USENIX Association

Proceedings of the
14th Systems Administration Conference
(LI1SA 2000)

New Orleans, Louisiana, USA
December 3-8, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Automating Request-based
Software Distribution

Chris Hemmerich — Indiana University

ABSTRACT

Request-based distribution of software applications over a network is a difficult problem that
many organizations face. While several programs address this issue, many lack features required

for more sophisticated exports, and more complex

solutions usually have a very limited scope.

Managing these exports by hand is usually a time consuming and error-prone task. We were in
such a situation when we developed the Automated Netdist program a year ago.

Automated Netdist provides an automated mechanism for system administrators to request
and receive software exports with an immediate turnaround. The system provides a simple user
interface, secure authentication, and both user and machine based authentication. Each of these is
configurable on a package-by-package basis for flexibility.

Netdist is a modular service. The user interface, authentication and authorization are
independent of the export protocol. We are currently distributing via NFS, but adding an additional
protocol is as simple as writing a script to perform the export and plugging it into Netdist.

Introduction

At Indiana University, we have a large, extended,
and heterogeneous Unix workstation presence admin-
istered by many different departments and organiza-
tions. The Unix Workstation Support Group (UWSG)
is charged with supporting and advising the adminis-
trators of these machines. This includes offering a
variety of systems administration classes, negotiating
and maintaining site licenses with various vendors,
distributing a large variety of unix software, and main-
taining a Unix Users Group. We also provide tradi-
tional phone, e-mail, face-to-face, and extended con-
tact support services.

At the time Netdist was developed the UWSG
consisted of six members, five full-time and one part-
time, distributed across two campuses. This is a lot of
ground for such a small group to cover, and we are
always looking for ways to increase the efficiency of
our services without sacrificing quality or our cus-
tomers’ satisfaction. In early 1999, I was given the
task of re-working one of our least efficient and least
reliable services, the request-triggered distribution of
software via NFS.

Software Distribution

The UWSG distributes a large and varied collec-
tion of Unix software, to a widely varied audience.
Software export laws, license agreements, pre-existing
vendor-supplied distribution systems, varying security
requirements, and machines with slow or non-existent
network connection all work together to fragment our
software distribution into the following components.
These components are the environment out of which
Netdist grew, and their attributes greatly influenced
the development on Netdist.

e Anonymous FTP
e Secure HTTP Access

2000 LISA XIV — December 3-8, 2000 — New Orleans, LA

e Open NFS exports

¢ Request based NFS exports

e Media Checkout

¢ Vendor Specific Distribution Tools

Anonymous FTP

The majority of the software we distribute is via
anonymous FTP. We maintain a large (150GB+) site at
ftp.uwsg.iu.edu. This FTP site is our preferred method
of distributing files. This archive is available to the
world and contains mirrors of most of the large Linux
distributions, a CPAN mirror, a mirror of the Linux
kernel archives, various freeware programs and utili-
ties, and system patches. The benefits of this system
are many:

e [t supports many concurrent users, and is lim-
ited only by our current hardware and the uni-
versity’s bandwidth.

e [t is available to anyone in the world with FTP
access.

e It is easy to use, and the ratio of support inci-
dents to usage is orders of magnitude smaller
than any other service we maintain.

e It is efficient to administer, requiring little
maintenance.

e [t is a very well known system, and administra-
tion can be shared or passed on easily.

Unfortunately, anonymous FTP is not a viable
tool for all of our distribution needs. Following are
several of it’s limitations that have forced us to dis-
tribute packages using alternate methods.

e Access control is very limited. We maintain a
distinction between Indiana University (IU)
clients and non-IU clients. Anything beyond
this becomes much more difficult to administer
as the target audience shrinks and the complex-
ity of administration increases.

197

Automating Request-based Software Distribution

e Security is poor. FTP has a long history of
security deficiencies, vulnerabilities, and
exploits. We don’t make any sensitive data
available via FTP, allow authenticated logins,
or allow write access.

e We provide operating system media for system

installations, and most operating systems aren’t

able to be installed over an FTP connection.

Several Linux distributions support this, but we

must also provide Solaris, HP-UX, IRIX, and

other Unix flavors that do not.

FTP sites cannot be mounted as local file sys-

tems. We offer several large software packages,

and users might not have the free space to
download a large software package, uncom-
press it, and then install it.

Secure HTTP Access

For software that needs to be firmly restricted to
IU affiliates we use an Apache web server running
SSL and an in-house mod perl module that allows us
to securely authenticate users against the University
wide kerberos database. This system is useful for dis-
tributing smaller packages and we use it to distribute
export-restricted security software, as well as IU-spe-
cific license codes for several software packages that
we have licensed.

This service addresses the security failings of
anonymous FTP, but doesn’t address the concerns of
installing operating systems or dealing with large soft-
ware packages. In addition, the server installation and
configuration is much more complex than anonymous
FTP, and the overhead on the server is greater.

Open NFS Exports

We maintain open NFS exports of several Linux
distributions for network installs and updates. This is a
convenient way for administrators to set up new
machines over the campus network. As open NFS
exports lack any real security, we do not export any
other software this way. Indiana University does
block incoming NFS requests from outside the school
network, so the exposure is relatively small.

Request Based NFS Exports

At the time I began this project, we were export-
ing Star Office (before it was purchased by Sun) and
Sun’s Workshop Compiler Suite through NFS on a
per-request basis. This allowed us to control who had
access to the packages, while giving our customers the
convenience of installing these packages as if they
were mounted locally as a CD image. Our customers
were happy with this service, but we were managing it
by hand which was inefficient and error-prone. I was
assigned the task of replacing this service, when we
learned that several new software packages would be
added to it.

Media Checkout

We maintain a large collection of OS and appli-
cation CDs that are available for checkout by request.

198

Hemmerich

This has been a very labor intensive service for us, as
we must manage the physical storage of these CDs,
make copies of popular requests, keep track of who
has checked out what, and gently remind admins when
they’ve kept a CD too long. A separate project to
resolve the inefficiencies in this process is currently
wrapping up, with wonderful results.

This process is secure, and convenient for
administrators to install from. It also provides those
with only a modem or no network connection a means
of acquiring software. It is, however, horribly ineffi-
cient, generally requiring 15-30 minutes of work per
request. We must respond to the request, obtain the
physical media, schedule a pickup time, meet the cus-
tomer, check their identification, register the checkout
into our tracking system, and then collect the software.

Vendor Specific Distribution Tools

We use vendor-specific software distribution
tools from both HP and SGI. Both of these tools use
remote procedure calls for transferring software
patches, updates, and new packages. These tools are
convenient for administrators on campus to use, and
required little administration. Both of these tools are
proprietary software, and limited in the software they
can serve and the clients that can access them.

We use the IRIX Network Distribution server to
distribute OS and Software updates as well as new
packages. In order for a machine to be able to access
the server, it must be listed in the servers .rhost file.
This file tends to get rather large and outdated as time
progresses, and must be pruned periodically.

The HP Software Agent Suite allows us to make
HP depot files available over the network to HP
machines on campus. Depots are automatically avail-
able to the whole campus, but implementing more
granular permissions is a non-trivial task. The system
uses a graphical interface to make patching and install
software painless.

Request Based NFS exports: The problem

Under the old system, an administrator that
wanted StarOffice or Sun WorkShop would send an e-
mail message to our group account containing the
software requested and the target machine’s hostname.
Upon receiving the message, we would verify that all
of the relevant information was included, and if neces-
sary request any information that has been left out.
Then we would edit the NFS exports file by hand to
include the client machine and a comment listing
when the export expired. We then re-initialized the
exports and notified the user that the export would be
valid for three days. Once the export had expired, we
removed the client hostname manually and then re-ini-
tialized the exports to force the expiration.

While this system worked, we knew it should be
better. The ease of installation from an NFS export
and the wide install base of NFS clients were nice, but
there were problems with the system:

2000 LISA XIV — December 3-8, 2000 — New Orleans, LA

Hemmerich

e Our response time to customer requests was
inconsistent. Requests were only processed dur-
ing business hours, and if we were teaching a
class or were otherwise busy, it could take an
hour or longer to process a request.

¢ The process was error prone, especially while
editing the NFS export file by hand. Some
problems we experienced were mis-typing
hostnames, corrupting the NFS export file, and
forgetting to re-initialize the exports. These
were all easily and quickly resolved, but
increased response times and introduced short
service outages.

e Handling requests interrupted other tasks.
While handling a request usually only took five
to ten minutes, the interruptions could be diffi-
cult to deal with. We place a high priority on
response time, so even important tasks would
be interrupted to handle a request.

¢ The system was not scalable. The time required
to process exports and the chance of error both
increased linearly with the number of requests.
With anonymous FTP adding an extra 100
users, would not be noticeable, but the same
increase in NFS requests would have required
us to open another full time position.

¢ Removing exports was problematic. It was easy
to forget about an export after three days and
not remove it from the exports file. There were
also occasions where a hostname was added
without comments, which made it difficult to
determine if an export should be removed.

Requirements in a Replacement

After cataloging the strengths and weaknesses of
each of our distribution systems, we constructed a list
of features required in a replacement:

¢ Automatically process user requests.

¢ Automatically clear expired requests.

¢ Only answer requests from [U machines

e Must not require any proprietary software on
the client machine.

e Must be easy to use and to administer.

¢ Logging must be complete.

e Be able to authenticate the user, preferably
through our existing Kerberos database

¢ Any existing solution must be available free of
charge.

With such specific requirements, we had serious
doubts about finding an existing software package that
met, or even attempted to address, our needs. We had
been prepared to develop the solution from the begin-
ning, and already had several ideas about how to
implement the service. Before proceeding with this
implementation, we did perform a limited search for
existing software that met our needs.

We searched several common search portals,
such as dejanews (now deja), yahoo, and altavista.
Plodding through hundreds of results from various

2000 LISA XIV — December 3-8, 2000 — New Orleans, LA

Automating Request-based Software Distribution

search terms provided very few software distribution
systems, and all of these were designed to face prob-
lems different from ours.

Failing to find an existing solution to our prob-
lem, we began work on an in-house solution. We
wanted to maintain the benefits of a file system based
export, and since only a handful of machines on cam-
pus had AFS or DFS, we decided to stay with NFS as
the means of exporting the software.

We decided to leverage our experience with the
secure web server interface to our kerberos database to
provide secure authentication, and a web based
request form. This gave us the ease of use of NFS, the
security of HTTPS through user authentication, and
nearly ubiquitous installation of our clients, i.c a web
browser and NFS client.

With export requests and authentication handled
through HTTPS, and the software exports done via
NFS, we needed something to tie the pieces together.
We looked at several different models before narrow-
ing our selection down to either a system of setuid
root C programs, or a client/server interface, with the
web server acting as the client to a custom designed
server. We implemented rough versions of both of
these, and did some performance and security testing.
From the results we decided to go with the
client/server model.

A Brief Version History

The initial version of Netdist was designed to
alleviate the immediate problem with exporting
StarOffice and Sun WorkShop. We were eager to
release the system, and as such were unable to imple-
ment several of the more ambitious planned features.
The initial release in June, 1999, included the follow-
ing features:

¢ Automated user authentication.
¢ Automated export initialization and expiration.
¢ Ability to include or exclude sub-networks of
machines by IP number on a per-export basis.
e Variable export durations for different pack-
ages.
¢ Core API for implementing common methods.
e 24/7 availability, with immediate response.
¢ A client/server model with PGP based encryp-
tion.
The initial release went well, with positive user feed-
back. As it became certain that we would be adding
ApplixWare and Island Office to our available soft-
ware, we returned to Netdist development. In Novem-
ber 1999, we released a much improved Netdist with
ApplixWare and Island Office added to the list of
available software. The improved features included:
¢ Expanded API, and more encapsulated system
overall.
¢ Ability to limit exports to specific users.
¢ System for managing export documentation.
e Ability to control exports from multiple
machines from a single web interface.

199

Automating Request-based Software Distribution

¢ Ability to accept plug-ins for exports of proto-
cols other than NFS.
e More efficient coding, faster response time on
requests.
Since this revision, Netdist has been a nearly ideal ser-
vice to administer. It has required intervention less
than a handful of times, and the logs show continued
use.

cron

Remove
Export
NFSDaemon | NFS Netdist
[etc/df/dfstab Export Control Scripts Configuration File
A
Add
Export Y
Netdist
-)
AP Netdist Server
Configuration A Bxport
Request Request and
Y Y Yy Response
Netdist Client Web Form
Apache w/ open_ss mod_perl and auth_kerberos
Request Form
T
Authentication Resul tS.W/
Instructions
Software User
Export Request
Filesystem | | Web Browser w/ https support
Figure 1: Information flow between Netdist compo-
nents.
Architecture

The Netdist program is a system of four modular
components that can each be upgraded and extended
as needed with minimal effect on the other compo-
nents. The components consist of an API, client,
server (with configuration file), and export control
scripts.

Briefly, the client is a web form that authenti-
cates and authorizes each export request. If the request
is validated, the client passes an encrypted request to
the server. The server processes this request, and calls
the appropriate export control script, depending on the
export protocol of the software requested. The results
of these exports are then returned to the client for pre-
sentation to the user. The API ties all of these sections
together by providing common procedures and data
structures. Upon startup, the server reads a

200

Hemmerich

configuration file that defines the valid export types,
export restrictions, and other settings described below,
and shares this information with the client. See Figure
1 for an illustration of how these different components
work together to manage software exports.

The API

The API is written in object-oriented Perl, and is
available to the client, server, and access control
scripts. The API is composed of six modules and con-
tains any code that should be accessed from more than
one component in order to increase efficiency and to
ease communication between the different compo-
nents.

The API provides procedures for accessing and
manipulating the data structure created by reading in
the configuration file. This allows each component of
netdist to manipulate this data structure. The API also
manages all logging in order to guarantee comprehen-
sive and compatible log entries from events logged in
different components. API functions are also available
for creating unique temporary files and performing
date comparisons.

The Client

The client, or user interface to Netdist is a collec-
tion of mod perl scripts available on an Apache
Server with SSL. We use a custom Apache module to
authenticate users against our kerberos database, but
other Apache authentication schemes could be used.
Once the user is authenticated, they are presented with
a list of the exports they are authorized to request.
This list comes from the data structure which the
server creates from the configuration file, and is later
passed to the client upon request.

The user then enters the hostname he wishes to
export the software to, and selects the desired software
packages. The client performs taint checking on the
data before processing it to look for illegal hostnames,
and attempts to compromise the web server. The client
then makes sure the the hostname entered is an IU
machine, performs a reverse DNS lookup to make sure
the hostname and IP number match, and confirms that
the selected exports are valid for that host.

If these conditions are met, the client opens a
connection to the server and submits an encrypted
request for the approved exports. The client waits for a
success or failure response from the server and returns
a message for any error that may have occurred. Oth-
erwise, the client returns success, with links to instruc-
tions for accessing the exports, and an expiration date.

The Server

The server is a long-running Perl daemon that
must run as a user privileged enough to manage the
exports. In our case, NFS is used and the daemon runs
as root. At startup, the daemon processes the configu-
ration file, and then listens for connections on a UNIX
or TCP port, depending on how it is configured. The
server uses a PGP authentication scheme to ensure

2000 LISA XIV — December 3-8, 2000 — New Orleans, LA

Hemmerich

that it only processes requests from the client. There
are two valid requests a client can send to the server.
This first is for a copy of the configuration data struc-
ture, and the second is to export a software package.
Configuration requests are responded to, and export
requests are mapped to the appropriate export control
scripts, and results of the export are returned.

The Export Control Scripts

Each type of software export requires its own set
of export control scripts. Each set consists of one
script the server calls when requesting a new export,
and a second script to clean up expired exports, which
should be run by cron or another scheduling utility. In
the case of NFS, the exports controlled by Netdist
must be specially formatted to allow the control
scripts to process them. Other exports can be listed
normally after the final Netdist export. On a Solaris
machine the formatted entry looks like this:

ffeworks50 begin Island exports
ffhostl.indiana.edu userl 2000/09/18
ffhost2.indiana.edu userl 2000/09/18
ffhost3.indiana.edu user2 2000/09/19
{Htworks50 end Island exports
share -F nfs -o ro=hostl.indiana.edu:

host2.indiana.edu:host3.indiana.edu:

filler.indiana.edu /is/netdist/ws50

A comment entry is added with each export containing
the hostname, the username of the requester, and the
date of the export. The comments not only allow the
expiration scripts to determine when an export has
expired, they also make the export file more informa-
tive to human readers.

Configuration

We designed the Netdist program to be highly
and easily configurable. From working with many
Unix programs, we felt that a simple yet powerful
plaintext configuration file was the best way to
achieve this. The format of the configuration file, and
the API calls for processing it, were the first sections
to be implemented.

We had an initial list of values to store in the
configuration file, which grew as we developed the
other sections. We attempted to extract every config-
urable value to this file, but there are a few values that
we missed, and will extract in the next version of Net-
dist. The Netdist configuration file defines the avail-
able exports and their properties expressed as key-
value pairs. The valid keys are shown in the subsec-
tions below.

export

This value is a short string that uniquely identi-
fies the export within the system. It must be defined
for each export, and is only displayed in the logs.
Examples: (star51, is160)

text

This value is a text string that identifies the
export to a Netdist user. This should contain the full

2000 LISA XIV — December 3-8, 2000 — New Orleans, LA

Automating Request-based Software Distribution

title of the software package, the version number, and
the platforms on which the package is valid. This
parameter must be defined for each export. Example:
(’StarOffice 5.1 (Solaris|Linux)’)

type
This value defines the type of export the package
is. Currently the only valid choice is nfs, but if other
export protocols are added, this key will be used to
determine which scripts to call to perform the export.

host

The host value sets the host on which the export
is located. The host must have a configured and run-
ning Netdist server. With this value a single web inter-
face can manage exports from multiple servers.

port

This value defines the port on which the appro-
priate Netdist server will be listening. This allows Net-
dist to be easily introduced into environments without
worrying about any given port being free.

duration

The duration value defines the number of days
an export is valid before being expired.

manual

This value defines the name of the file to link to
when providing instructions for acquiring and
installing an export once it is approved. Instructions
should be in HTML format.

users

The users value defines the list of users allowed
to access this export. A value of “*” will allow all
users to export the software. Alternatively a list of
usernames can be provided. Only users able to export
the software will see it as an option.

allow

This value defines IP ranges to which the soft-
ware can be exported. Each entry is expressed as a
subnet mask, and multiple entries are allowed for each
export.

deny

This value defines an IP range on which the
export is not permitted. This can be used to remove
part of a previously allowed network, including hosts
and subnets. The syntax is the same as the allow
parameter, and again multiple entries are allowed.

Configuration: An Example

The first export defined in the configuration file
is a default. Any keys that are unassigned in subse-
quent export definitions will use the default value.
Below is an abridged configuration file, and an expla-
nation of the entries.

The First line declares the beginning of the
default entry. The next few entries declare that the
default protocol will be NFS, and indicate the the host
and port on which to look for the server on. Next the

201

Automating Request-based Software Distribution

file specifies that by default all users will be able to
access an export, and then gives the valid IP ranges for
exporting software.

Default

type=nfs

host=netdist.domain.edu

port=888

users=*

allow=111.111.

allow=111.112.

export=softl

text='Software Application \
1.1 (Solaris, Linux)’

manual=softappl.html

allow=111.113

allow=111.111

deny=111.111.12

export=soft2

text=''Software Application 2.1 (IRIX)’

manual=softapp2.html

deny=111.112.1

The export key defines the beginning of a new
export. The value given becomes an internal identifier
for the export and must be unique. The text and man-
ual definitions function as described above. The two
allow statements are combined, and they then replace
(not expand) the default allow value for this export.
The deny is then masked over the new allow value.

The second export defined is similar to the first,
but different in a few key ways. First, the export value
is a different string. This is essential as each export
string must be unique within a netdist system. Also,
since no allow key is defined, the default allow values
are used and the deny value given is masked over
them.

Below is a partial dump of the data structure cre-
ated when the configuration file is read in. This struc-
ture is then passed on to the web client so that it can
only lists the exports a user has access to and to make
security checks against the requests before passing
them on to the server. This dump was created with the
Data::Dumper Perl module.

SVAR1 = bless(|
*star52° => |
*deny’ => [],
‘users’ => ’*’,
‘type’ => ’'nfs’,
‘port’ => 2110,
‘text’ =» ’StarOffice 5.2°.
(Solarig|Linux)’,
*doc’ => ’star52.html’,
*duration’ => 3,
"host’ => ’server.indiana.edu’,
‘allow’ => [
*~111.12. 7,
*~111.14. 7,
*~111.15.°

]
b,
"default’ => {

202

Hemmerich

*deny’ => [],
‘users’ => *’,
‘type’ => ’'nfs’,
‘port’ => 2110,
‘text’ =» ’‘default’,
>duration’ => 3,
"host’ =»> ’server.indiana.edu’,
*allow’ => [

*~111.12. 7,

*~111.14. 7,

*~111.15.°

]

.,

"work507 => {
*deny’ => [],
‘users’ => ’*’,
‘type’ => ’nfs’,
‘port’ => 2110,

"text’ => ’Sun WorkShop 5.0 (Solaris)’,

*doc’ => ’workshop50.html’,
>duration’ => 7,
"host’ => ’server.indiana.edu’,
‘allow’ => [
*~111.12.°
]
}

}, ’Configuration’);

Security

Security was a priority throughout the develop-
ment of Netdist. We designed the architecture around
several basic security tenets.

e Users need to be authenticated before accessing
the service.

e Need to securely process NFS requests (which
require root access), through our web server
which runs under an unprivileged www
account.

e Logging must be thorough and structured to
make potential security problems highly visi-
ble.

Authentication

We have experience using apache with open-ssl
along with with an internal mod perl module to
authenticate web connections against IU’s kerberos
database. These components had worked well for us in
the past,allowing us to authenticate any IU user, and
ensure that their username and password were safely
transmitted to the server. Once authentication has been
performed, Netdist works with the user through an
abstract interface. Other apache authentication tools
can be used, and the resulting data can be structured to
work with the abstract database.

Request Processing

We required a method of responding to requests
that was secure against local users as well as network
based attacks. We investigated several options, includ-
ing setuid programs, before deciding to use a
client/server interface. They allowed us to securely

2000 LISA XIV — December 3-8, 2000 — New Orleans, LA

Hemmerich

make the transition from web server to root permis-
sions, and seemed more expandable than other solu-
tions.

After the web form processes the request, it
makes a socket connection to a server running as root,
and transmits the username, machine name, and export
request. The server then processes and logs the request
and sends the results back to the web form for display
to the user. To ensure a robust service, Netdist sup-
ports both TCP and UNIX sockets for its client/server
communications.

We must ensure that the server only replies to
requests from authorized clients, that it encrypts any
data sent over the network, and that the server handles
malformed connections properly. Using UNIX sockets
for communication simplifies this somewhat, as you
only worry about attacks from the local machine, and
can use file permissions to limit access to the socket.
For this reason, UNIX sockets are preferred for Net-
dist, unless you need the ability to control exports on a
foreign machine, in which case TCP sockets are
required.

We use PGP to secure communication over the
sockets. We generate a public/private key pair, assign
the private key to the root account, and place the pub-
lic key in the web server account’s (www) keyring.
The public/private nomenclature of PGP encryption
isn’t truly appropriate, as the public key is also pri-
vate, and known only to the www account. No other
copies of these keys exist, and both files can only be
read by the owner. Neither of these accounts uses PGP
for any other purposes, and the key pair is not used in
any other way.

In effect, this configuration allows us to encrypt
and sign the message with a single key pair. Since the
www client is the only entity with access to the public
key, any message encrypted with it has been signed by
the client. Initially, we used a second public/private
key pair to sign the encrypted message in the tradi-
tional PGP form. However, we eventually realized that
the second key pair didn’t increase security. Our www
client’s private key was no more secure than the
server’s public key, and only served to complicate the
communication protocol.

This encryption/signing model relies on keeping
the two keys a secret. This is a significant concern, as
one of the keys is owned by the www account. Web
server accounts are common targets of crackers as
they often provide easy access to a machine. Not only
must we worry about an attacker exploiting an inse-
cure cgi script or server setting, it is also trivial for any
user able to host cgi scripts on the web server to write
a script that will print the keyfile. To reduce this risk,
only members of the UWSG have accounts on the
machine that hosts netdist, and only the www and root
account can host web pages on the secure web server.
Very few web scripts are run on this secure server, and
all are closely examined, and perform strict taint
checking on any entered data.

2000 LISA XIV — December 3-8, 2000 — New Orleans, LA

Automating Request-based Software Distribution

Each message sent by the client is encrypted
with the public key. The server forks off a child pro-
cess for each incoming message. It then goes through
a series of steps to confirm the validity of the message.
If any of these steps fail, the message and test failed
are logged and the child process drops the connection
and terminates before proceeding to the next step.
These steps are completed in the following order:

1. The server confirms that the message is PGP
encoded, and does not contain any additional
text or data.

2. The server decodes the PGP message to ensure
it was sent from the client.

3. The server performs taint checking on the com-
mand to ensure that it is a valid netdist com-
mand with no special characters, shell escapes,
etc.

Once these tests are passed, the data is passed as
a parameter to the appropriate export control script,
and logged. At no point is code received by the server
executed by perl or the shell. These precautions are in
place to limit the impact of any successful attacks
against the encryption/signing scheme. First and fore-
most, arbitrary programs can not be run as root, and
the aggressive logging should allow us to identify any
successful attacks and close the service until the prob-
lem is resolved.

Logging

Netdist maintains three different log files for
readability. The first file logs any errors that occur
during the export request process. This is the log
where attacks on the system will be documented, as
well as any problems that might be affecting the sys-
tem. As such, it is important to closely monitor this
log.

The second log file logs the time, username, sup-
plied hostname, and requested exports of every
request. This log gives a comprehensive listing of the
requested exports, and can be used in conjunction with
the error log to look for suspicious access patterns.

The final log records successful export requests,
including the username, hostname, and timestamp of
the request. This file can be be used to generate many
different statistics on usage. It can be coupled with
machine and user databases, to answer questions such
as "How many requests were made by graduate stu-
dents last semester?", or "How many requests for Star
Office have been made from the Chemistry Depart-
ment?".

Distributed Netdist

The Netdist program supports a distributed
model, where a single web client can control software
exports from multiple machines via multiple servers.
This is useful for controlling multiple exports that
can’t be hosted on the same machine. This model
requires a single master machine which contains the
netdist configuration file, an instance of the Netdist

203

Automating Request-based Software Distribution

server and the Netdist API. Additional machines that
will export software are slaves and must contain an
instance of the Netdist server, the Netdist API, and the
export control scripts for each type of export is offers.
The web client can be installed on any machine, and
acquires its configuration from the master server. See
Figure 2 for an example of how multiple machines can
work together in a distributed Netdist environment.

Target Machines Target Machines

| | | | | |

I I I I I I
NFS NFS
Exports Exports
Config

File

Export Export

Control Control

Netdist || Script Netdist || Script
APl APl

Slave Netdist Server Master Netdist Server

Export Requests Export Requests
Configuration Requests
Users Users

Netdist Client Web Form

Netdist
API

Figure 2: A sample Distributed Netdist implementa-
tion.

Portability

Currently, Netdist could be ported to other sites
and platforms with a modest amount of work. It
requires a host with Perl 5 and some modules from
CPAN, PGP, cron (or some other scheduling routine),
and an instance of Apache with at least mod perl and
preferably a module for secure transactions. The NFS
export control scripts have been written for Solaris,
but could be modified to work with the syntax of other
Unix flavors.

The Perl modules and several scripts do have
host or port specific information coded into the script,
in a few places. Each of these instances is docu-
mented, and easy to update. In the next version of Net-
dist these values will be extracted to a configuration
script to increase portability.

204

Hemmerich

The Future of Netdist

The development of Netdist has slowed, as I no
longer work for the UWSG, and have less time to
work on it. However, the following items have been
completed/are being worked on:

¢ Scripts to allow Netdist to control https access
via .htaccess files

e Scripts to allow Netdist to control DFS and
AFS exports via group membership

e Migrating from PGP to SSL for encrypting
communication between the client and server.

This is dependent on SSL support for perl

through Net::SSLeay becoming more robust, or

me re-writing the client/server in C.

¢ Modifying the user interface to support many

more available packages via a tiered menu sys-

tem.
The flexibility of Netdist is important to us, as pre-
ferred protocols and programs can change quickly.
Netdist allows us to maintain a single, familiar point
of contact for customers, despite changes in the way
data is moved. For example there has been a push at
IU for DFS and AFS in the past few years, and Netdist
is ready to work with controlling access to software
available on these systems.

Availability

Netdist is still pre-alpha in that we haven’t done
much work to ease installation, and we would like to
incorporate some of the features mentioned above to
increase it usefulness. As such, Netdist is not yet
widely available. If you are interested in Netdist,
please contact the author for the software location, and
help with setting it up.

Acknowledgments

I would like to thank the people who worked
with me in the UWSG at the time I was working on
the Netdist project for their support, suggestions, and
help with testing the system. In particular, Dick
Repasky initially encouraged me to submit this work
to LISA, and worked with me extensively to revise the
first draft of this paper.

I would also like to thank the current members of
the Data Storage Services Group for supporting my
work on this paper, even when it interfered with my
current job responsibilities.

Finally, I would like to thank those that helped
me review and revise this paper. Their patience and
willingness to repeatedly suffer my writing was instru-
mental in finalizing this paper, and is greatly appreci-
ated.

Author Information

Chris Hemmerich <chemmeri@indiana.edu>
works as a System Administrator at Indiana University
(IU). He first became affiliated with the University as
a student in 1993. Since then he has received a BS in

2000 LISA XIV — December 3-8, 2000 — New Orleans, LA

Hemmerich

Biology, and is working on a Masters in CS. In 1995
he began working for IU as a lab consultant with the
University Information Technology Services (UITS)
division. From there he worked through various posi-
tions, including UITS Education Program Instruc-
tor/Developer, UITS Knowledge Base Program-
mer/Editor, and Unix Workstation Support Group
Unix Systems Specialist, where he served as the pri-
mary HP-UX support contact for IU, and developed
the Automated Netdist system. He currently holds a
position with the Distributed Storage Services Group,
where he administers [U’s DFS and AFS infrastruc-
ture, while assisting with the administration of IU’s
HPSS installation. In addition to the e-mail address
above, Chris can be reached by U.S mail at Indiana
University; 2711 East 10th Street; Bloomington,IN
47408

References

[1] CPAN documentation for Perl modules, http://
WWW.cpan.org .
[2] Christiansen & Torkington, Perl Cookbook,
O’Reilly and Associates.
[3] Stein & MacEachern, Writing Apache Modules
with perl and C, O’Reilly and Associates.
[4] P. Zimmerman, The Official PGP User's Guide,
MIT Press.
[5] Perl man pages, especially perlipc.
[6] The Apache Website, http://www.apache.org/ .
[7]1 B. Wong, Configuration and Capacity Planning
for Solaris Servers, Prentice Hall.
[8] The Open SSL Project, http://www.openssl.org/.
[9] H. Stern, Managing NFS and NIS, O’Reilly and
Associates.
[10] Distributed File Service Administration Guide
and Reference, IBM.
[11] The WU-FTPD Website, http://www.wuftpd.org/.

2000 LISA XIV — December 3-8, 2000 — New Orleans, LA

Automating Request-based Software Distribution

205

