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Analyzing Distributed Denial Of
Service Tools: The Shaft Case

Sven Dietrich – NASA Goddard Space Flight Center
Neil Long – Oxford University
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ABSTRACT

In this paper we present an analysis of Shaft, an example of malware used in distributed
denial of service (DDoS) attacks. This relatively recent occurrence combines well-known denial of
service attacks (such as TCP SYN flood, smurf, and UDP flood) with a distributed and
coordinated approach to create a powerful program, capable of slowing network communications
to a grinding halt.

Denial of service attack programs, root kits, and network sniffers have been around in the
computer underground for a very long time. They have not gained nearly the same level of
attention by the general public as did the Morris Internet Worm of 1988, but have slowly
progressed in their development. As more and more systems have come to be required for
business, research, education, the basic functioning of government, and now entertainment and
commerce from people’s homes, the increasingly large number of vulnerable systems has
converged with the development of these tools to create a situation that resulted in distributed
denial of service attacks that took down the largest e-commerce and media sites on the Internet.

In contrast, we provide a comparative analysis of several distributed denial of service tools
(e.g., Trinoo, TFN, Stacheldraht, and Mstream), look at emerging countermeasures against some
of these tools. We look at practical examples of these techniques, provide some examples from test
environments and finally talk about future trends of these distributed tools.

Introduction

Network-based attacks are nothing new, but up
to last year the techniques utilized were focused on
simple point-to-point denial of service. By denial of
service we mean overwhelming the victim host or net-
work to the point of unresponsiveness to the legitimate
user. We provide a little overview, by no means com-
plete, of previous point-to-point denial of service tech-
niques. There are four major point-to-point tech-
niques: TCP SYN flooding, UDP flooding, ICMP
flooding, and Smurf attacks. The first one misbehaves
from the standard three-way TCP handshake causing
resource consumption and bandwidth consumption,
whereas the remaining ones intend to consume the
victim’s bandwidth.

The year 1999 saw an emergence of new denial
of service tools. The change was inevitable: the
growth of network pipes made simple point-to-point
tools either useless, or the improved tracking capabili-
ties easily shut down the source of the problem. Even
though some solutions or at least containment methods
exist for the above, the distributed variants as an evo-
lution of coordinated many-to-one attacks escape the
traditional model sufficiently. Rather than relying on a
single source, attackers could now take advantage of
some hundred, thousand, even ten thousand or more
systems to inflict denial of service onto their victims.

Analysis

The DDoS Network Model
A Distributed Denial of Service Network follows

a hierarchical model, with one or more attackers con-
trolling a so-called handler, which in turn controls the
hordes of agents that execute the commands relayed to
them.

The communication between the attacker and the
handler, and between the handler and the agents is
referred to as the control traffic of the network,
whereas the communication between the agents and
the victims is referred to as the flood traffic. Control
traffic can be TCP, UDP, ICMP, or a combination of
the three. Flood traffic consists of traffic generated by
each individual point-to-point denial of service tech-
nique, or sometimes a combination thereof.

In order to remove himself from view, the
attacker introduces additional layers between the vic-
tim host(s) and himself. He can access the handler via
a variety of mechanisms, the most popular being a
simple telnet. More sophisticated tools use, or can take
advantage of, more advanced techniques, such as
encrypted TCP connections (ssh is a possibility for
TFN, blowfish-encrypted proprietary as in Stachel-
draht) or non-standard methods such as embedding
commands in ICMP or UDP packets (e.g., LOKI [22,
23] or Q). Additional care is taken to protect the han-
dler, as it is the key control point and effectively the
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anonymizer of the network. So as to eliminate a single
point of failure, more than one handler is found in
practice, and in most cases each handler has equal
power over its agents.

The agents are controlled from the handler, often
using a different protocol than the one in effect
between attacker and handler. It is speculated that this
is done to evade correlation. The communication is
not necessarily bidirectional, as there have been cases
of oblivious transfers. Instructed by the attacker, the
handler can control the numerous agents to perform
the attacks by proxy. As we will see, some DDoS tools
provide a clear overview of the DDoS network, e.g.,
enabling to determine the status and performance of
each individual agent.

Figure 1: A typical DDoS network

Findings

Shaft was initially detected through anomalous
network activity. With the help of the network ana-
lyzer Argus [1], spikes (see Figure 2) in the packet
flows led to the discovery of the shaftnode agent on
the compromised system within the local network. It
was one of about 100 nodes in a Shaft DDoS network.
The successful retrieval of an attack binary, the shaftn-
ode agent, and eventually its source, permitted a thor-
ough analysis of its functionality.

Since the shaftmaster handler was not retrieved
until four months later, it took simulation, thorough
analysis of Argus [1] logs and a pinch of creativity to
reconstruct the functionality of this attack tool. Simu-
lation and analysis tools such as the Unix debugging
tool strace, and disassembly of binaries are the main
contributors to the understanding of Shaft.

Communication Features

As a first step, it was important to identify the
network communication aspect of Shaft. Shaft (in the
analyzed version, 1.72) is modeled after Trinoo [11],
in that communication between handlers and agents is
achieved using the unreliable IP protocol UDP. See
Stevens [29] for an extensive discussion of the TCP
and UDP protocols. Remote control is established via

a simple telnet connection to the handler. Shaft uses
tickets for keeping track of the transactions issued to
its individual agents. Both passwords and ticket num-
bers have to match for the agent to execute the
request. A simple letter-shifting (Caesar cipher, see
Schneier [27]) is in use.

Command Structure

Next, analyzing the command structure of the
tool provided additional understanding of the capabili-
ties of Shaft. Using available source and the simple
Unix command strings, we established the command
syntax of both the agent and the handler. It provided
insight into the capabilities of the handler that was not
apparent from the agent source. A full listing of both
the agent and handler commands can be found in
Appendix 1 and 2, respectively.

Figure 2: Spikes in network activity.

Detection

Brief Description of Installation Methods

As with previous DDoS tools, the methods used
to install the handler/agent will be the same as
installing any program on a compromised Unix sys-
tem, with all the standard options for concealing the
programs and files (e.g., use of hidden directories, root
kits, kernel modules, etc.). The reader is referred to
Dittrich’s Trinoo analysis [11] for a description of pos-
sible installation methods of this type of tool.

Further findings [32] have revealed that the Shaft
DDoS tools were indeed used in conjunction with a
root kit, an inetd-based (inetd is the Unix server that
handles most incoming connections such as telnet and
ftp) trojan, a trojaned secure shell (SSH) daemon, and
a set of Unix shell scripts to automatically distribute
the tools out to the individual agent systems. The pre-
sent inetd-based trojan has been known to exist in the
wild as early as May 1999.

The distribution Unix shell script (from [32]), as
sent with netcat [19] to the trojaned system, is as fol-
lows:
#!/bin/sh
echo "oir##t"
echo "QUIT"
sleep 5
echo "cd /tmp"
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sleep 5
echo "rcp user@host:shaftnode ./"
sleep 5
echo "chmod +x shaftnode"
sleep 5
echo "./shaftnode"
echo "exit"

This shell script installs the shaftnode agent on the
system, by performing a remote copy from a reposi-
tory host into the /tmp directory, making it executable
and launching it. The reader is referred to [32] for a
complete discussion of the installation, trojaning and
rootkit-ing of the handler host.

Time Protocol Src IP/Port Flow Dst IP/Port

21:39:22 tcp z.z.z.z.53982 ↔ x.x.x.x.21
21:39:32 tcp x.x.x.x.1023 → y.y.y.y.514
21:39:56 udp x.x.x.x.33198 → z.z.z.z.20433
21:45:20 udp z.z.z.z.1765 → x.x.x.x.18753
21:45:20 udp x.x.x.x.33199 → z.z.z.z.20433
21:45:59 udp z.z.z.z.1866 → x.x.x.x.18753
21:45:59 udp x.x.x.x.33200 → z.z.z.z.20433
21:45:59 udp z.z.z.z.1968 → x.x.x.x.18753
21:45:59 udp z.z.z.z.1046 → x.x.x.x.18753
21:45:59 udp z.z.z.z.1147 → x.x.x.x.18753
21:45:59 udp z.z.z.z.1248 → x.x.x.x.18753
21:45:59 udp z.z.z.z.1451 → x.x.x.x.18753
21:46:00 udp x.x.x.x.33201 → z.z.z.z.20433
21:46:00 udp x.x.x.x.33202 → z.z.z.z.20433
21:46:01 udp x.x.x.x.33203 → z.z.z.z.20433
21:48:37 udp z.z.z.z.1037 → x.x.x.x.18753
21:48:37 udp z.z.z.z.1239 → x.x.x.x.18753
21:48:37 udp z.z.z.z.1340 → x.x.x.x.18753
21:48:37 udp z.z.z.z.1442 → x.x.x.x.18753
21:48:38 udp x.x.x.x.33204 → z.z.z.z.20433
21:48:38 udp x.x.x.x.33205 → z.z.z.z.20433
21:48:38 udp x.x.x.x.33206 → z.z.z.z.20433
21:48:56 udp z.z.z.z.1644 → x.x.x.x.18753
21:48:56 udp x.x.x.x.33207 → z.z.z.z.20433
21:49:59 udp x.x.x.x.33208 → z.z.z.z.20433
21:50:00 udp x.x.x.x.33209 → z.z.z.z.20433
21:50:14 udp z.z.z.z.1747 → x.x.x.x.18753
21:50:14 udp x.x.x.x.33210 → z.z.z.z.20433

Table 1: Compromise flow on Nov 28.

Algorithmic Overview of Attacks

Upon launch, the shaft agent (the ‘‘shaftnode’’)
reports back to its default handler (its ‘‘shaftmaster ’’)
by sending a ‘‘new <upshifted password>’’ command,
which registers the new agent in the pool of agents
available to the handler. For the default password of
‘‘shift’’ found in the analyzed code, this would be
‘‘tijgu’’. Therefore a new agent would send out ‘‘new
tijgu’’, and all subsequent messages would carry that
password in it. Only in one case does the agent shift in
the opposite direction for one particular command,
e.g., ‘‘pktres rghes’’. While it was initially unclear
whether this was a mistake, a more thorough analysis

of the shaftmaster revealed that both shifts were used
in an attempt to evade analysis.

Incoming commands arrive as space separated
items: command, upshifted password, command argu-
ment, socket number, ticket, and optional arguments,
which can be represented as the message flow diagram
between handler H and agent A:

1. A → H: "new", f(password)
2. H → A: cmd, f(password), [args], Na, Nb
3. A → H: cmdrep, f(password), Na, Nb, [args]
4. Jump to step 2.
• f(X) is the Caesar cipher function on X
• Na, Nb are numbers (tickets, socket numbers)
• cmd, cmdrep are commands and command

acknowledgments
• args are command arguments

The flooding occurs in bursts of 100 packets per
host, with the source port and source address random-
ized. This number is hard-coded, but it is believed that
more flexibility can be added. Whereas the source port
spoofing only works if the agent is running as a root
privileged process, the author has added provisions for
packet flooding using the UDP protocol and with the
correct source address in the case the process is run-
ning as a simple user process. It is noteworthy that the
random function is not properly seeded, which may
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lead to predictable source port sequences and source
host IP sequences.

The source port is generated with (R mod
(65535-1024)+1024) where R is the output of the
rand() function. This will generate source ports greater
than 1024 at all times.

The source IP is of the form R1.R2.R3.R4 where
R1, R2, R3, R4 are the outputs of rand() mod 255. The
source IP numbers can (and will) contain a zero in the
leading octet.

Additionally, the sequence number for all TCP
packets is fixed, namely 0x28374839, which helps
with respect to detection at the network level. The
ACK and URGENT flags are randomly set, except on
some platforms. Destination ports for TCP and UDP
packet floods are randomized.

The client must choose the duration (‘‘time’’),
size of packets, and type of packet flooding directed at
the victim hosts. Each set of hosts has its own dura-
tion, which gets divided evenly across all hosts. This
is unlike TFN [6] which forks an individual process
for each victim host. For the type, the client can select
UDP, TCP SYN, ICMP packet flooding, or the combi-
nation of all three. Even though there is potential for
having a different type and packet size for each set of
victim hosts, this feature is not exploited in this ver-
sion.

When a general command is issued, it is sent to
all hosts listed in a hidden file containing all the Shaft
agents, in general with a timeout of 30 seconds. To
date, no mechanism to alter that timeout has been
found. Some commands have longer timeouts, up to
300 seconds. A list of outstanding tickets (transactions
waiting to complete) is available to the attacker with
the ‘‘ltic’’ command, which lists the ticket number and
its corresponding remaining time. The attacker can
visually correlate the ticket number to the actual com-
mand by scrolling back in his screen buffer and com-
paring the number that was printed after the execution
of the command, similar to seeing a process id dis-
played when sending a process into the background on
a Unix system.

The author of Shaft seems to have a particular
interest in statistics, namely packet generation rates of
its individual agents. The statistics on packet genera-
tion rates are possibly used to determine the ‘‘yield’’
of the DDoS network as a whole. This would allow
the attacker to stop adding hosts to the attack network
when it reached the necessary size to overwhelm the
victim network, and to know when it is necessary to
add more agents to compensate for loss of agents due
to attrition during an attack (as the agent systems are
identified and taken off-line).
Packet Flow Analysis

In this section we will look at a practical exam-
ple of an attack carried out with the Shaft distributed
denial of service attack tool, as seen from the attack-
ing network perspective.

The handler is listening on port 20433, and an
existing connection on port 20432 is awaiting the
commands of the attacker. The packet flow is illus-
trated in Table 1.

There is quite some activity between the handler
and the agent, as they go through the command
request and acknowledgement phases. There was also
what appeared to be testing of the impact on the local
network itself with, among others, UDP packet flood-
ing against the broadcast address (first 2-3 spikes), fol-
lowed by ICMP flooding as shown in Figure 2. See
Figure 3 for a fine-grained view.
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Figure 3: 28 Nov 1999 floods 21:00-23:00.

The interesting portion is the first three lines. It shows
the penetration from the handler (z.z.z.z) using the
inetd-based trojan with source port 53982 and destina-
tion port 21 (any inetd related port would have
worked), the download of the shaftnode binary from
y.y.y.y via rcp (remote copy, port 514), and the regis-
tration of the shaftnode agent with its shaftmaster han-
dler. The theory that these were the traces of the pene-
tration was confirmed by findings [32] on the handler
host. The ten second delay between the packet on port
21 and the remote copy on port 514 is consistent with
the script mentioned in the section on installation
methods. Later that night, the attacker performed sev-
eral attacks (three UDP and one combination
TCP/UDP/ICMP) in order to test the Shaft network
further, as illustrated in Figure 4. Let us look at the
individual phases from a later attack after it became
possible to record the packet contents, as well as gen-
eral flow data, subsequent to a determination of the
agent, handler and communication ports. Subse-
quently, the handler continued to send such packets
even though the agent had been disabled and the host
integrity recovered. This is illustrated in Table 2.
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Figure 4: Further testing 29 Nov 1999 02:00-07:00.

time flow command
18:06:40 Z → X alive tijgu hi 5 8170
18:09:14 Z → X time tijgu 700 5 6437
18:09:14 X → Z time tijgu 5 6437 700
18:09:16 Z → X size tijgu 4096 5 8717
18:09:16 X → Z size tijgu 5 8717 4096
18:09:23 Z → X type tijgu 2 5 9003

Table 2: Setup and configuration phase on Dec 4.

time flow command
18:09:24 Z → X own tijgu a.a.a.a 5 5256
18:09:24 X → Z owning tijgu 5 5256 a.a.a.a
18:09:24 Z → X pktres tijgu a.a.a.a 5 1993
18:09:24 Z → X own tijgu b.b.b.b 5 78
18:09:24 Z → X pktres tijgu j.j.j.j 5 8845
18:09:24 Z → X own tijgu c.c.c.c 5 6247
18:09:25 Z → X own tijgu d.d.d.d 5 4190
18:09:25 Z → X own tijgu e.e.e.e 5 2376
18:09:25 X → Z owning tijgu 5 78 b.b.b.b
18:09:26 X → Z owning tijgu 5 6247 c.c.c.c
18:09:27 X → Z owning tijgu 5 4190 d.d.d.d
18:09:28 X → Z owning tijgu 5 2376 e.e.e.e
18:21:04 X → Z pktres rghes 5 1993 51600
18:21:04 X → Z pktres rghes 0 0 51400
18:21:07 X → Z pktres rghes 0 0 51500
18:21:07 X → Z pktres rghes 0 0 51400
18:21:07 X → Z pktres rghes 0 0 51400

Table 3: Host list and statistics.

The handler issues an ‘‘alive’’ command, and
says ‘‘hi’’ to its agent, assigning a socket number of
‘‘5’’ and a ticket number of 8170. We will see that this
‘‘socket number’’ will persist throughout this attack. A
time period of 700 seconds is assigned to the agent,
which is acknowledged. A packet size of 4096 bytes is

specified, which is again confirmed. The last line indi-
cates the type of attack, in this case ‘‘the works’’, i.e.,
UDP, TCP SYN and ICMP packet flooding combined.
Failure to specify the type would make the agent
default to UDP packet flooding.

Now the list of hosts to attack and which ones
they want statistics from on completion, as shown in
Table 3. To protect the identity of the victims, the
hosts IP number have been replaced with a.a.a.a
through j.j.j.j.

time flow command
18:24:25 Z → X own tijgu e.e.e.e 5 4493
18:25:53 Z → X own tijgu b.b.b.b 5 9392
18:27:05 Z → X own tijgu a.a.a.a 5 3085
18:27:06 X → Z owning tijgu 5 3085 a.a.a.a
18:33:52 Z → X own tijgu c.c.c.c 5 1878
18:33:53 X → Z owning tijgu 5 1878 c.c.c.c
18:36:04 X → Z pktres rghes 0 0 104100
18:36:20 Z → X pktres tijgu a.a.a.a 5 1511
18:36:21 X → Z owning tijgu 5 1754 a.a.a.a
18:37:33 X → Z pktres rghes 0 0 81700
18:38:13 Z → X own tijgu f.f.f.f 5 3126
18:38:13 Z → X pktres tijgu f.f.f.f 5 4697
18:38:14 X → Z owning tijgu 5 3126 f.f.f.f
18:38:47 X → Z pktres rghes 5 1511 76600
18:39:15 Z → X own tijgu g.g.g.g 5 4272
18:39:16 X → Z owning tijgu 5 4272 g.g.g.g
18:39:41 Z → X own tijgu c.c.c.c 5 8850
18:39:41 Z → X pktres tijgu c.c.c.c 5 9924
18:40:43 Z → X own tijgu c.c.c.c 5 2672
18:41:25 X → Z owning tijgu 5 5195 h.h.h.h
18:45:33 X → Z pktres rghes 5 9924 53700
18:48:01 X → Z pktres rghes 0 0 48800
18:49:54 X → Z pktres rghes 5 4697 45700
18:50:56 X → Z pktres rghes 0 0 44900
18:51:22 X → Z pktres rghes 0 0 45700
18:53:04 X → Z pktres rghes 0 0 63700
18:54:47 Z → X own tijgu i.i.i.i 5 2086
18:54:47 Z → X pktres tijgu i.i.i.i 5 6980
18:54:47 X → Z owning tijgu 5 2086 i.i.i.i
19:06:27 X → Z pktres rghes 5 6980 241200

Table 4: More hosts and statistics.

Now that all other parameters are set, the handler
issues several ‘‘own’’ commands, in effect specifying
the victim hosts. Those commands are acknowledged
by the agent with an ‘‘owning’’ reply. The flooding
occurs as soon as the first victim host gets added. The
handler also requests packet statistics from the agents
for certain victim hosts (e.g., ‘‘pktres tijgu a.a.a.a 5
1993’’). Note that the reply comes back with the same
identifiers (‘‘5 1993’’) at the end of the 700 second
packet flood, indicating that 51600 sets of packets
were sent. One should realize that, if successful, this
means 51600 x 3 packets due to the configuration of
all three (UDP, TCP, and ICMP) types of packets. In
turn, this results in roughly 220 4096 byte packets per
second per host, or about 900 kilobytes per second per
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victim host from this agent alone, about 4.5 megabytes
per second total for this little exercise. A graphical
view can be seen in the first portion (minutes 1
through 12) of Figure 5.

0

10000

20000

30000

40000

50000

60000

1 6 1 1 1 6 2 1 2 6 3 1 3 6 4 1 4 6

Time (approx minutes)

P
ac

ke
t 

fl
o

w
s

Target A Target B

Target C Target D

Target E Target F

Target G Target H

Target I

Figure 5: 4 Dec 1999 floods.

Note the reverse shift (‘‘shift’’ becomes ‘‘rghes’’,
rather than ‘‘tijgu’’) for the password on the packet
statistics. Continuing on with the attack, as shown in
Table 4, the attacker selects new targets in a staggered
manner, but still keeping the established settings of the
700 second combination type attack of 4096 byte
packets. The yields of the attack vary from roughly
800 kilobytes per second per host in a multi-target set-
ting to 4.2 megabytes per second per host in a single
target setting (Target I). The staggered approach can
be observed in the right two thirds of Figure 5 (min-
utes 14 through 50).

Cryptographic Aspects

Shaft incorporated several noteworthy tech-
niques for keeping information secret. For one, the
letter-shifting or Caesar cipher, was applied several
times within this tool. As described previously, the
transaction password ‘‘shift’’ was shifted by one letter
upwards to generate the string ‘‘tijgu’’ observed on the
network. However, a  different shift in the opposite
direction generated ‘‘rghes’’ for the return statistics.
While the author(s) of this program did not encrypt the
entire message exchange between handler and agent,
they did nevertheless obfuscate the real strings, such
as applying the shift to the handler IP numbers in the
binary and also the port numbers in the case of a
‘‘switch’’ command, namely by adding an offset to the
real port number.

As with the original Trinoo tool, the Shaft han-
dler contained 13-character strings, strangely resem-
bling Unix crypt() output. Through close analysis of
the handler code, it was established that they repre-
sented the access passwords to the control port of the
program, that is where the attacker would connect to
and perform the distributed denial of service from a
convenient, but not quite menu-driven, command line.
The actual passwords were recovered in a similar
fashion to the ones from Trinoo and Stacheldraht,
except that the above shifts had to be performed on the
ciphertext first.

Similar to the handler settings in earlier tools, the
author of Shaft attempts to keep the list of its agents in
a non-trivial format. Other tools encrypt that list using
Blowfish, but this tool packs the four octets of the IP
number into a 4-byte integer and writes the ASCII rep-
resentation of that number to a file, one per line. For
example, adding the agent with IP address 127.0.0.1
using ‘‘+node 127.0.0.1’’ would yield a line contain-
ing ‘‘16777343’’, which is:

127 × 2560 + 0 × 2561 + 0 × 2562 + 1 × 2563.
In order to extract the IP numbers from the list, one
would apply the reverse transformation.

Anomaly Detection

The network flooding which took place was ini-
tially noticed after a cursory glance at the hourly net-
work flow data files recorded using an Argus [1] mon-
itor at the main Internet connection point. Without any
such monitoring the activities would have almost cer-
tainly gone unnoticed since the floods took place over
the Sunday-Monday night. Other IDS records
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indicated a possible UDP portscan had taken place but
for host IPs not possible on the local net blocks.

For example, the typical argus data file at that
time of day (night) would be 4Mbytes but these grew
to between 40 and 100Mbytes. Analyzing such large
data files takes significant effort and resources (hence
the hourly rotation) but it was possible to determine
the start time of the rapid rise in connections and then
tracing the external connection (handler) and internal
flooder (agent) becomes a matter for trial and error
and some measure of good fortune. In this instance the
first guess was used to contact the host administrator
who was able to locate the process still left running
(although inactive), obtain an lsof [18] output and
recover residual files and logs.

Reducing the data for the hourly flows down to
something suitable for graphical display was compli-
cated by the very large number of data points which
overwhelms most of the standard graphing or statisti-
cal packages.

Other traffic monitoring applications which
might have indicated that an unusually large network
flow had occurred would not usually have an accurate
time nor could have been used to trace the external →
internal communications channel correspondence. For
example snmp monitoring of packet numbers is a pop-
ular method. Accumulated byte counts per sub-net
(host, port, etc) could also have been obtained using
NeTraMet [5] but again this would have been inade-
quate for the post event analysis.

Impact of Victim Hosts/networks

The effect of the combined outpouring of packets
has already been considered from the point of view of
the target victim but it should be noted that very little
legitimate traffic was able to move over the Internet
gateway while the flood took place. This secondary
denial of service would be of major significance dur-
ing normal working hours and when combined with
several such agents distributed around one site can
lead to saturation of the essential backbone infrastruc-
ture and routers.

Impact on network – given the time of day it had
little or no impact apart from slowing external port
scanners (!) – maybe it is worth noting that on typical
asynchronous ATM external connections there would
be an impact on outgoing verus incoming. The impact
of one host running flat out will be a lot less than sev-
eral hosts running as agents. Deliberately limiting
agents to one per site would have considerable bene-
fits when it comes to avoiding detections while still
retaining effective DoS of the target(s).

Secondary Effects

Poor DNS response (if any) – even problems
managing network devices during the peaks. The
flurry of ‘‘response’’ packets caused by the floods can
create additional complications within the network.
Due to the ‘‘inband-signalling’’ nature of TCP/IP, the

control messages related to network management must
travel over the very same congested network.

NIDS vs. Active Scanning

Network Intrusion Detection Systems (NIDS)

During very high (near saturation) flows almost
no event of any kind would be logged by an IDS sys-
tem – they would either have to drop packets at a very
high rate or require multi-CPU architectures in order
to combine packet collection and packet state analysis.
As pipe capacities continue to grow (Gigabit, etc)
there will be serious difficulties for network flow
monitors such as Argus to keep up based on the typi-
cal PC architecture (there is seldom a budget available
for a top end machine which will, hopefully, be wast-
ing cycles 99 % of the time waiting for such events).

Passive Scanning

For the purpose of detecting malicious activity,
certain features of the whole DDoS package have to
be considered and provide clues for passive scanning
of such events. This program does not provide for
code updates (like TFN or Stacheldraht). This may
imply ‘‘rcp’’ or ‘‘ftp’’ connections during the initial
intrusion phase (see also [11]). As found in [32], the
intruders used ‘‘rcp’’ in their distribution scripts, but
this could easily be altered.

The program uses UDP traffic for its communi-
cation between the handlers and the agents. Consider-
ing that the traffic is not encrypted, it can easily be
detected based on certain keywords. Performing an
‘‘ngrep’’ [20] for the keywords mentioned in the syn-
tax sections (Appendix 1 and 2), will locate the con-
trol traffic, and looking for TCP packets with
sequence numbers of 0x28374839 (decimal
674711609) may locate the TCP SYN packet flood
traffic. The latter traffic can be detected through its
secondary effect of causing SYN|ACK and RST|ACK
traffic with sequence numbers of 0x2837483a (deci-
mal 674711610), as pointed out by Richard Bejtlich
(who has been witnessing these effects – with this
same sequence number – for well over a year [3]).
Source ports of the flood traffic are always above
1024, and source IP numbers can include zeroes in the
leading octet.

Strings in this control traffic can be detected with
the ‘‘ngrep’’ program using the same technique shown
in [11, 12, 13]. Here are some examples that will
locate the control traffic between the handler and the
agent, independently of the port number used.
# ngrep -i -x "alive tijgu" udp
U 192.168.10.1:4001 -> 192.168.10.2:18753
61 6c 69 76 65 20 74 69 alive ti
6a 67 75 20 68 69 20 35 jgu hi 5
20 38 36 34 31 0a 8641.

U 192.168.0.2:1494 -> 192.168.0.1:20433
61 6c 69 76 65 20 74 69 alive ti
6a 67 75 20 35 20 38 36 jgu 5 86
34 31 20 62 6c 61 68 41 blah
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The above will show the ‘‘alive’’ messages exchanged
between handler and agents.
# ngrep -i -x "pktres|pktstat" udp
U 192.168.10.2:1499 -> 192.168.10.1:20433
70 6b 74 73 74 61 74 20 pktstat
74 69 6a 67 75 20 35 20 tijgu 5
31 32 35 37 20 30 1257 0

The above shows the request for packet statistics and
the flood results.
# ngrep -i -x "switch tijgu" udp
U 192.168.10.1:4001 -> 192.168.10.2:18753
73 77 69 74 63 68 20 74 switch t
69 6a 67 75 20 32 30 34 ijgu 204
38 33 20 35 20 32 39 36 83 5 296

U 192.168.10.2:1522 -> 192.168.10.1:20433
73 77 69 74 63 68 65 64 switched
20 74 69 6a 67 75 20 35 tijgu 5
20 32 39 36 296

This previous example shows the directive from
the handler to ‘‘switch’’ to this handler.

For specific signature detection, one could also
use Snort [25]. See the caveats below.

Active Scanning

Scanning the network for open port 20432 will
reveal the presence of a handler on your local area net-
work.

For detecting idle agents, one could write a pro-
gram similar to George Weaver ’s trinoo detector.
Sending out ‘‘alive’’ messages with the default pass-
word to all nodes on a network on the default UDP
port 18753 will generate traffic back to the detector,
making the agent believe the detector is a handler.

There are also two excellent scanners for detect-
ing DDoS agents on the network: Dittrich’s ‘‘dds’’
[15] and Brumley’s ‘‘rid’’ [6].

‘‘dds’’ was written to provide a more portable
and less dependent means of scanning for various
DDoS tools. (Many people encountered problems with
Perl and the Net::RawIP library [24] on their systems,
which prevented them from using the scripts provided
in [11, 12, 13].) Due to time contraints during coding,
‘‘dds’’ does not have the flexibility necessary to spec-
ify arbitrary protocols, ports, and payloads. One would
need to modify the source slightly to detect shaft
agents or handlers. A modified version of ‘‘dds’’,
geared towards detecting only ‘‘Shaft’’ agents, is
available [9, 16].

A better means of detecting shaft handlers and
agents would be to use a program like ‘‘rid’’, which
uses a more flexible configuration file mechanism to
define ports, protocols, and payloads.

A sample configuration for ‘‘rid’’ to detect the
Shaft control traffic as described:
start shaft

send udp dport=18753
data="alive tijgu hi 5 1984"

recv udp sport=20433
data="alive" nmatch=1

end shaft

Caveats

It should be emphasized again and again that the
passive and active detection triggers rely on ‘‘old’’
numbers, strings, etc. and that they are often trivial to
modify. Selection and use of such tools and commer-
cial NIDS (in particular) should bear this in mind
along with their flexibility to insert the ‘‘latest’’ trigger
information that may be provided by security teams
and organizations.

Related work

We present a brief overview, in chronological
order to the best of our knowledge, of DDoS tools that
have been mentioned publically.

Early tools
The early tools appeared in early summer 1998.

They were clumsy attempts to naturally evolve beyond
coordinated attacks [17], but nevertheless laid the
foundation to the subsequent tools. The first of them,
fapi, featured UDP, TCP (SYN and ACK), and ICMP
Echo floods. Its handler to agent communication was
UDP-based. It did not provide easy controls for setting
up the DDoS network, and did not handle networks
over 10 hosts very well. The second one, fuck_them,
was a distributed ICMP Echo Reply flooder, where the
attacker either supplied the source address to spoof or
randomized source addresses were generated (all 32
bits of the IP address).

Trinoo and variants
Trinoo surfaced in the early summer 1999. It has

been extensively scrutinized, and we refer to [11] for a
thorough analysis. The tool is capable of only generat-
ing UDP packet floods without source address forgery,
but has full control features. It was capable of crip-
pling the network of the University of Minnesota [10,
11] for three days, leading to a workshop on the sub-
ject [7]. Trinoo has mutated at least twice over the last
year.

TFN and variants
TFN, a.k.a. Tribe Flood Network, was intro-

duced in late summer 1999. With its limited control
features, it still provided UDP packet flood attacks (it
gave homage to Trinoo by calling it ‘‘trinoo emula-
tion’’), TCP SYN flood attacks, ICMP Echo flood
attacks, and Smurf attacks in a distributed fashion. It is
capable of spoofing either all 32 bits of the IP source
address, or just the last 8 bits. As with Trinoo, this tool
has been analyzed thoroughly [12].

TFN2K, or TFN2000, is a further development
effort on the basis of TFN. It provides the same
attacks as TFN, but can randomly do them all at once.
Encryption of the control traffic was added to improve
the security of the DDoS network and evade signature
detection. Control traffic uses a superposition of UDP,
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TCP and ICMP, using oblivious transfers, i.e., the
receipt is not acknowledged. For a brief review, see
[2].

Stacheldraht and Variants
Stacheldraht, German for ‘‘barbed wire,’’ appar-

ently evolved out of Trinoo and TFN. Analyzed in
[13], it has full control features, the same basic attacks
and source address forgery as TFN, and as a twist, a
Blowfish-encrypted control channel for the attacker.
Mutated into StacheldrahtV4 in early 2000, it further
mutated into Stacheldraht v1.666, which adds TCP
ACK and TCP NUL packet flood attacks, and precon-
figured Smurf attacks.

Mstream
As the name suggests, Mstream is a ‘‘multiple

stream’’ tool, in reference to the very efficient point-
to-point stream TCP ACK flooding tool. It has very
limited control features and randomizes all 32 bits of
the source IP address. For a review of this tool that
appeared in the spring of 2000, please see [14].

Omega
Omega, which appeared in early summer 2000,

features TCP ACK packet flooding, UDP packet
flooding, ICMP flooding, IGMP packet flooding, and
a mix of all four floods. Similar to Shaft, it provides
statistics on the floods it produces. It randomizes all
32 bits of the source IP address, and introduces a chat
function for communication between attackers.

Trinity and Derivatives
Trinity, and its closely related mutation Entitee,

take a new approach on the DDoS model. Rather than
relying on a handler network, it takes advantage of an
existing Internet Relay Chat (IRC) network for its
handler-to-agent communications, making a channel
on IRC the ‘‘handler.’’ Besides the up to now well-
known UDP, TCP SYN, TCP ACK, TCP NUL packet
floods, it introduces TCP fragment floods, TCP RST
packet floods, TCP random flag packet floods, and
TCP established floods, while randomizing all 32 bits
of the source IP address.

myServer
In contrast to the sophistication of Trinity, yet

released around the same time in summer 2000,
myServer is a simplistic DDoS tool. It relies on exter-
nal programs to provide the denial of service.

Plague
As a third tool in the same generation as Trinity

and myServer, it has become obvious Plague was
designed by attackers who are reading these reviews
and incorporating new improvements based on them.
This tool provides TCP ACK and TCP SYN flooding,
with what are claimed as fixes over previous TCP
ACK flooding tools.

Defenses and Countermeasures

There is no simple solution that would offer one
hundred percent protection against these types of

tools. There are, however, a number of steps that can
be taken to minimize the impact [16]. Several pro-
posed schemes are emerging for adding traceability to
TCP/IP packets.

What is necessary to defend? One needs to
defend the hosts, the local net, and the backbone
infrastructure. As per the recommendations in [7], cer-
tain ingress and egress filtering can minimize the
impact of denial of service attacks that use spoofed IP
source addresses by eliminating illegitimate IP source
or destination addresses. In practicality, this will not
reduce the impact of DDoS tools that do not spoof
their address or only spoof the last 8 bits of the IP
address, making it appear to be originating from the
local network that the agent resides on.

One also tries to track floods and identify their
source in order to shut them down one way or another,
or minimize the impact. In general, identifying the
source of a spoofed IP address requires the collusion
of the intermediate hosts in the path between the
actual source and the victim suffering from the denial
of service attack. Bellovin’s ICMP traceback message
scheme [4] addresses that problem by forwarding a
signed copy of the transient packet traversing the
router in a probabilistic manner. In the proposed ver-
sion, one in every 20000 packets triggers such behav-
ior, in order to avoid an additional denial of service.
Savage et al. take a different approach [26] in inserting
partial network path markings into the packet travers-
ing the router in a probabilistic fashion, rather than
creating an entirely new packet. Their Fragment
Marking Scheme, as pointed out by Song [28], lacks
the scalability of dealing with large DDoS networks,
causing a large number of false positives. Song’s
marking schemes provide more efficient traceback
under large scale (say 1500 agents) attacks. Stone sug-
gests an IP overlay network to achieve the tracking
and forwarding of interesting packets in his Center-
Track [30] scheme.

As mentioned above, anomaly detection can pin-
point the presence of a flood in the first place. Signa-
ture detection can either locate known control traffic
(either attacker to handler, or handler to agent) or
responses from victims.

Future Trends and Evolution

Ever since the introduction of Trinoo, at least
eight new tools with varying degrees of sophistication
and aimed at creating distributed denial of service
have been discovered in a time span less than one cal-
endar year. It is difficult to predict the trends of these
tools without ending up being the trendsetter or spark-
ing a new idea for the attacker. These tools have
destructive potential and one should remain cautious
as to the future directions. It is safe to assume, how-
ever, that the trends described in the section on related
work will continue, namely in creating distributed
variants of existing point-to-point tools.
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Conclusion

‘‘Shaft’’ is another DDoS variant with indepen-
dent origins. The code recovered did appear to be still
in development. Several key features indicate evolu-
tionary trends as the genre develops. Of significance is
the priority placed on packet generation statistics
which would allow host selection to be refined. The
analysis of the code and binary was greatly enhanced
by the capture of attack preparation and command
packets. The captured packets made it possible to
assess the impact of a single agent that managed to
saturate the network pipe.

The version analyzed had hooks which would
allow for dynamic changes to the master host and con-
trol port but not the agent control port. However such
items are trivially incorporated and must not be taken
to be indicative of any current versions which may be
in active use. The obfuscation of master IP, ports and
passwords used a relatively simple form of encryption
but this could easily be strengthened. Evolutionary
findings confirm that information flows back to the
authors and cause incorporation of counter-counter-
measures as the spiral continues.

The detection of DDoS installations will become
very much more difficult as such metamorphosis tech-
niques progress, the presence of such agents will still
be more readily determined by analysis of traffic
anomalies with a consequent pressure on time and
resources for site administrators and security teams.
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Appendix 1: Agent Commands

Accepted by agent and replies generated back to
the handler:
size <size> Size of the flood packets. Generates a

‘‘size’’ reply.
type <0|1|2|3> Type of DoS to run 0 UDP, 1 TCP, 2

UDP/TCP/ICMP, 3 ICMP. Generates a ‘‘type’’
reply.

time <length> Length of DoS in seconds. Generates
a ‘‘time’’ reply.

own <victim> Add victim to list of hosts to perform
denial of service on. Generates a ‘‘owning’’
reply.

end <victim> Removes victim from list of hosts
(see ‘‘own’’ above). Generates a ‘‘done’’ reply.

stat Requests packet statistics from agent. Gener-
ates a ‘‘pktstat’’ reply.

alive Are you alive? Generates a ‘‘alive blah’’
reply.

switch <handler> <port> Switch the agent to a
new handler and handler port. Generates a
‘‘switching’’ reply.

pktres <host> Request packet results for that host
at the end of the flood. Generates a ‘‘pktres’’
reply.

Sent by agent:
new <password> Registering with the handler
pktres <password> <sock> <ticket> <packets

sent> Packets sents to the host identified by
<ticket> number.

Appendix 2: Handler commands

This is an overview of the command structure:
mdos <host list> Start a distributed denial of ser-

vice attack (mdos = massive denial of service?)
directed at <host list>. Sends out ‘‘own host’’
and ‘‘pktres’’ messages to all agents.

edos <host list> End the above attack on <host
list>. Sends out ‘‘end host’’ messages to all
agents.

time <length> Set the duration of the attack. Sends
out ‘‘time <length>’’ to all agents.

size <packetsize> Set the packetsize for the attack
(8K maximum as seen in source). Sends out
‘‘size <packetsize>’’ to all agents.

type <UDP|TCP|ICMP|ALL> Set the type of
attack, UDP packet flooding, TCP SYN packet
flooding, ICMP packet flooding, or all three.
Sends ‘‘type <type>’’ to all agents.

+node <host list> Add new agents.
-node <host list> Remove agents from pool.
ns <host list> Perform a DNS lookup on <host

list>.
lnod List all agents.
ltic List all pending tickets (transactions).
pkstat Show total packet statistics for agents.

Sends out ‘‘stat’’ request to all agents.
alive Send an ‘‘alive’’ to all agents. A possible

argument to alive is ‘‘hi’’
stat show status values (length, type of DoS, packet

size).
switch become the handler for agents. Send

‘‘switch’’ to all agents.
ver show version.
whoami returns ‘‘God’’.
exit self-explanatory.
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