
USENIX Association

Proceedings of the
14th Systems Administration Conference

(LISA 2000)

New Orleans, Louisiana, USA
December 3– 8, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

An Improved Approach for Generating
Configuration Files from a Database

Jon Finke – Rensselaer Polytechnic Institute

ABSTRACT

Much of our site configuration information is stored in a relational database, which means we
need to extract this information in the appropriate format for servers and daemons. In the past we
have done this with lots of little custom C programs and scripts. We have recently changed to a
new approach of generating the files within the database itself using PL/SQL packages, and then
using a generic file extraction program to handle the details of putting ASCII characters into Unix
(or other) file systems. This has allowed us to reduce development time of programs to generate
new file types, and greatly simplified supporting multiple platforms.

Introduction

At Rensselaer, we maintain a lot of our system
and site configuration information in a database, using
a package we developed call Simon [5, 7]. We are not
alone in these efforts. I have talked with system
administrators at many other sites who are working on
similar projects, including the University of Alberta,
Simon Frasier University, SUNY Albany, and the Uni-
versity of Connecticut. One of the early projects of
this type was at MIT’s project Athena and their Moira
[15] package. This is not limited to educational sites,
I have also spoken with folks at Cisco Systems and
Collective Technologies about similar projects. A
quick glance at the last few LISA proceedings show a
number of similar projects including Accountworks
[3], NFS Configuration Management [4], Unix Host
Administration [16], Aurora [12], Exu [14] (Ok, they
talked about doing it) and others.

In practice, a number of configuration files need
to be extracted from the database. These files range
from host specific files such as /etc/printcap [8] to
platform specific files like /etc/group to site wide con-
figuration files like the resource record files for the
domain name system [6], to HTML and LDIF files for
the University telephone directory [10]. Traditionally,
each file is generated by a file specific C program, or
in some cases, a SQL*PLUS script. Depending on the
specific requirements of the file, the program might
deal with version control (generate only when infor-
mation changed), trigger post processing, and have to
run under different operating systems and environ-
ments.

The general pattern when a new file type was
needed was to grab one of these existing programs,
change part of it and recompile it (possibly on several
different versions of Unix). As the number of different
versions of unix grew, and we started working with
non unix platforms, maintaining all the different ver-
sions of these programs and getting them distributed

to the correct machines got to be more and more of a
hassle. In addition, these programs varied widely.
They used different methods of connecting to the
database, supported different concepts of version con-
trol, or had additional control options, so you would at
times find yourself having built on the wrong ‘‘base,’’
and have to do even more work.

As our systems became more distributed and
specialized, maintaining and developing these custom
programs became more challenging, as some of the
target systems did not share file systems with the
development systems, tools were not available, etc. As
a result, this made what should have been trivial
changes in a file format (like adding a newline
between records!) into an hour or more of work. For
example, when we wanted to build DHCP configura-
tion files, we wanted to build them on our DHCP
servers. Unlike our existing DNS servers (Solaris)
which mounted our AFS file system, the DHCP
servers (OpenBSD) do not even have an AFS client
available. Our existing practice of storing the file gen-
eration programs or even the configuration files in
AFS space was not going to work.

Building Files in the Database

Our new approach to generating files is to gener-
ate the file in the database itself then simply write a
short program to dump the ‘‘file’’ out of the database
and into the file system of the target machine. This
allows all of the file generation code to be stored and
maintained in the central database, using a consistent
set of tools. In addition, the program to extract the file
can be generic, and once built for a particular operat-
ing environment, could be used for any of the files we
might generate for that system.

Our solution to this (see Figure 1), consists of
three layers. The first layer is a generic program (Gen-
erate_File) that runs on the target system that can con-
nect to the database and write a file on the target sys-
tem. This calls on the second layer: a PL/SQL package

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 29

An Improved Approach for Generating Configuration Files from a Database Finke

Figure 1: Service model.

[13]1 File_Gen which runs on the database server. This
module provides the sole interface to the database for
the file generation program, and handles all of the
access control for each of the desired files we might
generate. This in turn calls the bottom layer for the file
specific packages, such as Gen_RR_File, Gen_DHCP_
Config and Gen_Ldif that handle the details of extracting
the data and formatting it for a given type of file.

This has proven to be a very powerful technique,
allowing us to keep the data extraction and formatting
of the file in the database, while doing the actual file
generation and version control management on our
target systems. We can also use the Generate_File pro-
gram for any number of different files, which means
we only need to compile it once for any given plat-
form. Adding a new file type involves writing a
PL/SQL routine to format the data and registering it
with the file generation package.

General Operation

To generate a file, the Generate_File program is
executed with the file target as a parameter. The pro-
gram connects to the database and calls the
File_Gen.Get_Attr2 stored procedure, passing it the file
target. File_Gen.Get_Attr does some access checking,
possibly calls a target specific procedure, and returns a
file name, and optionally, some version information.
The Generate_File program then opens the file and
calls File_Gen.Get_Data routine, which calls a target
specific package, and passes the result back up and the
line is written to the file until a Null is returned. The
file is then closed, and moved into place.

For many of the files we generate, (/etc/printcap,
/etc/passwd, /etc/group, etc.), we just want a single file
produced. In other cases, we want to generate more
than one file at a time. For example, when we are

1PL/SQL Packages are a collection of functions, proce-
dures, cursors and variables. These can be both public and
private. Access to the public procedures can be granted to
oracle users or roles. Once accessed in a session, a package
maintains state between calls.

2Procedures in packages are referenced as package
name.object name. This is the Get_Attr procedure in the
File_Gen package.

generating the resource record files for Bind, we want
to regenerate all files that have changed. A single
invocation of the program may create a lot of files. To
handle multiple files, the Generate_File program then
calls File_Gen.Get_Attr to get a new file name and the
cycle is repeated until File_Gen.Get_Attr indicates that
there are no more files.

Generate_File

In our current implementation, the host program
is written in C, using the Oracle C pre compiler
(PRO*C). However, we are not limited to using this
interface. We are planning on writing one in JAVA,
and one could be written in PERL or any other lan-
guage that can access the database. What is more,
there is no problem in mixing and matching, all inter-
faces can generate all file types.

In our implementation, the program does a few
more housekeeping details for us. When we open a
file for writing, we actually open the file filename.new.
Everything is written there, and after it successfully
closes the file, we move filename to filename.old and
then move filename.new to filename. This gives us a
little bit of protection from full file systems and net-
work interruptions. It is possible for other applications
to have the target file open. The script calling Gener-
ate_File program needs to be written to take the appro-
priate action such as signaling the other process.

The program has no special privileges. It is up to
the caller to ensure that it is run in the proper directory
with the proper access to the file system. In appendix
1, we have the script3 used to generate our telephone
directory web pages. It is run as root via cron once a
day. After setting some variables the script attempts to
authenticate to AFS. The hosts.klog is a script we use
to authenticate root processes on a system to AFS.
Next we invoke a simple ‘‘locking’’ script4 to ensure
that we are the only copy running, cd to the target
directory and generate the files. The program is
invoked with the ‘‘-nvr ’’ (short for Needs Vos

3The /usr/vice/etc/pagsh is an AFSism, used to help control
AFS authentication.

4It is crude and depends on a file existing or not. But it has
not failed us in six years of operation.

30 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Finke An Improved Approach for Generating Configuration Files from a Database

Release) option. If we regenerate a file, we write that
file name to the file specified by -nvr. After we are
done with all the file generation, we check for the file
specified by ‘‘-nvr ’’ and if it exists, request a vos

Name Type Description

Target Varchar2 In Name of file set to be generated.
ErrMsg Varchar2 Out If not null, display the message and terminate.
Filename Varchar2 Out Name of the file to be generated. When null, there are no more files to

be generated.
DBMSOut Varchar2 Out If ‘‘Y’’, then DBMS_Output routines may be used.
Direction Varchar2 Out Direction of transfer, ‘‘GET’’ a file from the database, or ‘‘PUT’’ a file

into the database.
Version_Number Number Out The current version number of the file to be generated. If null, don’t

check version before generating file.
Version_Str Varchar2 Out If not null, scan the start of the file for this string and the version num-

ber.
Par3 Varchar2 In A parameter passed from the command line of the caller to the file gen-

eration package. Usage defined by the individual package.

Figure 3: Get_Attr parameters.

release.5 Instead of a vos release, other post processing
could be trigger such as a ‘‘make yp,’’ or whatever is
needed.

Our version of the Generate_File program can
connect directly to the database (if it is on the database
machine), or can connect via SQL*NET to a remote
database. In this case it can read an Oracle id and
password from the command line or from a file. This
works well in our environment.
File Version Control

One of the bits of information the program gets
from the File_Gen.Get_Attr call is file version informa-
tion. For example, we have around 170 different sub
domains at our site. When we regenerate the resource
record files, we don’t want to build the entire set each
time, but rather, we want to just update the files that
have changes.

;
; RR file for rpi.edu
;
; Simon Database Version:26473884
; Generation Date: 23-MAY-2000 11:07
...

Figure 2: Version Number in file.

To this end, we maintain a version number for
each file. In many cases, this is written in the first 10
lines of the file with a particular flag string (see Figure
2) where we scan for the string ‘‘Simon Database Ver-
sion’’ in the header comments of the RR file. For files
that do not support comment lines, we write a parallel
file with the string .vers. prepended to the file name; ie
the version file for a file called passwd would be
.vers.passwd.

5The ‘‘vos release’’ command is an AFSism that is used to
reclone read only, replicated disk volumes.

The File_Gen.Get_Attr routine returns, along with
the file name to use, an optional version number for
that file and an optional flag string. If the flag string is
present, it will scan for it in the target file. If there is
no flag string, then it will look for the parallel version
file. The program then compares the database version
number with the file version, and if they don’t match,
the file is regenerated. The Generate_File program has
a -force option to make it ignore the version numbers
and generate all files.

Post Processing Control
With the version control enabled, it is possible to

run the program for a given target and not write any
files. In this case, no post processing would be needed.
To assist in this, another option lets you specify a flag
file. If a file is written, its name will be written to the
flag file. Post processing code can check to see if the
flag file exists and take appropriate action. We use this
to automatically replicate files in AFS after genera-
tion. This is shown in appendix 1. Another example
might be generating the /etc/inetd.conf file. If you
updated the file, you would want to restart inetd. If
there was no change to the file, there would be no
need to signal the inetd process. This feature was used
in some of our older programs and proved useful so
we kept it as we moved to this new approach.

File_Gen Package

The core of this entire project is the File_Gen
package, which acts as the gatekeeper. It provides
access control and handling many of the interface
details to the actual file generation procedures.
Get_Attr

When the Get_Attr procedure is called, you sup-
ply the name of the desired target (and an optional
parameter; see Figure 3). It first checks to see if the
current Oracle user is allowed to generate that file
(access the data). If they are, it returns a file name,
some control flags and some version control informa-
tion. If there is some problem (unknown target, no

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 31

An Improved Approach for Generating Configuration Files from a Database Finke

access), the error message is returned instead. Get_Attr
is the key routine which drives the entire generation
process. Once a file is generated (or skipped due to
version numbers matching), this routine should be
called again for the next file.

Name Type Size Description

Target Varchar2 32 The name of the target file set.
Seq_Number Number Used to order files within a file set.
RoleName Varchar2 255 Oracle role required to process this file.
Get_Attr_Rtn Varchar2 65 Name of the file set specific get attribute routine.
Get_Data_Rtn Varchar2 65 Name of the stored procedure to be called to return a line of

the file.
Put_Data_Rtn Varchar2 65 Name of the stored procedure to be called to put a line of the

file into the database.
End_Data_Rtn Varchar2 65 Name of the stored procedure to be called when all lines of the

file have been read.
Def_Filename Varchar2 65 Default file name to be used if Get_Attr_Rtn is null.
DBMSOUT Varchar2 1 When ‘‘Y’’, indicates that this file target may generate output

via the DBMS_OUTPUT package.
Direction Varchar2 4 Default direction to be used if Get_Attr_Rtn is null.
File_Version_Str Varchar2 64 File version string to be used if Get_Attr_Rtn is null.
File_Version_Number Varchar2 32 File version number to be used if Get_Attr_Rtn is null.
Package_Version Varchar2 128 A version number (if any) for the package being used to gen-

erate the file. We manage our stored procedures with RCS and
use the ‘‘Id’’ value here.

Package_Header Varchar2 255 A file reference to the source file used to create this package.
We use the ‘‘$Header$’’ value here.

Create_Date Date The date when this file target was first made available.
Update_Date Date The date when this file target was most recently changed.
Comments Varchar2 255 A short description of this file target.

Figure 4: Generate_File_Types table.

In our initial implementation of the File_Gen
package, we used a case statement6 This required
changing and recompiling the package every time a
new file target was added. This also made File_Gen
dependent on all of the file-specific packages. Fortu-
nately, Oracle provides a dynamic SQL package called
DBMS_SQL [1] that allows a PL/SQL procedure to
parse and execute an arbitrary PL/SQL routine. With
these details worked out, adding a new file target was
reduced to making an entry in the Generate_File_Types
table (and writing the file-specific package of course);
see Figure 4.

While the general file generation model has the
File_Gen.Get_Attr called until there are no more files to
be generated, many of our file targets only produce a
single or fixed set of files. Having to write a
Get_Attr_Rtn that keeps track of the current state (Start-
File or EndFile), returns the file name, the version
string, and so on was a bit of a hassle. So, if the
Generate_File_Types.Get_Attr_Rtn is null, the File_Gen.
Get_Attr will ‘‘fake it,’’ using the values supplied in the

6Actually, PL/SQL does not have a case statement, so it
was a large if/elsif/elsif statement.

table. This makes it very easy to add simple file set
targets. By using different sequence numbers, multiple
files can be generated without having to write a file
specific Get_Attr_Rtn. We use this to generate both our
people and department LDIF files for our LDAP
server.

Set_Program_Version
Set_Program_Version is used to make host infor-

mation (current user, hostname, program version)
available to the generation routines. We frequently
include version information and other diagnostic info
in the header of a file (see Figure 5). This is called at
the start of the run, before any calls to Get_Attr or other
routines.

Get_Data
Once a file is opened, the Get_Data routine is

called and the result is written to the output file. If the
DBMS_OUTPUT flag was set by Get_Attr, then the
Dbms_Output buffers should also be written to the
output file. This cycle repeats until Get_Data returns
null. DBMS_Output [2] is a package supplied by Oracle
that will buffer text provided in calls to DBMS_Out-
put.Put_Line until the application retrieves the text via
calls to DBMS_Output.Get_Line.

Put_Data
When we are ‘‘PUT’’ting a file into the database,

we call this routine for each line of the file. When we

32 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Finke An Improved Approach for Generating Configuration Files from a Database

have reached the end of the file, we call the End_Data
routine which signals the database to do any post pro-
cessing required on the data that was just loaded. Both
Put_Data and End_Data have an ErrMsg parameter. If
this is not null, the message should be displayed and
the file load terminated. This allows the underlying
file load packages to signal fatal exceptions.

Simon Database Version:26512881
Generation Date: 30-MAY-2000 18:12
Generation Hostname: vcmr-42.server.rpi.edu
Program Name:../Generate_File
User Name: finkej
Generate_File: $Id: Generate_File.pc,v 1.3
2000/05/18 23:34:20 finkej Exp finkej $
Generate_DHCP_Files: $Id: Create_Package_Generate_DHCP_Files.sql,v
1.3 2000/05/11 23:10:17 finkej$
Host_Dns_Maint: $Id: Create_Package_Host_DNS_Maint.sql,v
1.2 2000/05/11 22:50:17 finkej Exp finkej $
Host_Maint: $Id: Create_Package_Host_Maint.sql,v
1.2 2000/04/28 20:07:00 finkej Exp finkej $

Figure 5: Version information.

Name Type Description

Target Varchar2 The target file set name.
RoleName Varchar2 The role required. Note, this is checked only for the first entry for a

given target.
Pack_Version Varchar2 The version number of the package (‘‘Id’’).
Pack_Path Varchar2 The path name of the source file of the package.
Comments Varchar2 Comments on the package.
Get_Attr_Rtn Varchar2 The routine name. Since this is a complex target, this must be provided.
Get_Data_Rtn Varchar2 The get data routine name. Technically, this could be an optional pa-

rameter, but so far all complex targets have one.
Seq_Number Number An optional sequence number. If not specified, it will default to 10.
Put_Data_Rtn Varchar2 (Optional) A put data routine name.
End_Data_Rtn Varchar2 (Optional) An end data routine name.

Figure 6: Add_Target_Complex parameters

Generate_File_Internal

There is a second PL/SQL package called Gener-
ate_File_Internal. From a strictly programming stand-
point, this should be part of the Generate_File package.
However, the Generate_File package is permitted to the
public, thus all public procedures are available for
anyone to use. Since the Generate_File_Internal defines
some procedures to define and change file targets, it
would not be good to let just anyone access these.
Rather than put specific access control inside these
routines, we kept them here and use Oracle access
control to limit who can define new targets.

Add_Target_Complex
This entry point is used to add a complex file tar-

get, that is, one that provides a Get_Attr_Rtn to supply
the file name, version info, etc. By using a procedure
to add entries to the Generate_File_Types table, we are
able to do a bit of sanity checking and maintain the

create_date field. If there is an existing target with the
same sequence number, it is replaced with this one.
You will note that the ordering of the parameters (see
Figure 6 for a list) is different from the earlier proce-
dures and table definitions. Some of the parameters
are optional, so these are left to the end of the parame-
ter list.

Add_Target_Simple
This routine is used to define simple targets.

Ironically, this particular call is more complex than the
previous call. Of course, since we are off-loading
more of the work on the Generate_File package, the
trade-off is ok. Like the previous routine, some of the
parameters (see Figure 7) have been moved around a
bit, and some of the later ones are optional.

There is also a Add_Target_Put which is similar to
the Add_Target_Simple, except it defines a simple
‘‘put’’ entry rather than a simple ‘‘get’’ entry.

Target=LIST

In order to test these routines, as well as add
some handy tools, this package also defines a ‘‘LIST’’
target that lists all the names and descriptions of all
define targets. This can be handy when you need to
generate a file and can’t remember the target name.
(This was a very annoying lack in the previous

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 33

An Improved Approach for Generating Configuration Files from a Database Finke

version.) There is also a version of this that lists pack-
ages and the location of the source for each of them.

Name Type Description

Target Varchar2 The target file set name.
RoleName Varchar2 The role required. Note, this is checked only for the first entry

for a given target.
Pack_Version Varchar2 The version number of the package (‘‘Id’’).
Pack_Path Varchar2 The path name of the source file of the package.
Comments Varchar2 Comments on the package.
Filename Varchar2 The name of the file we will generate.
Get_Data_Rtn Varchar2 The get data routine name.
Seq_Number Number An optional sequence number. If not specified, it will default

to 10.
DbmsOut Varchar2 The value for the DBMS Output flag. Should be ‘‘Y’’ or ‘‘N’’.
File_Vstr Varchar2 An optional version string to be used with version control.
File_Vnum Varchar2 An optional version number.

Figure 7: Add_Target_Simple

File Specific Packages

Once the upper two layers are installed, the rest
of the work takes place at the file specific package
level. Up to this point, we did not really know nor care
what files we were generating or reading. At present,
we use this system to generate resource record files for
BIND, host files, DHCP configuration files,
/etc/passwd, /etc/group, white pages directories in
ph,ldif and CSV formats and some web pages. We
also use it to load in accounting records from our
backup system and directory information from a
remote campus. This list will be growing over time.

A rather simple example of this, is the package
to generate the /etc/passwd file. A source file to create
this package is available in appendix 2. Our practice is
to have a source file that we feed into SQL*PLUS, the
Oracle SQL interface. To facilitate test versions, we
use a ‘‘define name=’’ statement to set the package
name. This is substituted in the appropriate places in
the file when executed in SQL*PLUS. During develop-
ment, we can change the name and not risk wiping out
the production version.

The source file has three sections: defining the
package specification; the package body and finally,
registering the new target with the Generate_File rou-
tines.

The prompt statement prints the message. This
proves helpful when there are errors, as you get a bet-
ter idea which section had the failure. The first sec-
tion, defining the package specification (Create or
Replace Package &name) is pretty simple. It includes an
RCS ‘‘$Header$’’ and the definition of the Get_Data
routine. The parameters P1 and P2 are optional
parameters that are passed in from the command line.
Their usage is based on specific package. They might
be used to enable debugging or in some way control
details of the file generation.

The second section, defining the package body,
(Create or Replace Package Body &name) has the actual
PL/SQL code that is executed to produce the password
file. The cursor sets up the query to extract the data.
This happens on the first call to Get_Data when the
cursor is opened. Each fetch statement brings the next
row of data into the ‘‘R’’ variable. This record is auto-
matically defined based on the columns in the select
statement. The quoted strings in the select statement
are column aliases. Finally, when the end of the data is
reached, a null is returned rather than a PW file entry
and the cursor is closed.

The third section is used to register this file type
with the Generate_File routines. Since this is a simple
case, we can use the Add_Target_Simple routine, define
the target name, skip access checks, include the ver-
sion info and some comments and set the output file
name to be passwd_demo. Finally, we provide the
name of the get data routine. We do not specify a
sequence number, so this will take the default of 10,
and replace any existing definition for etc-
passwd_demo.

Conclusions and Futures

Execution Time
In some casual timing tests we found mixed

results. For a simple extraction, where all data is in a
single table, the custom program appears to be slightly
faster than the PL/SQL approach. However, if the file
is complex, requiring data from many tables, the
PL/SQL approach is faster. This is in part because
more of the work taking place on the database server,
thus reducing the I/O between the server to the appli-
cation.

There is also some overhead from using the
Dynamic SQL codes rather than hard coding the
switch statement. Some sample runs show about a
15% increase in run time by using the dynamic sql
routines. However, given the reduction in develop-
ment time, this seems worth the tradeoff. If this

34 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Finke An Improved Approach for Generating Configuration Files from a Database

difference is a problem, it would be possible to write a
program to generate the source file.
Development and Deployment Time

The development time to add a new file to be
generated to the system has been significantly
reduced, in part because all of the changes are now
isolated to the central database, rather than being dis-
tributed across many remote servers. Once the Gener-
ate_File program is installed on a machine, virtually no
work needs to be done on that machine.

The PL/SQL language is well integrated in the
Oracle environment, and many of my PL/SQL pro-
grams are noticeably shorter than the PRO*C pro-
grams they replaced. For example, the original
PRO*C version of the program to generate the fac-
ulty/staff phone directory was 2639 lines of C/PRO*C
code versus the 1588 lines of PL/SQL that replaced it.
I feel that the PL/SQL was faster to write as well as
being shorter.

Another factor that reduced development time, is
that we often are doing a web component for the front
end of these files. This results in a set of PL/SQL rou-
tines to access the tables, so half the work is done by
the time we need to write a file generation routine.

Another advantage is that we are able to use dis-
play code used by the Oracle web server when we are
generating static HTML pages. We are using this con-
vergence to dynamically preview static web pages
which reduces the development time with those as
well.
Handy Tricks

To help validate post processing, when we gener-
ate our RR files for bind, we include an entry at the
end that includes a ‘‘wc’’7 for the entire file in one of
the fields. This allows post processing scripts to
quickly determine if they are working with a complete
passwd file, and not one that got truncated. Adding
support for this to the system could be handy.

For our generated password files, we include a
special entry at the end (show here folded):
TIMESTMP:##TIMESTMP:397:4000:

13834 37930 1236688
2000-09-20-13-01-07:/tmp:/bin/true

The GECOS field has a ‘‘wc’’ value, as well as the
time and date of generation. This is handy when your
password file distribution processes hit snags.
New Platforms

We are in the process of developing a JAVA ver-
sion of this program to run on Linux systems. We
don’t have the Oracle development tools licensed for
this platform, and our network servers are moving
away from our centrally administrated AIX machines
to this platform. This is actually being driven by our
security team wanting to process the DHCP lease file8.

7Unix wordcount; returns lines, words and bytes in a file.
8It is somewhat ironic that this paper started with describ-

ing how we generate DHCP configuration files and has
come back around to the other side of that project.

New Directions
Since we already support ‘‘GET’’ and ‘‘PUT’’

operations, what else could we want? Well, rather than
getting data from a file, how about getting data from a
program. We currently have a custom C program that
runs lscfg on a pipe, captures the output, digests it a bit
and saves it into the database. We could replace it with
a file set that does the same thing. What is more, if we
want to add additional program runs, we can do that
by changing the package stored in the central database
and we no longer have to worry about getting new ver-
sions of the custom programs out to our clients. I
expect that we will have our client machines running
Generate_File with the file target of ‘‘Self Exam’’ peri-
odically to bring information on the config back to our
central management system[11]. One limitation of this
is that it only works with text files. Trying to pick up
binary files such as /var/adm/wtmp might still require
custom programs such as the one we wrote to assist in
doing demographic analysis of workstation use [9].

Along with running programs and capturing their
output, we could run the other way and generate text
and pass it to a program. This could be used as a quick
and dirty interface to lpr or mail. One of the parame-
ters available to the file generation packages is the
platform (Hardware, OS) so it could presumably make
reasonable assumptions as to what programs it can
call, and where to find them. This support could also
be used to initiate post processing, although that might
better be handled in the calling script.

Internal Changes
I expect that we will merge the Gener-

ate_File_Internal package back in to the Generate_File
package and build the access checking into the add
target routines.

References and Availability

All source code for the Simon system is avail-
able on the web. See http://www.rpi.edu/campus/
rpi/simon/README.simon for details. In addition, all
of the Oracle table definitions as well as PL/SQL
package source are available at http://www.rpi.edu/
campus/rpi/simon/misc/Tables/simon.Index.html .

While the specific file generation packages are
Rensselaer specific, both the host programs and the
File_Generate should be pretty generic and could be
used at other sites with no modifications.

Acknowledgments
I would like to thank Alan Powell and Jackie

Stampalia of Server Support Services, Rensselaer
Polytechnic Institute for their willingness to read and
comment on many drafts of this paper. Special thanks
go out to Remy Evard of the Argonne National Labo-
ratory who helped edit the final version of the paper.

Author Information
Jon Finke graduated from Rensselaer in 1983,

where he had provided microcomputer support and

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 35

An Improved Approach for Generating Configuration Files from a Database Finke

communications programming, with a BS-ECSE. He
continued as a full time staff member in the computer
center. From PC communications, he moved into
mainframe communications and networking, and then
on to Unix support, including a stint in the Nysernet
Network Information Center. A charter member of the
Workstation Support Group he took over printing
development and support and later inherited the Simon
project, which has been his primary focus for the past
nine years. He is currently a Senior Systems Program-
mer in the Server Support Services department at
Rensselaer, where he continues integrating Simon
with the rest of the Institute information systems.
When not playing with computers, you can often find
him building or renovating houses for Habitat for
Humanity, as well as his own home. Reach him via
USMail at RPI; VCC 319; 110 8th St; Troy, NY
12180-3590. Reach him electronically at finkej@rpi.
edu. Find out more via http://www.rpi.edu/˜finkej.

References

[1] Eric Armstrong, Steve Bobrowski, John Frazzini,
Brian Linden, and Maria Pratt, Oracle 7 Server
Application Developer’s Guide, chapter 11,
pages 1-22. Oracle Corporation, Dec 1992.

[2] Eric Armstrong, Steve Bobrowski, John Frazzini,
Brian Linden, and Maria Pratt, Oracle 7 Server
Application Developer’s Guide, chapter 6, pages
23-28. Oracle Corporation, Dec 1992.

[3] Bob Arnold, ‘‘Accountworks: User Create
Account on SQL, Notes, NT and Unix,’’ The
Twelfth Systems Administration Conference
(LISA 98) Proceedings, pages 49-61, Sybase Inc,
USENIX, December 1998, Boston, MA.

[4] Fabio Q. B. da Silva, Juliana Silva da Cunha,
Danielle M. Franklin, Luciana S. Varejao, and
Rosalie Belian, ‘‘An nfs configuration manage-
ment system and its underlying object-oriented
model,’’ The Twelfth Systems Administration
Conference (LISA 98) Proceedings, pages
121-130, Federal University of Pernambuco,
USENIX, December 1998, Boston, MA.

[5] Jon Finke, ‘‘Automated userid management,’’
Proceedings of Community Workshop ’92, Troy,
NY, June 1992, Paper 3-5.

[6] Jon Finke, ‘‘Simon system management: Host-
master and beyond,’’ Proceedings of Community
Workshop ’92, Troy, NY, June 1992, Paper 3-7.

[7] Jon Finke, ‘‘Relational Database + Automated
Sysadmin = Simon,’’ Invited Talk, July 1993,
Sun Users Group – East Conference, Boston,
MA.

[8] Jon Finke, ‘‘Automating printing configuration,’’
USENIX Systems Administration (LISA VIII)
Conference Proceedings, pages 175-184,
USENIX, September 1994, San Diego, CA.

[9] Jon Finke, ‘‘Monitoring Usage of Workstations
With a Relational Database,’’ In USENIX Sys-
tems Administration (LISA VIII) Conference

Proceedings, pages 149-158, USENIX, Septem-
ber 1994, San Diego, CA.

[10] Jon Finke, ‘‘Institute White Pages as a System
Administration Problem,’’ The Tenth Systems
Administration Conference (LISA 96) Proceed-
ings, pages 233-240, USENIX, October 1996,
Chicago, IL.

[11] Jon Finke, ‘‘Automation of site configuration
management,’’ The Eleventh Systems Adminis-
tration Conference (LISA 97) Proceedings,
USENIX, October 1997, San Diego, CA.

[12] Xev Gittler, W. Phillip Moore, and J. Ramb-
hasker, ‘‘Morgan Stanley’s Aurora System:
Designing a Next Generation Global Production
Unix Environment,’’ Ninth Systems Administra-
tion Conference (LISA ’95), pages 47-58, Mor-
gan Stanley, USENIX, September 1995, Mon-
terey, CA.

[13] Tom Portfolio, PL/SQL Release 8 User’s Guide
and Reference, Oracle Corporation, December
1997, Part No. A58236-01.

[14] Karl Ramm and Michael Grubb, ‘‘Exu – a sys-
tem for secure delegation of authority on an inse-
cure network,’’ Ninth Systems Administration
Conference (LISA) ’95, pages 89-93, Duke Uni-
versity, USENIX, September 1995, Monterey,
CA.

[15] Mark A. Rosenstein, Daniel E. Geer, Jr., and
Peter J. Levine,‘‘The Athena Service Manage-
ment System,’’ USENIX Conference Proceed-
ings, pages 203-211, MIT Project Athena,
USENIX, Winter 1988.

[16] Gregory S. Thomas, James O. Schroeder, Mer-
rilee E. Orcutt, Desiree C. Johnson, Jeffrey T.
Simmelink, and John P. Moore, ‘‘Unix Host
Administration in a Heterogeneous Distributed
Computing Environment,’’ The Tenth Systems
Administration Conference (LISA 96) Proceed-
ings, pages 43-50, Pacific Northwest National
Laboratory, USENIX, October 1996, Chicago,
IL.

36 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Finke An Improved Approach for Generating Configuration Files from a Database

Appendix 1: DirectoryGen.sh

#!/usr/vice/etc/pagsh
Script to update Directory files from Simon
HTMLROOT=/afs/.rpi.edu/dept/acs/rpinfo/common/AutoGen
DirPgmRoot=/campus/rpi/simon/directory/2.0/@sys/bin
HTMLROOT=/afs/.rpi.edu/dept/acs/rpinfo/common/AutoGen
LOCKPGM=$ROOT/common/bin/wait_for_lockfile.sh
LOCKFIL=$ROOT/Dirgen_Sync_Lock
VOSRELEASE=$ROOT/common/bin/SQLVosRelease.sh
HNVR=$HTMLROOT/Needs_Vos_Release
Define Oracle variables
LOGNAME=SimonXfr ; export LOGNAME
ORACLE_HOME=/opt/app/oracle/product/8.0.5 ; export ORACLE_HOME
ORACLE_SID=SIM3 ; export ORACLE_SID
PATH=$ORACLE_HOME/bin:$PATH ; export PATH
Get a token
if [-x /usr/local/etc/host.klog] ; then

/usr/local/etc/host.klog -t
else

echo "Unable to get token"
exit 1

fi
Get a lock
if ($LOCKPGM $LOCKFIL 10) ;
then

echo "Unable to Lock $LOCKFIL"
exit 1

fi
Regenerate directory HTML files
cd $HTMLROOT
dirdeptgen=$DirPgmRoot/Generate_File
dirdeptpar="-target department_html -nvr $HNVR"
if [-x $dirdeptgen]; then

su $LOGNAME "-c $dirdeptgen $dirdeptpar"
else

echo "Unable to run $dirdeptgen"
exit 1

fi
See if we need a vos release
if [-f $HNVR];
then

echo "==>[ignored: n]<== Vos releasing for"
cat $HNVR
if [-x $VOSRELEASE];
then

$VOSRELEASE simongen
rm $HNVR

else
echo "Unable to locate sysctl, vos release aborted"

fi
fi

Appendix 2: Generate_Passwd Package

define name=GENERATE_ETC_PASSWD_DEMO
prompt Creating package &NAME
create or replace package &name as
-- $Header: /afs/.rpi.edu/campus/rpi/simon/prop/2.0/init_sql/RCS/

Create_Package_Generate_Etc_Passwd_Demo.sql,v 1.1 2000/09/20
01:11:41 finkej Exp finkej $

-- Generate a /etc/passwd file from the logins table

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 37

An Improved Approach for Generating Configuration Files from a Database Finke

procedure get_data(result out varchar2, p1 in varchar2, p2 in varchar2);

end &NAME;
/
prompt Creating package body &NAME
create or replace package body &name as

Cursor Get_Pw_Ent_Curs is
Select Username "UNAME", Unixuid "UID", nvl(Unixgid,4000) "GID",

Public_Personal_Info "GECOS"
from Logins
where source like ’PRIMARY%’
and when_marked_for_delete is null

order by unixuid;

procedure get_data(result out varchar2, p1 in varchar2, p2 in varchar2)
is

R Get_pw_Ent_curs%Rowtype; -- The data from Oracle
begin

--
-- First time through, we open the cursor
if not Get_Pw_Ent_Curs%IsOpen
then

Open Get_Pw_Ent_Curs;
end if;
--
-- Get the data into R, a record based on the query
Fetch Get_Pw_Ent_Curs
into R;

if Get_Pw_Ent_Curs%NotFound
then

-- End of data, close the cursor and return a null
Result := Null;
Close Get_Pw_Ent_Curs;

else
-- Build the password file entry
Result := R.Uname || ’:*:’ || to_char(R.Uid) || ’:’

|| R.Gid || ’:’ || R.Gecos || ’:’
|| ’/home/’ || ltrim(to_char(R.uid mod 100, ’09’)) || ’/’ || R.uname
|| ’:/bin/bash’;

end if;
end get_data;
end &name;
/

-- Call Add_Target_Simple to register this file target.
begin
Generate_File_Internal.Add_Target_Simple(

’etcpasswd_demo’, -- Target Name
null, -- Let ANYONE do this
’$Id: Create_Package_Generate_Etc_Passwd_Demo.sql,v 1.1 2000/09/20

01:11:41 finkej Exp finkej $’,
’$Source: /afs/.rpi.edu/campus/rpi/simon/prop/2.0/init_sql/RCS/

Create_Package_Generate_Etc_Passwd_Demo.sql,v $’,
’Generate a /etc/passwd file as a demo for LISA’,
’passwd_demo’, -- Output File Name
’&name..Get_Data’); -- Routine Name defined above

end;

38 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

