably not be more than 5 to 10
simultaneous password changes, which is easily
achieved even with a modest PC as the Web server.
In practice, even in its 18 months of existence, it has
been unusual to have more than one person trying to
change a password in any given five minute interval.

Locking issues, similarly, are not a great con-
cern. Most of the methods to change passwords in
the existing back-end databases are already serial-
ized. NIS, NIS+, and LDAP already have their own
locking mechanisms. Even when we update our
Samba password file with the encrypted MD5
hashes, we use a simple, Perl, single-threaded dae-
mon to handle network requests from the Web server
and update the flat Samba password file. (See the
Extensibility section).

It Must Provide Clear and Meaningful, Jargon-
free Feedback

User feedback issues have been partially previ-
ously addressed. At the risk of appearing to climb
onto a soapbox, this is an area that is ignored far too
often by systems administrators developing user
interfaces for users. Users do not care – and should
not be burdened – with messages about errors in
some anonymous line of computer code. We systems
administrators, as a community, are particularly
guilty of these transgressions. The AUCOE program
gives messages in plain English such as ‘New

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 71

User-Centric Acct Mgmt & Passwd Changer Hughes

passwords do not match. Please retype them.’ , or
‘Passwords require at least six characters’, or ‘The
new password you entered is too similar to your full
name or username.’ Upon successful completion,
the program explicitly tells the user: ‘Your password
has been changed successfully and will be ready for
you to use anywhere in engineering in the next 10
minutes.’, giving them explicit expectations and
scope.

// Who do you want administrative mail (errors, etc) send to?
$Admin_Staff = "admin";

// General Vars - length of passwords
$MAXlength = 8;
$MINlength = 6;

// Error logging (daemon|error) (consult syslog.h)
$SYSLEVEL = 27;
// comment this out if you don’t have NIS.. If you do this, you
// better have LDAP (or skills to modify passwd.php3)
// Note - this is for submitting the password change.
$have_NIS = 1;
$NIS_domain = "eng.auburn.edu";

// This is for checking the current password
// For machines with direct access to shadow password file,
// set $direct_access = 1; and set password file like the following
// line:
// $pw_dbm = "/var/yp/domainname/passwd.adjunct.byname";
$direct_access = 0;

// Where do you keep your user .forward files?
$forward_path = "/forwards";
// If you use the forward function, choose the location of your php_file
// helper auxiliary program
$php_forward_helper = "/etc/local/php_file";

// For getting page count database info. Basically, nobody really
// cares about this but us (Auburn). It’s used in paper.php3.
$getpages = "/etc/local/getpages";

// Change these for LDAP
// ldap_uid should be an account with create and modify privileges on
// everything in your Samba and NIS ldap trees.

$have_ldap = 1;
$ldap_server = "ldap.your.domain";
$ldap_uid = "root";
$ldap_pw = "rootpw";
$ldap_smbdn = "ou=people,dc=eng,dc=auburn,dc=edu"; // Samba tree
$ldap_nisdn = "ou=people,dc=eng,dc=auburn,dc=edu"; // NIS/UNIX tree

// For socket based manual updates to an smbpasswd file, this is
// the host. Uncomment it here and change it as appropriate
// $SMBHOST = "smbhostname";

Figure 3: PHP configuration file.

It Should Build Upon Existing Distribution And
Synchronization Mechanisms
One of the drawbacks – or features, depending

upon your point of view – with some of the other
systems is that they require wholesale replacement
of existing mechanisms. This means modifying

every machine, or replacing the entire account gen-
eration mechanism, or tailoring lots of configuration
files. Sites starting with nothing, sites having special
access requirements, or sites mired in complicated
legacy scripts may have no qualms about replacing
an existing system. We provide an incremental
approach to sites that, like us, already have estab-
lished account generation and maintenance mecha-
nisms. It is not always possible to build incremen-
tally, but in our case it was desirable.

It Should Be Easy To Extend as Other Distribu-
tion and Synchronization Mechanisms
Become Available.
PHP, like Perl, is a "kitchen sink" language. It

contains builtin interfaces to many databases and a

72 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Hughes User-Centric Acct Mgmt & Passwd Changer

rich set of string processing and system interface
functions. It also has a well-documented and easy to
use C API for extension. The Cracklib module is
written as a loadable extension, as are methods for
generating Samba hashes, and calling NIS for pass-
word update. TCP/IP sockets and cryptographic
functions are also builtin providing yet another
means for extension: client/server communication.

Architecture and Implementation

The code, where possible, was written in PHP
for Apache [21]. A dynamically loadable PHP mod-
ule was constructed as an enhancement. We also
created a Perl helper daemon on the Samba PDC to
accept network connections from the secure Web
server and update the Samba password file.

Figure 2 shows a high-level flowchart of a
password change transaction. The ‘auth method’ box
encapsulates all of the functionality for checking to
see that the username and old password are valid, as
well as running the rule checks and Cracklib on the
new password. Upon successful validation, the
respective authentication databases are updated and
status is returned to the user. The dashed "valid auth"
line is conditional upon success of the authentication
method. The dashed "update" line to the other box
represents generic extensibility.

Configuration is currently managed through a
PHP include file: globals.php3. Figure 3 shows a
sample, commented globals.php3. This file lets you
define and configure your authentication services so
that when a user changes a password, the appropriate
databases are updated.

The provided PHP loadable module is written
in C. There are four main functions in this module.
The checkpass function is used to verify the user-
name and password as accepted from the user’s
browser. It calls pwcheckd on the server as detailed
in the Security section. The crack function calls the
Cracklib library with the user’s desired new pass-
word. The passwd function calls the RPC yppasswd
function to change the user’s password in the NIS
password map; the NIS master is set at compile time
in the Makefile. Lastly, the smbpasswd function
takes the user’s plain text password, creates the NT
hash pair, and returns the ASCII representation to
PHP for transmission to the smbdaemon program.
Transmission is accomplished with standard sockets.

Smbdaemon is a simple Perl program running
on the Samba PDC machine. It is a 130 line Perl
program at this writing. It listens on a well known
port for updates, and then writes them to the private
Samba smbpasswd file.

Security

There are five major areas where security
needs to be addresses:

• On the Web server machine.

• Between the Web browser and the Web
server.

• Between the Web server and the pwcheckd
daemon (if used).

• Between the Web server and the authentica-
tion database (during updates).

• In ancillary programs.

On The Web Server Machine
Changing passwords has broad security impli-

cations. We strongly recommend that you dedicate a
machine to these ’user services’. Do not install this
software on your general Web server. Do not give
users interactive accounts on the machine itself.
Users given direct access to the machine may have
access to files that they should not.

Browser to Server
As discussed in the goals section, the transac-

tions between the client browser and the Web server
must be encrypted using HTTPS, preferably using
128 bit clients. You should force your Web server to
only accept high grade security connections.

If you decide to setup the Web server as a NIS
client, you will authenticate users by directly com-
paring their encrypted passwords in the shadow
password file with their passwords passed from the
browser. In this case, you do not need to worry about
passing the user’s password over the network
(because the files are local – except of course during
periodic NIS synchronization updates). You do,
however, need to be doubly certain that you do not
give any users shell access to the machine. Addition-
ally, you should setup NIS to use shadow passwords.

Pwcheckd
Pwcheckd has been designed to allow the Web

server to verify the password of a user without passing
the clear text or the encrypted version of the password
over the network. The authentication transactions are
summarized in the following list.

1. The Web server calls a function to verify the
username and password which in turn calls
pwclient in the loadable module.

2. Pwclient connects to pwcheckd on the desig-
nated port of a known server and asks for the
UNIX password salt [22] for a given username.

3. Pwcheckd checks tcp_wrappers for valid client
access.

4. Pwcheckd sends the salt back to pwclient.
5. Pwclient uses the salt and UNIX password

algorithm to encrypt the user’s supplied pass-
word.

6. Pwclient makes an MD5 hash of the user’s
encrypted password and current time and sends
both hash and time to pwcheckd.

7. Pwcheckd receives the hash and time1 from the
user, and compares pwclient’s time with the

1You should use a time synchronization program like
NTP [23] between the Web server and the machine run-
ning pwcheckd to keep the clocks synchronized.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 73

User-Centric Acct Mgmt & Passwd Changer Hughes

server ’s time. If the time is not within plus or
minus 30 seconds, the attempt is logged as a
possible replay attack and the user is not
authenticated.

8. Pwcheckd makes an MD5 hash of the user’s
actual password and time supplied by pwclient
and compares with the hash from pwclient.
Success or failure is returned to pwclient.

Server to Database Updates

Server to database update security is going to be
dependent upon the authentication databases used. For
LDAP, the current implementation uses the LDAP
root password to open the database and update the
encrypted portions of the user’s LDAP entry. This
password is currently stored in the globals.php3 file.
Since globals.php3 contains only PHP variable assign-
ments, as long as you do not have your Web server
setup to allow people to fetch PHP3 files, it will be
safe. To bring home an earlier point: do not give users
shell access on this machine.

For NIS, PHP calls the RPC yppasswd function
(in the PHP loadable module) which exposes the
user ’s old password in clear text while the new pass-
word is transmitted in encrypted format. Because the
update is fast, the risk is small and mitigated in other
ways. (You do have your Web server and NIS server
on the same secured, switched network, right?)

You may be wondering why the pwcheckd mech-
anism appears to be so much more stringent and
secure than the database updates. The underlying
authentication databases have a considerable influence
on the update mechanisms available. The author hopes
that these mechanisms can be improved in the future.
For now, keep your Web server and your master
databases on the same, secure network – preferably
locked in a room or closet with no user accessible
jacks or VLANs. Even if you do not follow this
advice, the exposure of an encrypted password to pry-
ing eyes is typically2 less of a concern than exposure
of the plain-text original.

Ancillary Programs

For the contributed Samba password update pro-
gram, the NT hashed password pair is sent via a socket
to a server program running on the Samba PDC which
replaces any existing Samba entry with the new one.
This is a generic mechanism that could easily be
extended or replaced. As configured, smbdaemon only
accepts connections from the Web server. No plain-
text password is transmitted, but the NT hashes are
plain-text equivalent in that, if they are stolen, they
will give access to the server as that user (a well-
known Microsoft problem).

There is another ancillary program, php_file, not
directly related to the password changing functional-
ity. If you do not wish to use the mail forwarding

2See following paragraph.

functionality, remove formail.php3 and the php_file
program. Since Web servers are typically run either as
the user nobody, or as a special account such as www
or www-data, the helper program must be setuid to be
able to edit the user’s .forward file. While the suexec
functionality of Apache would appear to be suited for
this task, it has a number of shortcomings that make it
less ideal.

• Suexec is not installed by default and requires
special re-compilation of the Web server in
many distributions. This, in turn, requires addi-
tional configuration, care and knowledge. Our
set of tools is intended to be easier to run out of
the box.

• The program to be executed by suexec must be
resident in the WWW space and owned by the
effective user doing the executing. Instituting
this would require that all users have a copy of
php_file in their Web directory space. This
could be automated, of course, but would
necessitate yet another process during account
creation and deletion, as well as a small waste
of space. This residency requirement could
potentially involve thousands of new directo-
ries in the WWW space as well; since we rec-
ommend a dedicated Web server, a new direc-
tory would need to be created for every user
and the suexec-able php_file must be copied
into that directory.

• Altering the suexec code is potentially haz-
ardous. There are many warnings about doing
so. Though constructing new setuid code has its
own perils, the author opted for the perceived
simplicity of this approach. The alternative was
altering a complex program covered with vir-
tual no trespassing signs and barbed wire.

Consequently, php_file is setuid root. The user-
name and password are given to php_file to verify. In
its current implementation it lacks the authentication
flexibility of the password changer. Instead, it uses the
system to fetch the user’s actual password given the
supplied username. It then encrypts the supplied pass-
word and compares it with the actual password. If they
do not match, the user is informed. If the actual pass-
word and supplied, encrypted password match,
php_file becomes the user (setuid). During the process
of writing a new .forward file or removing an old one,
it makes sure to avoid symbolic link replacement
attacks3 by calling atomic functions. The user is
expected to own the directory where the .forward file
is located and the .forward file itself. If any of these
conditions is not satisfied, the user is informed of an
error, and a syslog(3) is sent about a possible attack.

Extensibility

By choosing PHP and its broad base of support
databases and functions, much of the extensibility of

3When a cracker exploits a race condition among system
services in combination with symbolic links to cause unin-
tended effects.

74 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Hughes User-Centric Acct Mgmt & Passwd Changer

this project is builtin. Using network sockets for
client-server interprocess communication is trivial.
Accessing a NIS encrypted password database is as
simple as granting permissions to the DBM file and
opening it. Likewise, LDAP and encryption functions
are present. Even so, we needed to construct a load-
able module to provide a few supplementary func-
tions.

Luckily, PHP makes it particularly easy to
extend itself via dynamically loadable shared object
libraries. The AUCOE supplied module contains some
RPC clients, a Samba hash generator, and a wrapper
for Cracklib.

The Perl Samba password changing daemon is
provided as a generic model for quick and dirty exten-
sibility. It receives connections from the network
using a simple socket(2) accept(3) loop, verifies the
connection is from the Web server, reads the record
from the network connection, and writes it to the pri-
vate Samba smbpasswd file. It also does some mem-
ory caching optimizations. (see the code).

Individuals wishing to add further functions in
PHP should take a look at the ldappw.php3 file and
see how all of the LDAP functionality is encapsulated
into a single object. Multiple LDAP server connec-
tions can be instantiated independently. This is the
model that future extensions should use, and that the
rest of the code will, eventually, be re-written to use.

Limitations and Future Directions

The code has not undergone significant outside
testing. It should have an AutoConf(1) configuration
for choosing options and a better installation proce-
dure than copying files. More of the code should be
converted to a class/object interface like the LDAP
framework. The password verification mechanisms
could be made more generic by allowing more choices
like PAM(3) and nsswitch.conf(4).

We constructed a GUI front-end and middle-
ware between the login and the various independent
functions. This allows us to offer an easy way for
users to login once at the beginning and automatically
get access to the various functions (password chang-
ing, forwarding mail, access printer accounting infor-
mation, generating one time passwords, etc.) How-
ever, it is currently not as comely as it might be and is
fairly site specific.

We have also thought about integrating the rule-
based configuration language of something like
npasswd or passwd+, but given the extreme thorough-
ness of Cracklib, it may add marginal benefit.

Acknowledgments

This project could not have been completed
without the help of various people and the support of
the College of Engineering at Auburn University. Spe-
cial thanks to Jerry Carter, for providing the Samba
hash generation code and for some of the LDAP

integration help, and to director Stephen Henderson
who always supports us in our endeavors. Thanks to
the PHP core and documentation team for putting
together an outstanding programming environment,
the Apache team for Web server integration, and the
folks at Debian for making it easy to keep all of the
packages and their dependencies up to date. Also
thanks to my wife for understanding my work ethic
and my two year old son who provides a wonderful
source of stress relief (No, no.. you eat it..)

Availability

The code is currently available via anonymous
ftp from ftp.eng.auburn.edu in pub/doug/AUCOEpw.
tar.gz or available from the author’s tools page at
http://www.eng.auburn.edu/˜doug/second.html

It is currently in production beta state – it works,
but needs lots of configuration via globals.php3. The
code is known to work on Solaris2.6 and above and on
Linux, specifically Debian.

Author Information

Doug Hughes received a BE in Computer Engi-
neering from Penn State University in 1991. His first
exposure to UNIX was on a Harris HCX-7 system
connected to the Internet, UUCP, and the BITNET.

After graduation he worked at GE Aerospace
post-RCA merger, and through the Martin Marietta
merger and various smaller buy-outs. He managed to
escape in 1994 (just prior to the Lockheed merger). In
the mean time he gathered experience in large scale
software development, systems administration, net-
work administration, and database administration.

He worked as the Senior Network Engineer for
the College of Engineering at Auburn University from
1994 until 2000, when he accepted a position with
Global Crossing. At the time of publication submis-
sion he was still working for Auburn. He can be con-
tacted electronically at doug@eng.auburn.edu (which
will probably remain active indefinitely).

References

[1] Microsoft Corporation, ‘‘Microsoft Networks
SMB File Sharing Protocol (Document Version
6.0p),’’ Redmond, Washington, January 1, 1996.

[2] Allison, Jeremy, ‘‘The Samba File and Print
Server,’’ ;login:, November 1997 NT Special:
12-18.

[3] Leighton, Luke Kenneth Casson, ‘‘Samba and
Windows NT Security Interoperability,’’ Pro-
ceedings of the 3rd Large Installation Systems
Administration of Windows NT Conference
(LISA-NT), Seattle, WA, July 30 – August 2,
2000, Lake Forest, CA, USENIX, 2000.

[4] Hornsby, David, Columbia Appletalk Package.
http://www.cs.mu.oz.au/appletalk/cap.html, Uni-
versity of Melbourne, Australia.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 75

User-Centric Acct Mgmt & Passwd Changer Hughes

[5] Originally by Rasmus Lerdorf, Portable Home
Page, http://www.php4.org/ , 1994.

[6] Muffet, Alec, Cracklib: A ProActive Password
Sanity Library, http://www.users.dircon.co.uk/
˜crypto/ , 1997.

[7] Cottrell, Pete, ‘‘Password File Management at
the University of Maryland,’’ Proceedings of the
Large Installation Systems Administrators Con-
ference, Philadelphia, PA, April 9-10, 1987, Lake
Forest, CA, USENIX, 1987. 32-33.

[8] Curry, David A., Samuel D. Kimery, Kent C. De
La Croix, Jeffrey R. Schwab, ‘‘ACMAINT: An
Account Creation and Maintenance System for
Distributed UNIX Systems,’’ Proceedings of the
4th Systems Administration Conference (LISA
’90), Colorado Springs, CO, October 18-19,
1990, Lake Forest, CA, USENIX, 1990, 1-10.

[9] Pato, Joseph N., Elizabeth Martin, Betsy Davis,
‘‘A User Account Registration System for a
Large (Heterogeneous) UNIX Network,’’ Pro-
ceedings of the USENIX Conference, Dallas, TX,
Winter 1988, Lake Forest, CA, USENIX, 1988,
155-161.

[10] Hoover, Clyde, npasswd. Last updated July 13,
1999, http://www.utexas.edu/cc/unix/software/
npasswd .

[11] Bishop, Matt, ‘‘Anatomy of a Proactive Pass-
word Changer,’’ Proceedings of the 2nd Usenix
Security Symposium, Baltimore MD, September
14-17, 1992, Lake Forest, CA, USENIX 1992,
171-184.

[12] ANLPassword, Source code, Last updated Feb
13, 1995, ftp://info.mcs.anl.gov/pub/systems/
anlpasswd.tar.Z .

[13] Davis, Eric Allen, Epasswd: Solving the Hetero-
geneous Password Program Problem, http://
www.nas.nasa.gov/Groups/Security/epasswd/ .

[14] Spencer, Henry, ‘‘Shuse At Two: Multi-Host
Account Administration,’’ Proceedings of the
11th Systems Administration Conference, (LISA
’97), San Diego, CA, October 26-31, 1997, Lake
Forest, CA, USENIX 1997, 65-69.

[15] Riddle, Paul, Paul Danckaert, Matt Metaferia,
‘‘AGUS: An Automatic Multi-Platform Account
Generation System,’’ Proceedings of the 9th Sys-
tems Administration Conference (LISA ’95),
Monterey, CA, September 17-22, 1995, Lake
Forest, CA, Usenix 1995, 171-180.

[16] Harris, J. Archer and Gregory Gingerich. ‘‘The
design and implementation of a network account
management system.’’ Proceedings of the 10th
Systems Administration Conference (LISA ’96),
Chicago, IL, September 29 – October 4, 1996,
Lake Forest, CA, USENIX, 1996. 181-189.

[17] Arnold, Bob, ‘‘Accountworks: Users Create
Accounts on SQL, Notes, NT, and UNIX,’’ Pro-
ceedings of the 12th Systems Administration
Conference (LISA ’98), Boston, MA, December

6-11, 1998, Lake Forest, CA, USENIX, 1998,
49-61.

[18] Abbey, Jonathan, Michael Mulvaney,
‘‘Ganymede: An Extensible and Customizable
Directory Management Framework,’’ Proceed-
ings of the 12th Systems Administration Confer-
ence (LISA ’98), Boston, MA, December 6-11,
1998, Lake Forest, CA, USENIX, 1998,
197-218.

[19] Mod_Perl, http://perl.apache.org/ .
[20] ‘‘Automated Password Generator (APG),’’ Fed-

eral Information Processing Standards Publica-
tion 181, October 5, 1993, National Institute of
Standards, http://www.itl.nist.gov/fipspubs/fip181.
htm .

[21] Apache Web Server. The Apache Software Foun-
dation, http://www.apache.org/ .

[22] Spafford, Gene, Simson Garfinkel, Practical
UNIX & Internet Security, 2nd Edition,
Sebastopol, CA: O’Reilly, 1996.

[23] Mills, David L., ‘‘Network Time Protocol (Ver-
sion 3) Specification, Implementation,’’ RFC
1305, March 1992.

76 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

