
USENIX Association

Proceedings of the
14th Systems Administration Conference

(LISA 2000)

New Orleans, Louisiana, USA
December 3– 8, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

The OSU Flow-tools Package
and Cisco NetFlow Logs

Mark Fullmer – OARnet
Steve Romig – The Ohio State University

ABSTRACT

Many Cisco routers and switches support NetFlow services which provides a detailed source
of data about network traffic. The Office of Information Technology Enterprise Networking
Services group (OIT/ENS) at The Ohio State University (OSU) has written a suite of tools called
flow-tools to record, filter, print and analyze flow logs derived from exports of NetFlow
accounting records. We use the flow logs for general network planning, performance monitoring,
usage based billing, and many security related tasks including incident response and intrusion
detection. This paper describes what the flow logs contain, the tools we have written to store and
process these logs, and discusses how we have used the logs and the tools to perform network
management and security functions at OSU. We also discuss some related projects and our future
plans at the end of the paper.

NetFlow Accounting Records

We should start with a more complete descrip-
tion of what the flows are. Quoting from Cisco:

A network flow is defined as a unidirectional
sequence of packets between given source and
destination endpoints. Network flows are
highly granular; flow endpoints are identified
both by IP address as well as by transport layer
application port numbers. NetFlow also utilizes
the IP Protocol type, Type of Service (ToS) and
the input interface identifier to uniquely iden-
tify flows [3].

tc4>show ip cache 131.187.253.67 255.255.255.255 flow

SrcIf SrcIPaddress DstIf DstIPaddress Pr SrcP DstP Pkts
AT2/0.31 128.146.222.233 AT3/0.1 131.187.253.67 06 03FA 0016 4
AT3/0.1 131.187.253.67 AT2/0.31 128.146.222.233 06 0016 03FA 8

Figure 1: Active flows as seen on a Cisco router.

A NetFlow record is created when traffic is first
seen by a Cisco router or switch that is configured for
NetFlow services. Flows are identified uniquely by
characteristics of the traffic that they represent, includ-
ing the source and destination Internet Protocol (IP)
address, IP type, source and destination Transmission
Control Protocol (TCP) or User Datagram Protocol
(UDP) ports, type of service and a few other items.
NetFlow records end and are sent to the logging host
on at least the following conditions:

• For flows representing TCP traffic, when the
connection is done (after a RST or FIN is seen)

• When no traffic for the flow has been seen in
15 seconds.

• 30 minutes after the start of the flow. This
causes long lasting traffic patterns to show up
sooner than they might otherwise in the log.

• When the flow table fills.

Each NetFlow record contains data about the
packets that are represented in that flow in addition to
the unique identifiers listed above. These data include
the start and end times for the flow, the number of
packets and octets in the flow, the source and destina-
tion Autonomous System (AS) numbers, the input and
output interface numbers for the device where the Net-
Flow record was created, the source and destination
net masks and, for flows of TCP traffic, a logical ‘or’
of all of the TCP header flags seen (except for the
ACK flag). In the case of Internet Control Message
Protocol (ICMP) traffic, the ICMP type and subtype
are recorded in the destination port field of the Net-
Flow records.

For example, suppose that a SSH connection is
established from a client on host 128.146.222.233 port
1234 to a server on host 131.187.253.67 port 22, and
that the traffic passes through a Cisco device that has
NetFlow processing enabled. We will simplify things
and identify our flows here by a tuple containing the
IP Protocol type, source IP address, source TCP/UDP
port, destination IP and destination TCP/UDP port.
The initial packet from the client to the server causes
the router to create a flow entry for {TCP,
128.146.222.233, 1234, 131.187.253.67, 23}. The
response from the server to the client causes the router
to create a related flow {TCP, 131.187.253.67, 23,
128.146.222.233, 1234}. Data from subsequent traffic
will be aggregated in these two flow records until one
of the ending conditions listed above is seen, such as

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 291

The OSU Flow-tools Package and Cisco NetFlow Logs Fullmer & Romig

when the TCP session ends, or because there has been
no traffic for 15 seconds. Active flows can be viewed
in the router command line interface with the com-
mand show ip cache <IP Mask> flow. This allows you to
view flows that exist on the router whose NetFlow
records have not been exported yet (Figure 1).

In the simplest case for a TCP session there will
be a single flow representing the traffic from the client
to the server, and a single flow representing traffic
from the server to the client. The TCP flags field for
both flows would typically have both the SYN and
FIN bits set, indicating that packets with those flags
had been seen traveling in both directions.

This is not typical, however. Traffic for a single
TCP connection is frequently represented by multiple
flow records, due to timeouts from lulls in the conver-
sation, the flow table filling up, or the 30 minute flow
maximum lifetime. This means that one often has to
string multiple flow records together to get all of the
data corresponding to an entire TCP session. In these
cases, the TCP flags field can be used to determine
whether a flow represents data from the start, middle
or end of the TCP session. Flows from the start of a
session will have the SYN (but not FIN or RST) bit
set, flows from the middle of the session will typically
have no flag bits set, and flows from the end of the
session will have the FIN or RST bits set (but not
SYN).

Flows for UDP and ICMP traffic behave simi-
larly, although it is important to note that since neither
of these are connection oriented protocols flows of
UDP and ICMP traffic are just collections of similar
packets.

Terminology

A NetFlow device is a Cisco router or switch
that supports NetFlow services and which is exporting
NetFlow records. NetFlow Protocol Data Units
(PDUs, also called NetFlow records) are the account-
ing records that NetFlow devices emit. We will use the
term flow records or flow logs to refer to flow
accounting records in the internal flow-tools format. A
NetFlow collector is a host running flow-capture to
create a flow log from NetFlow records exported from
one or more NetFlow devices. Note that flows are uni-
directional collections of similar packets. We will use
the terms connection or session to refer to all of the
packets associated with bidirectional communication
between a client and a server. A connection (such as a
connection from a telnet client to a telnet server) will
consist of at least two and possibly many more unidi-
rectional flows.

The OSU Flow Tools

The Ohio State University has written a suite of
tools for collecting, filtering, printing and analyzing
Cisco flows. The tools are written to work as UNIX
pipelined commands, making it easy to perform data

reduction without creating unnecessary intermediate
files. The tools are grouped roughly as ‘‘capture
tools,’’ ‘‘general analysis tools,’’ and ‘‘security tools’’
in the following discussion.

Work on flow-tools started in August of 1996
when Cisco had released an EFT image with a new
feature called NetFlow switching. At this time OSU
had Internet connectivity via CICNet, and a local peer-
ing with the state network, OARnet. We needed a way
to determine how much of our traffic was staying local
to CICNet, and indirectly the other big 10 schools, and
how much was transiting CICNet to MCI. Where our
traffic was terminating and originating would poten-
tially influence future Internet bandwidth purchasing
decisions. An initial release of flow-tools aided by
testing and feedback from other CICNet member
schools was generating statistics in early September.
Since then features, fixes and documentation have
been added to the tool set, primarily for OSU’s inter-
nal use with incident response and traffic analysis.
Cisco has improved NetFlow switching over the past
few years including features such Border Gateway
Protocol (BGP) AS information, aggregated flow
exports, and integration with dCEF to provide what
we are now using, NetFlow accounting. Much of the
work OSU has done has been made publicly available
in open source form.

Internal Operation

NetFlow records are exported from Cisco gear in
one of several versions. To accommodate the slightly
different records, the flow-tools package receives
these records in native Cisco format and translates the
records to a fixed size record stream format which
contains a snapshot of what was available in the Cisco
version 5 NetFlow export records. This conversion
work is done in the programs that receive flow exports
from devices (flow-capture and flow-receive), and
most of the rest of the tools work with this internal
flow-tools representation (flow-fanout is the exception
– this is a generic UDP packet multiplexer). Most of
the programs in the flow-tools suite were designed to
read and write to stdin and stdout, although some have
command line options that allow you to redirect I/O to
specific files. The tools also support zlib compression
(RFC 1950 [10]) on the fly to conserve space.

Capture Tools

Each NetFlow enabled router or switch has to be
configured to export their flow records to a flow col-
lector. Flows are exported through UDP packets sent
to a designated host and port, where some sort of net-
work service is expected to receive the data and do
something useful with it. The IOS command ip flow-
export destination 10.0.0.1 12345 would cause a device
to export NetFlow records to the host with IP address
10.0.0.1 at UDP port 12345. Several packages are
available for receiving and processing these NetFlow
exports, see the related work section at the end of this
paper for a brief survey.

292 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Fullmer & Romig The OSU Flow-tools Package and Cisco NetFlow Logs

In the case of the flow-tools package this collec-
tion service is provided through a program called
flow-capture. Flow-capture listens on the designated
UDP port and writes the received flow records to log
files. To keep individual logs from growing to an
unwieldy size flow-capture rotates to a new file peri-
odically. Flow-capture was designed to facilitate the
long-term archival of flow records and has a built-in
mechanism to manage the log file space in the output
directory, either by restricting the number of separate
log files that are maintained or by restricting the total
bytes allocated to log files in the output directory. The
UDP port, output directory, rotation period, and log
count or size limits are all configured through the
command line. For instance, flow-capture -E1G -n23
-p9991 -w/var/log/flows -z6 would cause flow-capture to
listen on UDP port 9991, write its logs with level 6
compression to /var/log/flows, rotate the file once per
hour, and save up to one gigabyte of log files in the
output directory.

Internet

Campus
Backbone

(ATM)

Ohio Gigapop
peering

Network of Interest

se2

kc7tc4

Example Topology with Netflow enabled routers

interface ifIndex destination

fa0/0 1 Inside
atm1/0.36 47 tc4
atm1/0.41 62 kc7

Flows exported
to flow-capture

from se2

RR Peering

Figure 2: Simplified diagram of the OSU network.

Flow-capture also allows you to connect to it via
TCP to receive a real-time feed of flow records, which
you can receive using the nc (netcat [8]) program, as
in nc capturehost 9991 | flow-print. This can be useful for
debugging as well as for applications that require real-
time access to NetFlow records such as flow-dscan.

There is also a simple program called flow-
receive which listens for NetFlow records on a UDP

port (like flow-capture), but which writes the resulting
flow records to stdout rather than archiving them to
files. This is useful for debugging NetFlow exports.

Flow-fanout captures NetFlow records through a
UDP port (like flow-capture) and replicates them to
multiple destinations, which are specified by host and
UDP port on the command line. This is primarily use-
ful for debugging purposes, though it can also be used
to replicate flow records to other tools, such as
cflowd.

Flow-mirror and flow-rsync are simple scripts
that copy flow logs from the collection hosts to the
archive hosts using FTP and rsync, respectively.

Flow-expire implements the same space man-
agement features that flow-capture does. This is useful
for managing the logs on systems that have copies of
the flow logs mirrored through the flow-mirror or
flow-rsync scripts but which are not running flow-cap-
ture.

Our architecture for flow collecting and process-
ing has grown from a single Sparc 5 equipped with a
few Gigabytes of disk space in August of 1996 to
eleven Pentium and Pentium II based flow collectors,
a dedicated Pentium III file server equipped with two
250 gigabyte RAID5 arrays, and two one gigahertz
Athlon processing servers. The flow collectors are
typically connected directly to the routers they are

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 293

The OSU Flow-tools Package and Cisco NetFlow Logs Fullmer & Romig

gathering flows from and also can double as reverse
terminal servers and consoles for other physically
adjacent equipment. These collectors have minimal
local disk space, so our primary file server polls the
flow collectors once an hour with rsync for completed
flow exports. We use flow-capture to receive flows
and manage the disk space on the collectors, and flow-
expire to manage space on the file server. Figure 2
shows a logical diagram of the OSU backbone and its
connections to the Internet. Figure 3 gives an idea of
how we manage flow captures.

Distributed Netflow collection and processing

250 Gig

flow collector
PII/450 / FreeBSD

flow collector
PII450 / FreeBSD

flow collector
PII/450 / FreeBSD

Netflow exports Netflow exports

Netflow exports Netflow exports

250 Gig

file server
PIII 550 / FreeBSD

Compressed flow files in
stream format pulled from
collectors with rsync.

crunching server
1GHz Athlon / FreeBSD

crunching server
1GHz Athlon / FreeBSD

Gigabit Ethernet Switch

real time flow processing

Figure 3: Simplified diagram of flow collectors at OSU.

Flow collector performance depends directly on
the availability of enough free CPU cycles to com-
press the inbound flow exports and move the com-
pressed stream to disk. To verify that the collector is
not over subscribed, poll the kernel statistics for
dropped UDP datagrams due to full socket buffers. On
FreeBSD this can be done with netstat -s. Flow-cap-
ture attempts to use larger than default socket buffers
to help ensure bursty flow exports are handled without
unnecessary packet loss. Flow-capture is started with
rtprio which gives it an unfair advantage over other
running processes.

Disk IO and CPU both contribute to the perfor-
mance of processing the flow data. Initially we would
collect and process flows from the campus border on a
single server. At that time most of our other routers

were not capable of generating flow statistics due to
hardware constraints or were not able to run the Cisco
images that supported the NetFlow feature set. Today,
NetFlow exports are archived from all the campus
backbone routers to a single large disk store which is
shared with two other servers dedicated to processing
the data sets and generating reports. Each of the
servers where the data is crunched also have a striped
two disk temporary storage area to reduce NFS traffic
when iterating over the same data set many times, as
we typically do. A simple benchmark of using flow-
cat to uncompress a days worth of flow exports from a
single router and print it in ASCII leads to a process-
ing speed of about 300,000 flows per second on the
one gigahertz Athlon boxes using local storage. Typi-
cal pipelines such as flow-cat <dataset> | flow-filter | flow-
stat <options> can reduce this down to around 245,000
flows per second, which is adequate for the number of
reports we run and the size of the data sets currently in
use. Our upgrade plans include a faster RAID con-
troller and a newer version of FreeBSD with improved
NFS and network performance.

We currently average 67,320 octets per flow and
92 packets per flow. One of our busiest routers han-
dles 397 gigabytes of traffic per day (about 35
megabits per second) in 548 million packets which
generates 5.9 million flow records per day. The flow-

294 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Fullmer & Romig The OSU Flow-tools Package and Cisco NetFlow Logs

tools flow record is 60 bytes long, so this works out to
about 350 megabytes of flow logs per day at level 0
compression. We use level 6 compression by default,
where we get a 4.3:1 compression ratio, so this actu-
ally works out to about 82 megabytes of actual disk
space. This number can vary considerably – various
denial of service attacks (especially SYN floods) can
greatly increase the number of flows created, and
accordingly, the number of flow records reported.

General Analysis Tools

Since our logs are split into relatively small files
that represent network traffic for short time periods,
we need a way to catenate these files together prior to
processing. We can not simply use the UNIX cat pro-
gram since each log starts with a general header that
describes the contents of that log and this header needs
to be removed from within the catenated files. The
flow-cat program reads one or more flow logs (listed
on the command line, though it will also read from
stdin) and catenates the contents of these files in turn
to stdout (or a designated output file).

Flow logs are written as binary records to a file
and are not directly readable. The flow-print program
reads records from a flow log and prints their contents
in one of several output formats. For example, flow-cat
* | flow-print -f 5 would print information about each of
the flows in all of the logs in the current directory
using format 5. Format 5 includes the start and end
time of the flow, source and destination IP address and
TCP or UDP ports, IP protocol type, source and desti-
nation interface numbers, TCP flags, and a count of
the number of octets and packets for each flow. In the
example in Figure 4 we have removed several of the
output fields to make it more readable. The column
labeled ‘‘p’’ is the IP protocol type – 6 is TCP, 17 is
UDP. The column labeled ‘‘f ’’ is the OR of the TCP
flags for each flow. The last two columns, labeled ‘‘#’’
and ‘‘octets’’ show the total number of packets and
octets for each flow. We also shortened the timestamp
format in the ‘‘start time’’ column – normally times-
tamps are printed as MMDD.HH:MM:SS.SSS, so a
timestamp of 0927.18:30:23.562 would represent the
time 18:30:23.562 on September 27.

start src src dst dst p f # octets
time ip port ip port

00:00:11.380 164.107.1.2 1026 205.188.254.195 4000 17 0 1 56
00:00:11.384 216.65.138.227 1055 164.107.1.3 28001 17 0 1 36
00:00:11.384 164.107.1.3 28001 216.65.138.227 1055 17 0 1 68
00:00:11.392 164.107.1.4 27015 24.93.115.123 1493 17 0 3 1129
00:00:11.392 164.107.1.5 1034 205.188.254.207 4000 17 0 1 48
00:00:11.392 128.146.1.7 53 206.152.182.1 53 17 0 1 61
00:00:11.404 204.202.129.230 80 140.254.1.6 1201 6 3 30 14719

Figure 4: Sample output from flow-print, edited to make it more compact.

You can use command line options to cause
flow-print to translate IP addresses and port numbers
to names, where possible. We do not use this option

very often, since we are used to working with numeric
IP addresses and port numbers. Also, the translation to
host names can lead to misleading interpretations due
to DNS spoofing (through cache poisoning or other
techniques) and due to port overloading (running a
web daemon on TCP port 23, which would be
reported as a telnet connection).

You can search flow logs and pull out interesting
records with flow-filter. Flow-filter allows you to
match records by the following fields:

• Source or destination autonomous system num-
ber (-a and -A options).

• Source or destination port number (-p and -P
options).

• IP protocol type (-r option).
• Source or destination IP addresses, using Cisco

standard Access Control Lists (ACLs, -S and
-D options).

• Input or output interface numbers (-i and -I
options).

Most of these options allow you to specify
ranges and lists of values to match. For instance, flow-
filter -r 6 -P 21,23,25,80 would match TCP flows (IP
protocol type 6) with a destination port of 21, 23, 25
or 80 (which are usually FTP, telnet, SMTP and web
services). The ability to filter flow records using Cisco
standard ACLs allows us to perform powerful
searches through our archives as part of incident
investigations. The command flow-filter -f flow.acl -S
attackers -D victims would read ACL definitions from a
file named flow.acl (see Figure 5) and match flow
records where the source IP address matches the
‘‘attackers’’ ACL and the destination IP address
matches the ‘‘victims’’ ACL. You can also use the
command line options to further filter the output by
other fields, such as by IP protocol or TCP/UDP port.

We wrote a related script named flow-search to
facilitate investigations of computer intrusions using
the flow logs. Flow-search allows you to easily apply
the same filter to a large number of separate log files.
You could easily do this by applying flow-filter to the
output of flow-cat, but this procedure disassociates the
flow records from the name of the log file that they
were found in, which can be inconvenient in incident
investigations. Flow-search applies flow-filter to each
log file individually and keeps the results in derivative
files named after the source logs.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 295

The OSU Flow-tools Package and Cisco NetFlow Logs Fullmer & Romig

Since flow records are created when their corre-
sponding flows end the records are recorded in the log
file in order of the ending time of these flows. This
makes it hard to correctly interpret the contents of the
flow logs, For example, you may suspect that an
intruder is logging into a host through a backdoor of
some sort, and you can see network activity coming
from the host (scans, exploit attempts, IRC connec-
tions, etc) that lead you to believe that the intruder is
active. But the flows associated with the backdoor
connection may not show up in the flow logs until 30
minutes after the backdoor traffic actually started, so
the other activity may actually occur first in the log.
We wrote flow-sort to quickly sort the flow logs into
chronological order according to the starting time of
each flow. Flow-sort is implemented as a rolling heap
sort, where flows are sorted into a heap which repre-
sents a 35 minute wide window (the maximum dura-
tion of a flow is 30 minutes). As flows move out of the
rolling 35 minute window they are written out, now
sorted by the starting time of the flow. Flow-sort can
also save the heap when it reaches the end of the input
and can restore from a saved heap when it starts up on
a new file, which allows us to correctly sort flows
between different log files.

! permit anything
ip access-list standard all permit any

! match the attackers
ip access-list standard attackers permit 10.0.0.1 0.0.0.0
ip access-list standard attackers permit 128.146.222.0 0.0.0.255
ip access-list standard attackers deny any

! match the victims
ip access-list standard victims permit 140.254.1.1 0.0.0.0
ip access-list standard victims permit 140.254.1.2 0.0.0.0
ip access-list standard victims deny any

Figure 5: Example access control list definition file for flow-filter.

Since flows are unidirectional and do not contain
any indication about who initiated a connection, it can
be difficult to correctly determine the client/server
relationship between the source and destination hosts
in each flow,. One can apply heuristics based on the
transport level source and destination port numbers, or
by maintaining state about previous network activity
on each host (‘‘host A created a connection to TCP
port 21 on host B’’) and using that to make inferences
about unknown traffic (‘‘this traffic from {TCP, A,
12345} to {TCP, B, 32145} might be a passive mode
FTP data connection’’). These are subject to mislabel-
ing (‘‘this specific traffic was a backdoor to host B’’)
or ambiguity (is traffic between TCP port 2000 and
port 6000 is either OpenWindows, X, or something
else entirely). The TCP flags field is of no help, since
the same flags are usually seen in aggregates of pack-
ets in both directions. It would be useful if flows of
TCP traffic where a TCP packet contained a SYN but
not an ACK were marked in some fashion, but Net-
Flow services does not provide that information.

We can try to use the starting times of the flows
to infer the client/server status of the endpoints – the
source of the first flow is the one that initiated the con-
nection. Flow-connect attempts to make these infer-
ences from sorted flow records and aggregates flow
records for the same session into a single flow record
whose source IP is the client and whose destination IP
is the server. At the time of this writing, this is still
something of a work in progress, though preliminary
results are encouraging.

Network Planning and Performance Tools
We have depended primarily on other tools such

as statscout [13], MRTG [14] and a variety of home-
grown tools for network planning, performance analy-
sis and monitoring. We have found it useful to gener-
ate some common reports from the flow logs. Flow-
stat summarizes flows into useful reports, some of
which are easily viewable as graphs using tools like
gnuplot. Flow-stat currently supports almost 20 differ-
ent report styles, including summaries by source or
destination AS number, port, or IP address, and
source/destination matrix summaries. See the section
on network planning and performance tools for some
examples of how we use flow-stat.

Flow-profile is similar to flow-stat but provides
the ability to aggregate flows based on groups of hosts
as defined in a configuration file. This provides a
powerful mechanism for additional data analysis, and
is especially useful to generate usage data by group
which can be used as a source for usage based billing.
Flow-profile reads a configuration file which essen-
tially describes the mapping between billing units and
IP address ranges. The data from the flow records
passed to flow-profile are aggregated according to
these groupings and are summarized in the output,
which is designed to serve as input to a billing system.
See Figure 6 for an example of a configuration file,
and Figure 7 for sample output.

The flow-tools package is a small set of pro-
grams for processing NetFlow exports that can be
chained together, along with other standard utilities
such as awk, grep, perl, sort, etc to produce reports.
Leveraging off existing well-known utilities can lead
to simple one-liners that produce detailed network
activity reports or data sets for depicting long term

296 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Fullmer & Romig The OSU Flow-tools Package and Cisco NetFlow Logs

usage with utilities such as gnuplot or mtv. The fol-
lowing are examples of some of the types of reports
that can be generated.

define the inside interface
inside 1 3 4

define outside interface
outside 8

range 128.146.070.001 128.146.070.001 math
range 128.146.024.001 128.146.024.001 physics
range 128.146.225.001 128.146.225.001 economics
range 128.146.216.001 128.146.216.001 math
range 128.146.222.001 128.146.222.001 athletics
...
range 164.107.005.151 164.107.005.244 physics
range 128.146.050.240 128.146.050.244 psychobotany

define these after ranges to make sure all addresses in a block
have range definitions
bound 128.146.0.0 128.146.255.255

Figure 6: Sample configuration file for flow-profile.

#group octets packets
in out in out

math 358627478 3423321 3274516064 4518383
physics 7449413327 38512040 32410612445 44213679
psychobotany 2025644653 27020722 14947199604 28384258
english 212751 2283 2108750 2495
...

Figure 7: Sample output from flow-profile.

flow-cat cf05.2000-09-26.* | flow-filter -i1 -I47,62 | flow-stat -P -f9 \
| grep -v ’ˆ#’ | sort -n -r +2 -3

IP flows octets packets duration
--
164.107.70.189 0.077 7.477 3.669 1.053
140.254.229.202 0.091 5.036 2.487 0.719
140.254.233.119 0.116 3.874 1.936 0.824
164.107.67.66 0.262 2.412 1.240 0.530
140.254.106.226 0.122 2.358 1.306 0.754
140.254.229.255 0.045 1.977 0.969 0.264
164.107.86.143 0.059 1.835 0.988 0.337
164.107.93.206 0.091 1.602 0.857 0.390
164.107.90.220 0.238 1.390 0.742 0.352
140.254.236.103 0.013 1.381 0.714 0.152

Figure 8: Using flow-stat to find the top 10 users.

Top 10 Users

It is easy to create custom reports. Here is how
we find the list of the top 10 network bandwidth users
in our dorm network, ResNet (see Figure 8). We use
flow-cat to catenate the data sets for a day’s worth of
logs together and pass the resulting output to flow-fil-
ter to isolate traffic with an input interface of 1 and an
output interface of 47 or 62 (our connections to the
outside world, see Figure 2). The output from flow-
filter is passed to flow-stat, which we will instruct to

generate a usage report based on source IP address
(-f9) and to report the totals in percent/total form.
Finally, we filter out the comments with grep and sort
the results in descending order by the value in the total
octets column. If you examine the numbers you will
see that the top 10 users are using almost 30% of the
total octets counted.

Counting Addresses

First, lets count the number of unique IP
addresses on the Internet that have exchanged traffic
with hosts at ResNet. We will use flow-filter to pull
out just traffic going to the Internet, and flow-stat for-
mat 8 (statistics by destination IP address) to generate

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 297

The OSU Flow-tools Package and Cisco NetFlow Logs Fullmer & Romig

the unique list, which we will count with the wc
(Word Count) program: flow-cat cf05.2000-09-26.* | flow-
filter -I47,62 | flow-stat -f8| grep -v ’ #’ | wc -l.

From this, we see that there were 945,189 unique
destination IP addresses contacted.

>flow-cat /netflow/se2/cf05.2000-09-28.* | flow-filter -r6 -i1 -I47,62 \
| flow-dscan -b -p -O -P

info(6): port scan: src=140.254.103.62 dst=24.160.184.73 start=966204748

>flow-cat /netflow/se2/cf05.2000-09-28.* | \
flow-filter -r6 -i1 -I47,62 -f flow.acl -S portscan | flow-print

Sif SrcIPaddress Dif DstIPaddress Pr SrcP DstP Pkts Octets
...
0001 140.254.103.62 003e 24.160.184.32 06 f78 15 1 60
0001 140.254.103.62 003e 24.160.184.32 06 f79 7 1 60
0001 140.254.103.62 003e 24.160.184.32 06 f7a 5d 1 60
0001 140.254.103.62 003e 24.160.184.32 06 f7b 13 1 60
...
0001 140.254.103.62 003e 24.160.184.32 06 e4b 13 1 60
0001 140.254.103.62 003e 24.160.184.32 06 e4c 5d 1 60
0001 140.254.103.62 003e 24.160.184.32 06 e4d 7 1 60
0001 140.254.103.62 003e 24.160.184.32 06 e4e 15 1 60
...

Figure 9: Results of running flow-dscan to detect a scan and flow-print to view the associated traffic.

Similarly, this will count unique source IP
addresses at ResNet that have sent traffic to the Inter-
net: flow-cat cf05.2000-09-26.* | flow-filter -i1 -I47,62 | flow-
stat -f9 | grep -v ’ #’ | wc -l.

This reports that there are 6,209 unique source IP
addresses active.

It might be interesting to count the unique IP
addresses at ResNet that have received traffic from the
Internet. We will turn the filter around (the destination
filter is ResNet’s internal network and the source filter
is the Internet links) and count the unique destination
addresses: flow-cat cf05.2000-09-26.* | flow-filter -I1 -i47,62
| flow-stat -f8| grep -v ’ #’ | wc -l.

This reports 11,739, which is greater than the
actual number of hosts that generated traffic. This
implies that the network had been host scanned at least
once.

Finally, here is a way to count the Internet hosts
that have sent traffic to ResNet:
flow-cat cf05.2000-09-26.* | \

flow-filter -i47,62 | \
flow-stat -f9 | \
grep -v ’ #’ | wc -l

This reports 879,438, which is less than the num-
ber of hosts that we sent traffic to (945,189). This
implies that ResNet hosts were involved in host scan-
ning the Internet.

Security Tools

We most commonly use the flow logs in our var-
ious security functions, for incident response,

intrusion detection, firewall planning, and security
assessments and consultation.

Intrusion Detection

NetFlow logs are not useful for any form of con-
tent based intrusion detection since the flow records
do not contain the data portion of the network traffic.
We also do not have a detailed picture of the values in
all of the headers for individual packets, and so we
cannot use that to detect signatures of intrusions that
leave calling signs there. We can use the flow logs to
detect network access policy violations, to report on
the activities of known suspicious hosts, and to detect
some of the more obvious forms of scanning and
denial of service attacks.

Flow-dscan is an attempt at detecting and report-
ing interesting network related events in near real-
time. It can be configured to report:

• Excessive octets or packets per flow – typically
floods.

• A source IP contacting more than a threshold of
destinations – host scanning.

• A source IP contacting more than a threshold of
destination ports on a single host. The port list
is limited to 0..1023 to keep the memory over-
head low.

Flow-dscan must keep a fairly large hash table of
{source, destination} pairs in memory to be able to
detect slow port and host scanning. Memory is allo-
cated and managed dynamically based on the fre-
quency of flow arrival. The ager and various table
sizes can be user configured. Optional source and
destination suppress lists are also supported in hash
format for fast lookups. Typically on-line multi-player
game servers and web-based add servers must be
entered in the suppress list to prevent them from being
reported as scans. Flow-dscan can either be run on
archived data sets or by connecting to flow-capture for

298 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Fullmer & Romig The OSU Flow-tools Package and Cisco NetFlow Logs

real-time data. Flow-dscan is usually run in the back-
ground against a live feed of flow records, and reports
its results through syslog. You can also force flow-
dscan to run in the foreground and report to stdout,
which is useful for interactive use against archived log
files (see the section on intrusion detection). Visually
inspecting the flows with flow-filter and flow-print
can verify the scanning activity.

Normally flow-dscan would be run against a live
feed of flow records, but you can also run it against
archived logs. In Figure 9 we use flow-filter to pull
out TCP traffic from OSU going to the Internet, and
then run flow-dscan in the foreground on the resulting
flow records. After running flow-dscan we used flow-
filter to pull out traffic coming from the source of the
scan and print it.

Although it is not practical to respond to every
trigger it has been useful to log such activities so that
we can refer back to them at a later date. The fre-
quency of external sources scanning our network is so
high that an insecure machine will almost certainly
end up on someones database of vulnerable hosts
within 24 hours of installation. Insecure hosts are fre-
quently compromised within a day of being set up on
the network.

A simple script named flow-scan-report takes a
time range and IP address as arguments and uses flow-
filter and flow-print to display flow activity to and
from that address in the given time range. This makes
it easy to pre-compute brief snapshots of network
activity for each of the detects that turn up in IDB (our
Incident Database, in the section ‘‘Related Work’’).

Incident Response
As we saw with the previous example, flow-filter

is an effective tool for pulling interesting traffic out of
the haystack. This is invaluable for incident response.
For example, if we receive a report that one of our
computers was involved in a scanning and intrusion
incident at another Internet site, we can use the flow
logs to:

• Confirm whether the alleged incident actually
involved OSU.

• If it did, we can usually use the flow logs to
determine what hosts the OSU host contacted
by using flow-filter to search for traffic coming
from the OSU host.

• We can also search for traffic going to the OSU
host to determine whether it is being controlled
from elsewhere.

• Once we identify the hosts used to compromise
our hosts, we can search the flow logs for traf-
fic from those hosts to OSU to discover other
hosts that might have been compromised.

Iterating over the flow logs with varying options
to flow-filter, flow-stat, and flow-print on each pass
allows us to quickly determine to source(s) and desti-
nation(s) of DoS attacks and potentially the attacker
and their arsenal of compromised hosts. Once the

compromised hosts, victims, or attackers are isolated
the IP addresses can be quickly disabled by use of a
black-hole router which injects specially tagged pre-
fixes into our backbone routers which get rewritten
using route-maps to point to a non existant destination.

For example, early in the afternoon of July 3,
1999 we were alerted of slow or non-responsive net-
work services on campus. It didn’t take long to find
that the inbound side of our OC3 connection to OAR-
net was full. Running the most recent flow logs
through flow-filter to isolate inbound traffic and flow-
stat to create a summarized traffic report by destina-
tion IP isolated the destination to a single host. A sec-
ond run of the flow logs through flow-filter to isolate
flows to that single IP revealed thousands of ICMP
echo replies – a Smurf attack. Further analysis of the
destination IP flow logs revealed an IRC client session
which is a common ingredient on provoking a denial
of service attack. Disabling the host with a black-hole
route prompted the attackers to end the attack end
shortly after.

Unfortunately the Smurf attack was only a pre-
cursor to the activity that followed later that day.
Shortly after one of the evening fireworks displays our
upstream provider sent a page informing us that severe
denial of service attacks originating at OSU required
them to shut down OSU’s Internet connection. Most
departments at OSU at this time were connected with
10 megabit per second Ethernet to the campus back-
bone, so in order to generate a full OC3 of traffic we
knew that many hosts on many different LAN seg-
ments must be involved. Again, flow-filter was used
to isolate outgoing traffic by filtering on the interface
fields and flow-stat was used to generate a report
based on destination IP, and we discovered the IP
address of a single victim. We soon discovered that
many hosts on the OSU network were sending high
bandwidth UDP streams to the victim. Further analy-
sis of a larger window of the flow logs using flow-fil-
ter and flow-stat to create a report of source IP
addresses contacting the victim revealed about 43
sources on many different LAN segments participating
in the attack. Using those sources in a filter we also
found that multiple victims were involved over the
course of the day.

Many of the compromised hosts on campus were
not very active on the Internet, so it was easy to spot
the IP address of the attacker in the flow logs and the
TCP port used to start the UDP floods. The attack was
controlled by a fairly simple set of Perl and shell
scripts that connected to compromised hosts through a
shell backdoor on the FTP port, from which it would
run a script to download a UDP flooder called milk
from another university through the Remote Copy
Protocol (RCP). The milk script would then be run
against one of several external targets.

Using black-hole routes to disable the compro-
mised hosts, victims, and attacker proved effective in

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 299

The OSU Flow-tools Package and Cisco NetFlow Logs Fullmer & Romig

stopping the attacks. Later long term analysis of the
flow logs for the compromised hosts revealed the
method of break-in and several sets of hosts that were
involved in what was apparently a distributed and
automated scan and exploit. One last iteration over the
archived flow records after the incident revealed that
as many as 250 hosts at OSU were compromised in
the initial set of breakins on July 2, although only
about 50 of them were used for the UDP denial of ser-
vice attack the next day.

IP-ADDRESS PORT SERVICE PROTO CONNECTIONS DAYS PERCENT
128.146.1.1 53 domain 17 3 1 100
128.146.1.2 162 snmptrap 17 3 1 3
128.146.1.3 7440 N/A 6 3 1 100
128.146.1.4 80 http 6 3 1 100
128.146.1.5 518 ntalk 17 3 1 0

Figure 10: Abbreviated output from flow-host-profile, showing new hosts and services.

The use of flow logs to home in on compromised
hosts and their traffic has shown that it is not uncom-
mon for a site to be scanned for vulnerabilities by one
host, compromised at a later date by a second, contact
a third site for downloading of denial of service and
exploit tools, and then have the installed and waiting
remote controlled denial of service programs be trig-
gered at a later date by yet a fourth site to attack a vic-
tim.

Firewall Planning and Security Assessments
As we have instrumented the rest of our core

routers and switches with NetFlow exports, we have
come to increasingly rely on the flow logs for guid-
ance in designing firewalls and in studying the net-
work behavior of systems in site and product security
evaluations.

Host Activity Profiling
Flow-host-profile builds a list of the network

services running on each host on campus, and allows
us to compare activity over a period of time with the
existing profile to detect changes. We are especially
interested in new hosts and new services that show up
on campus. The sample output from flow-host-profile
(Figure 10 shows activity for several services that we
had not previously seen (e.g., HTTP services on
128.146.1.4). The new activity on port 7440 on
128.146.1.3 might be a new service, but sometimes
busy clients have high end port numbers that show up
in the report (as they get reused the connection count
goes up, passing our activity threshold). We’ve been
experimenting with looking at not just the presence of
new services (and hosts) but also with changes in the
level of activity of a service. For example, it would be
interesting to know if activity on a usually quiet FTP
server suddenly increases (possibly due to warez trad-
ing through a writable directory, for example). Unfor-
tunately, flow-host-profile is very sensitive to traffic
that evades its attempts to winkle out the client/server
role of each endpoint, and tends to either create many
false positives or becomes insensitive to low levels of

intrusion activity if we turn the thresholds up to
decrease the false positives.

Common Problems in Interpreting NetFlow Logs

We already discussed the difficulty of determin-
ing the client/server role of the hosts at each end of a
flow (in the section on general analysis tools) and of
interpreting the flows in light of the fact that they are
ordered chronologically by the ending time of each
flow. There are a number of other issues that you need
to keep in mind when you are reading through flow
logs.

It is important to recognize that source IP
addresses are easily spoofed. This is common in many
denial of service attacks or in chaff created by scan-
ning tools like nmap. If you have unicast Reverse-Path
Forwarding (RPF) checking enabled on your devices,
or use Access Control Lists (ACLs) to drop spoofed
traffic this traffic will be recorded in your flow exports
with a destination interface of 0 (indicating that the
traffic arrived, but was not forwarded). Of course,
hosts within a LAN can still spoof the addresses of
other hosts on the same LAN.

Note that NetFlow enabled devices only create
flow entries for the traffic that actually passes through
that device. If you have asymmetric routing conditions
where outbound traffic passes through a different
router than the analogous inbound traffic and you are
only looking at the flows from one router, you will
only see part of the flows representing those
client/server sessions. To get a complete picture of the
traffic in these cases you would have to combine the
flow records from the devices that handle all of the
traffic (through flow-cat and flow-sort). Note that
since flow-sort uses a 35 minute window for sorting,
you need to merge the files in chunks that span less
than 35 minutes. This presumes that the clocks have
been accurately synchronized to a common time
source.

One issue that needs to be considered when
using flow exports from the routers is the reliability of
the data sets. Flows are currently exported via UDP
with no ability for the collector to signal retransmis-
sion if it detects missing NetFlow PDUs. Each PDU
contains a 32 bit sequence number that can be used to
detect missing or out of order flows. Out of order
flows could be an indication of an attacker trying to
inject false PDUs into the collector. Missing flows
could either indicate the flow-collector is overloaded,
possibly due to an attack or the network segment

300 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Fullmer & Romig The OSU Flow-tools Package and Cisco NetFlow Logs

connecting the flow collector to the router is over sub-
scribed or under attack. The possibility of spoofed
flows can be minimized by deploying unicast RPF or
IP spoofing filters appropriately. Overloaded network
segments can be avoided by directly connecting the
collectors to a dedicated router interface on the router
exporting the flows and limiting traffic on that net-
work with access lists. Cryptographic signatures on
flow PDUs and a reliable transport mechanism could
reduce some of the potential problems, but not without
the memory and CPU penalties on the routers and line
cards. The potentially unreliable export mechanism
and 32 bit sequence number is adequate for our cur-
rent needs.

Privacy and Legal Concerns

The flow logs do not contain a record of what is
usually considered the contents of the packets. This
means that although we could determine that a given
host accessed a given web server at a certain time, the
flow logs would not contain a record of the URL
requested or the response received. However, if you
can correlate the activity recorded in the flow logs
against the data in other logs (such as authentication
logs), you might be able to match accounts (and so, to
a large degree, people) to IP addresses, IP addresses to
their associated network activity, and then match that
network activity to specific details such as URLs
requested, email addresses for correspondents, news-
groups read and so on. Consequently, the act of
recording and archiving NetFlow records raises a
number of privacy concerns.

In addition, OSU is a state university and as such
is subject to the state public records laws, which indi-
cate that most records created as part of the normal
business processes of the university are ‘‘fair game’’
for disclosure requests from the general public. This of
course raises a fair degree of concern that someone
might request a copy of our NetFlow logs to determine
what our employees are using their computers for. On
the other hand, we are also subject to FERPA (Family
Education Rights and Privacy Act) which indicates
that student academic records are exempt from the
public records laws. According to our lawyers, it is not
clear whether the flow records for students would be
considered protected by FERPA, or whether they are
part of the public record. Since the flow logs cover a
mixed population of students and non-students, and
since we have no easy way to separate them, they
enjoy a sort of murky, though dubious legal protec-
tion.

We try to protect the privacy of our customer
base by storing the logs on secure servers, with limited
access by staff members, and with clear access and use
policies in place. We do not archive the raw logs to
tape, although we do retain a fairly long window (cur-
rently about four months worth) on our central file
server.

Our rationale is that the logs are invaluable for
security, performance and network monitoring and
usage based billing. We could aggregate the data and
use that for some of these functions, which would
solve most of the privacy concerns. However, having a
long (2 to 3 month) window of past logs is invaluable
for incident response, and we expect that it may prove
invaluable for bill dispute resolution as well. We think
that the level of detail present in the flow logs repre-
sents an acceptable balance between utility and pri-
vacy for our environment. On the positive side, we
have found that we have had to do content based sniff-
ing (e.g., with tcpdump [15]) far less often, since we
have a ready source of information about network
activity.

Related Work

Other groups have also been working on tools
for collecting Cisco flow logs. In particular, you might
be interested in looking at the CAIDA tool collection
[16]. In particular, the cflowd [12] system provides a
mechanism to collect, save and aggregate NetFlow
exports and view a variety of summaries and graphical
views of the collected data. There are also a number of
tools that can be used with the cflowd package to cre-
ate reports and graphs.

Cisco has also released a set of tools for collect-
ing NetFlow logs [2]. These tools provide fairly
sophisticated data aggregation, graphing and billing
features, and as you might expect, support all of the
versions of the NetFlow exports, including version 8
aggregated NetFlows.

OSU has integrated intrusions detected through
flow-dscan into its Intrusion Database system (IDB).
IDB is a web front end to a list of intrusion detects
from a variety of sources, including host based scan
detectors, snort and now flow-dscan. Our incident
response staff reads through the detects in IDB and
responds to them in a variety of ways. A hook from
IDB allows the operator to easily view a summary of
network traffic matching the detect, which is derived
from the archived flow logs. Incidents that turn into
full-fledged investigations are tracked through our
incident tracking system, SITAR [9], which also has
hooks that allow us to view the results of previous
searches through the flow logs or to initiate new
searches.

David Brumley at Stanford University has writ-
ten a program that converts argus [1] logs into flow-
tools format, allowing you to use this as an additional
source of data for flow-tools [5]. Dave has also written
a small perl script for detecting scans through thresh-
old violations [6].

Larry Lidz at the University of Chicago modified
the extract program from the netlog package [4]
package to read the logs that flow-tools creates [7].
The resulting program, flowextract, allows you to
easily create watch lists to report network activity for

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 301

The OSU Flow-tools Package and Cisco NetFlow Logs Fullmer & Romig

known hostile hosts, or for critical hosts in your envi-
ronment, or to identify traffic that might indicate hos-
tile activity (for instance, traffic to TCP port 31337).
Larry has also written a program called flow-merge
which merge sorts flow logs from multiple routers into
a single log. This is helpful in cases where multiple
routing paths lead to asymmetric routing conditions,
or where you need to search all of your connections to
the Internet for intrusion activity.

Simon Leinen has put together a great summary
of flow related references and tools which is well
worth looking at [11].

Future Plans

We are often asked why we have not merged our
work with the cflowd package. There are several rea-
sons, chief among them being motivation and philoso-
phy. We have not had a need to use the presentation
and analysis tools that cflowd provides since we have
other tools to do that work. Cflowd appears to have
been designed to facilitate the aggregation of data
directly from NetFlow exports, and most of the tools
written to process flow data from cflowd work with
these aggregations rather than with raw flow data. The
NetFlow capture mechanism in the flow-tools was
designed to efficiently store and manipulate flow
records in compressed form, and data aggregation is
done by tools operating on these raw logs (if at all). Its
design also allows us to take a highly distributed
approach to data collection and analysis. It is possible
to either write something to export the flow-tools logs
into whatever format the cflowd package uses inter-
nally, or to duplicate the incoming UDP NetFlow
records into parallel incarnations of flow-capture and
cflowd.

The principle problems with using the flow logs
for intrusion detection are that it is difficult to cor-
rectly determine the client/server role of the two end-
points of a flow and that the flows do not contain
packet contents. We have not converted our intrusion
detection systems to use the sorted flows from flow-
sort – we expect that this would allow us to both
increase the sensitivity of flow-host-profile and flow-
dscan, and also greatly reduce the frequency of false
positives.

Two papers by Yin Zhang and Vern Paxson
describe their work with detecting backdoors [17] and
detecting stepping stones [18] using packet size,
packet timing characteristics, and correlations between
flows of traffic. Aggregating packets into flows
obscures some of the detailed information that they
used in their algorithms (individual packet sizes,
delays between packets), but it might be possible to
adapt their work to flow based data using average
packet sizes from the flows and calculated average
delays, or using flow sizes and delays between the
flows. We hope to start working on this soon.

We will soon be adding support for the NetFlow
version 7 PDU (used on some Cisco switches). Cisco

also has a version 8 PDU which is used for exports of
aggregated flow data [3]. We plan to add this at some
point, but doing so will require development of a dif-
ferent set of analysis tools, since the current tools are
designed to work with flows, and not with the aggre-
gated data in tables that are supplied in the version 8
PDU.

We also plan to add support to flow-capture to
use the sequence numbers in the version 5 and version
7 NetFlow export headers to detect and report missing
NetFlow exports. This addresses some of our concerns
about using the flow logs in incident investigations
since we will at least be able to tell when critical
records are possibly missing, or note that there are no
missing records.

The current filtering mechanisms in flow-filter
are sufficient for a wide range of tasks, but it would be
nice to provide more powerful filters. We plan to fully
implement Cisco extended access control lists.

We are also working toward building more pow-
erful interactive front ends for browsing our flow logs.

Conclusion

Cisco NetFlow exports and the flow-tools pack-
age contribute to our ever growing toolbox of network
management resources at Ohio State University. We
are collecting and archiving flow exports from twenty
routers with eleven flow collectors, one file server and
two high performance data crunching servers. Our
campus network has over 500 LAN interfaces, 15
remote sites and multiple external connections includ-
ing OARnet, Abilene, and a local peering with the
Columbus cable modem service provider. An online
archive of 500 Gigabytes of compressed flow exports
allows turning back the clock on network disruptions
and security incidents to provide a post-mortem birds
eye view of events leading up to and surrounding an
incident. Real-time processing of flow data can shed
light on difficult to pinpoint activities by allowing us
to view traffic patterns without having to deploy snif-
fers or LAN probe devices on every LAN segment or
WAN link. Departments traffic reports can be gener-
ated for potential future cost recovery of network ser-
vices, and over all network usage reports are used to
determine the impacts of popular new applications
such as Napster.

The OSU flow tools are available at
http:/www.net.ohio-state.edu/software/flow-tools.shtml. We
also have a mailing list (flow-tools@net.ohio-state.
edu) – you can subscribe by sending an empty mes-
sage to flow-tools-subscribe@net.ohio-state.edu.

Mark Fullmer wrote the bulk of the OSU flow
tools collection. Steve Romig mostly just uses the
tools and makes suggestions for further development,
though he has recently been seen writing documenta-
tion, fixing various bugs, and finding students to write
tools like flow-sort, flow-host-profile and flow-con-
nect. Ron Luman wrote flow-sort and flow-connect.

302 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Fullmer & Romig The OSU Flow-tools Package and Cisco NetFlow Logs

Suresh Ramachandran wrote the flow-host-profile pro-
gram.

Biographies

Steve Romig in charge of the Ohio State Univer-
sity Incident Response Team, which provides incident
response assistance, training, consulting, and security
auditing service for The Ohio State University com-
munity. In years past Steve has worked as lead UNIX
system administrator at one site with 40,000 users and
12 hosts and another site with 3,000 users and over
500 hosts. You can reach him by phone at
1-614-688-3412 (GMT-0400/0500) or by email at
romig@net.ohio-state.edu.

Mark Fullmer is a recovering system and net-
work administrator from a large.edu, currently work-
ing on his degree at The Ohio State University and is
employed part time in the OARnet engineering group.

Bibliography

[1] Bullard, Carter <chellyaz@aol.com>, Audit
Record Generation and Utilization System
(Argus), ftp://ftp.andrew.cmu.edu/pub/argus .

[2] Cisco, Cisco Netflow Flowcollector, http://www.
cisco.com/univercd/cc/td/doc/product/rtrmgmt/nfc .

[3] Cisco, Netflow services and applications white
paper, http://www.cisco.com/warp/public/cc/pd/
iosw/ioft/neflct/tech/napps_wp.htm .

[4] Schales, Douglas Lee, David R. Safford, and
David K. Hess, ‘‘The TAMUSecurity Package:
An Ongoing Response to Internet Intruders in an
Academic Environment,’’ Proceedings of Fourth
USENIX UNIX Security Conference, anon ftp at
coast.cs.purdue.edu in /pub/tools/unix/logutils/
netlog, 1993.

[5] Brumley, David <dbrumley@theorygroup.com>,
Argus Export Scripts, contact Dave by email for
copies.

[6] Brumley, David <dbrumley@theorygroup.com>,
How to detect network scans, http://www.
theorygroup.com/Theory/scans.html .

[7] Lidz, E. Larry <ellidz@eridu.uchicago.edu>,
flowextract, http://security.uchicago.edu/tools/net-
forensics .

[8] Hobbit <hobbit@avian.org>, netcat, http://www.
l0pht.com/weld/netcat .

[9] Assor, Mowgli <mowgli@net.ohio-state.edu>,
Security and Incident Tracking And Response
(Sitar), http://www.net.ohio-state.edu/software/
sitar.shtml .

[10] Gailly, J-L. and P. Deutsch, Zlib compressed data
format specification version 3.3, http://www.ietf.
org/rfc/rfc1950.txt .

[11] Leinen, Simon <simon@switch.ch>, Flow based
monitoring and analysis, http://www.switch.ch/
tf-tant/floma .

[12] The CAIDA Web Site, cflowd: Traffic Flow Anal-
ysis Tool, http://www.caida.org/tools/measurement/
cflowd .

[13] Statscout, Statscount network performance moni-
tor, http://www.statscout.com .

[14] Rand, Dave <dlr@bungi.com> and Tobias
Oetiker <oetiker@ee.ethz.ch>, Mrtg: Multi Router
Traffic Grapher, http://mrtg.hdl.com/mrtg.html .

[15] Leres, Craig, Van Jacobson, and Steven
McCanne, The tcpdump software package, anon
ftp from coast.cs.purdue.edu in /pub/tools/unix/
tcpdump .

[16] Various, The Caida Web Site, http://www.caida.
org .

[17] Zhang, Yin and Vern Paxson, ‘‘Detecting Back-
doors,’’ Proceedings of Ninth USENIX Security
Symposium, 2000.

[18] Zhang, Yin and Vern Paxson, ‘‘Detecting step-
ping stones,’’ Proceedings of Ninth USENIX
Security Symposium, 2000.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 303

