
USENIX Association

Proceedings of the
14th Systems Administration Conference

(LISA 2000)

New Orleans, Louisiana, USA
December 3– 8, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Pelendur: Steward of the Sysadmin
Matt Curtin – Interhack Corporation

Sandy Farrar & Tami King – The Ohio State University

ABSTRACT

Here we describe Pelendur, a system for the management of common system operation tasks.
Specifically, Pelendur focuses on the management of user accounts and related information (such
as groups) across platforms and even for particular software packages (like databases) that require
user authentication. Pelendur has reduced the massive process of deleting expired accounts and
creating new accounts between terms from a week-long operation by several part-time operators
(with subsequent cleanup by a collaboration of instructors and staff) into a completely automated
process that requires less than 15 minutes of staff work and completely eliminates the need for
instructor intervention.

Introduction

In 1998, our department was in the midst of a
massive migration of our computing facilities wherein
we moved from an architecture of many HP-UX clus-
ters to an architecture using Solaris-based function-
specific servers with thin clients in offices and labs.
Some of the software used in the old environment
needed to be replaced [3]. Because of severe limita-
tions in the functionality and correctness of the largely
ad-hoc scripts run by operators for the creation of
accounts, it was determined that an account manage-
ment system capable of managing our evolving multi-
platform environment was needed.

Yet Another Account Management System?

The idea of implementing a software system for
the management of user accounts is not new; past
years’ LISA conferences have seen many such sys-
tems. Even if we briefly ignore the issue of availabil-
ity, some systems described were unsuitable because
of extreme differences in the way that accounts are
created and managed [1, 5] and incompatible means of
handling account data [7, 11, 9, 10, 4, 8].

In the end, the most compelling reason for us to
build our own software was that a grander vision
existed: a single data repository for our department,
which would include such things as data needed for
user accounts, course-specific computing require-
ments, and access to various limited-access depart-
ment resources. We could not find any available
account management system that would work easily
with any sort of database that we would construct.

The Academic Environment

Account management, though a fairly straight-
forward task, is quite demanding in an academic envi-
ronment. Each term, we receive course rosters from
the university registrar. Although students who major
in computer and information science have ‘‘perma-
nent’’ accounts (those that will remain until after they
graduate or change majors), we have thousands of
other accounts that are created specifically for the

duration of the term. We have one week between most
terms, which means that during this time, we need to
delete potentially more than 2,500 accounts and then
create another 3,000 accounts for the next term.

In this paper, and in our environment, we use a
term that will be important to understand: ‘‘section’’.
This is a specific ‘‘class’’ that meets together. This
term is introduced because many sections of a given
class can be scheduled for the same term and we need
to know the most granular level of grouping available
from the registrar.

System Requirements
Specific requirements for this system were iden-

tified. In its full design, our scope is actually much
more broad than the rather specific task of account
management. The reason for this is that parts of
account management (such as determining how much
quota to associate with an account) are dependent on
other criteria like the requirements for courses that the
user of that account is scheduled to take. For example,
a course that deals with particularly large data sets
might have a requirement for more than the default
amount of disk quota.

Initial requirements focused on the actual man-
agement of user accounts and dependencies.
Account Management: This is the management of

individual account profiles. Adding, editing,
expiring, and purging them.

Course Management Courses have particular
requirements (such as the need for one platform
or another and the use of a software system like
Sybase) that need to be configured and man-
aged. Some of these configuration options are
simple matters of preference. Others are matters
of policy, which the course coordinator does
not have the authority to change. (Though we
refer specifically to courses, there is nothing
that prevents these entities to be managed from
being project groups, departments, or any other
sort of group that might have particular require-
ments in other environments.)

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 77

Pelendur: Steward of the Sysadmin Curtin, Farrar, & King

Resource Management: Anything that exists in our
environment (such as ‘‘Unix machines’’, ‘‘NT
machines’’, ‘‘Sybase database’’, ‘‘disk quota’’,
‘‘print quota’’, and ‘‘color printers’’) might also
need to be managed. As these are neither
accounts nor courses, but share basic proper-
ties, we classify all of these as ‘‘resources’’.
The basic point here is that users who are
administratively responsible for these resources
manage them through Pelendur instead of hav-
ing us perform all of the management tasks for
them.

Additional requirements were slated for future
development. Some of these features are now imple-
mented and others are still on our ‘‘to-do’’ list.
Unix groups: As we use groups to manage sets of

users on the Unix systems, Pelendur should be
aware of groups and know how to use them.
(This interface is now partially implemented;
new groups are created, but old groups are not
garbage collected.)

Mailing lists: Some of our course instructors and
students prefer to use mailing lists to stay in
touch. We presently use both faculty-main-
tained aliases files and Majordomo [2], but are
now investigating the possibility of replacing
both of these mechanisms with Mailman [12].

Course directories: Because some courses have
group projects or software that is specific to the
course, we need to be able to associate directo-
ries with a given course. Handling of filesystem
permissions should enforce the policy for read
and write access established by the instructor.

Multidomain management: Currently, everything
that is a part of the instructional environment is
considered ‘‘the system’’. Accounts that belong
to individual research labs are not managed by
Pelendur but it could be convenient for us to
have that option available. Should we do this in
the future, it would be nice to have the option
of having a single Pelendur installation be able
to manage multiple ‘‘systems’’, rather than hav-
ing to make a new installation of the software
for each domain that needs to be managed. This
feature would also be useful to include access
to limited-access machines, such as those that
are set aside for long-term computationally-
intensive jobs.

Electronic lock systems: A relatively new addition
to our department is an electronic lock system,
whereby ID cards are used for access control
instead of physical keys. Presently, this is man-
aged by a standalone DOS-based system.

Course newsgroups: Most courses in our environ-
ment is assigned a newsgroup on our local
news server. This is the default means of pro-
viding an ‘‘out of class’’ communication chan-
nel. Presently, we just create new groups as
new courses are added and cancel the messages

in the groups at the end of each term by hand.
Though this is not a big time-sink, we would
like for these processes to be automated.

Course-specific environment: Some courses have
particular environmental needs, such as a
course-specific $PATH setting, for example.
Pelendur can provide this.

‘‘Any computing resource’’: As we continue to
move forward, other resources are identified
and incorporated into the system’s functional-
ity. At a very high level, the goal of the system
is to manage the systems’ configurations so that
system administrators can do other things that
computers can’t do very well, like planning.

Design and Implementation

Pelendur is a large system, made up of several
programs. We’ll first describe the philosophies that
influenced the system’s design and then consider the
programs and major library modules that these pro-
grams use.

Data-Driven

The entire system sits atop a Sybase relational
database. Rather than creating code that would depend
upon very specific data, working with entities that
make sense for our environment, we opted to put as
much of the system in data as possible and to make
those data be as generic and flexible as possible. Thus,
rather than dealing with courses, sections, and instruc-
tors, other users of Pelendur will be able to work with
teams, departments, and project coordinators. Each
deployment of Pelendur will define its own terms and
the relationships among them that make sense.

We believe it important to emphasize that this
makes the integrity of the database especially critical.
In such a highly dynamic system, we’re not dealing
with simple cases of the Wrong Thing failing to
achieve the desired result. Data that have been com-
promised by a moderately clever attacker can be used
to attack the system itself, creating accounts for
attackers, granting them privileges to the entire sys-
tem, and possibly even running commands with supe-
ruser access.

The schema is represented in Figure 1. Here we
describe each of these tables in some detail.
People contains information about a person. When a

person is added to the table they are assigned a
database identifier and a user login. Those two
values will be used to tie a person to their
resources.

Account is a table that contains information about
individual accounts.

Classification contains information on thingies in
the system. A thing can be anything with the
exception of a person or an individual account.
Most classifications define a resource or a
membership group. There are also templates
and defaults in Classification that are used to

78 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Curtin, Farrar, & King Pelendur: Steward of the Sysadmin

create resources and membership groups or
define certain values in the system (e.g., what
the current quarter is). Each classification is
assigned a unique number (SID) when it is
added to the database.

MembershipIn contains the memberships for the
membership groups from Classification. It
maps a user login to a SID and is used to deter-
mine what resources that login should have.

UserRights defines owners of classifications and
grants access to users for a classification. This
allows a user to manage resources for their
membership groups.

ResourceUsedBy defines what resources a classifi-
cations has. It also indicates if the resource can
be edited by the owner or proxy of the classifi-
cation.

ResourceGroup links classifications together.

People

UNIVERSITY_ID

BUCK_ID

SSN

NAME

LNAME

FNAME

MNAME

ADDRESS

PHONE_NUMBER

EMAIL_ADDRESS

USER_LOGIN

UNIX_UID

DATE_OF_BIRTH

Account

AID

UNIVERSITY_ID

TYPE

USER_LOGIN

CREATION_DATE

FLAG

ATTRIBUTE

MembershipIn

SID

USER_LOGIN

IS_GUEST

EXPIRES

UserRights

SID

USER_LOGIN

OWNER

PROXY

REGISTRAR

ASSOCIATE

SID

DESCRIPTION

NAME

EXPIRES

CREATION_DATE

PID

RESOURCE

HAS_MEMBERS

Classification

ENSURE_ACCOUNT

ATTRIBUTE

METHOD

ResourceUsedBy

RID

SID

IS_REQUESTED

ResourceGroup

GID

SID

NAME

1

n

n

n

n

n

n

n

1

1

n

n

1

Figure 1: Schema of Pelendur ’s Database

Flexible
We made an effort to avoid ‘‘hardwiring’’ any-

thing in the system. This was largely accomplished by
taking a very dynamic view of the data. That is,
instead of having an ‘‘account’’ with a ‘‘disk quota’’
field that would be assigned a value based on the state
of the system at the time of the account’s creation, all
information about an account must go through a pro-
cess of resolution, where its dependencies are deter-
mined and the values for each of the account’s proper-
ties are resolved at run-time. This view was taken for
everything in the system, not just accounts.

Something else that we incorporated in order to
allow maximal flexibility is a system of property
inheritance. Although dealing with a relational
database system at the core, we were able to provide
the ability to inherit properties from a parent by speci-
fying a relationship between various records in the
database by defining a ‘‘parent ID’’ (Called ‘‘PID’’) as
a means of determining which ‘‘SID’’ is one step
closer to the root than the current.

This gives us the ability to specify object-ori-
ented ‘‘is-a’’ relationships between records in the
database. Thus, the ‘‘tree’’ of elements to be resolved
can be of an arbitrary depth, allowing each site (and
each particular type of resource being managed) to
have an appropriate number of levels to support the
sort of abstraction desired, without forcing some high
level of overhead on those who do not need to deal
with such abstractions.

A good example of how we use the ability to
inherit properties is in the case of a series of courses
that a student will take in sequence. There will be
some Classification table entry that will identify the
series. Each course in the series will have its own
Classification entry whose PID identifies the Classifi-
cation entry of the series as the parent. Each section in
a course will have its own Classification entry whose
PID identifies the Classification entry of the parent
course. Thus, configuration changes are made at the
appropriate level: those that affect all sections in the

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 79

Pelendur: Steward of the Sysadmin Curtin, Farrar, & King

series will be made in the Classification entry for the
series, those that affect all sections in a specific course
in the series will have those changes made in the
course’s Classification entry, and those that are spe-
cific to a particular section will be made in that sec-
tion’s Classification entry. When we need to deter-
mine how much quota, for example, an account has,
we’ll determine which sections in which the account
has membership. Those will be resolved by walking
up the tree until we get to the root object (as deter-
mined by having a PID of 0), populating the fields in
memory with the values in the database and returning.
By the time the initial Classification entry returns, we
will have queried each level in the tree, populating the
object with the levels specified at the highest level
first, and overriding those with whatever (if anything)
was specified in the lower levels.

Additionally, where values are numeric, they
need not be absolute; signed numeric values indicate
relative values. Consequently, a property of a Classifi-
cation might be to increase disk quota by 30MB,
instead of specifying some absolute value.

Modular

Rather than requiring code changes in many dif-
ferent places in order to create new interfaces in the
system, we designed the system to be made up of a
basic core which includes the database and the
resource resolution logic. The rest of the system inter-
faces to that core. The core understands when an
account needs to be created, or what the properties of
an account at any given time should be, but it knows
nothing about creating accounts. Instead, it can tell
what the account’s properties are and what system(s)
need to reflect those properties. If the account needs
access to both Unix and Sybase, the core will pass the
appropriate information to the modules for Unix and
Sybase through a standardized interface.

As described in section on implementation lan-
guage, this design makes it possible for even the
database itself to be replaced with another database
that has the same schema.

Implementation Language

Perl was chosen as the implementation language.
Its freely available DBI (database interface) and DBD
(database driver) package for talking to a wide variety
of databases makes it an excellent option for building
atop a database:

• Very little investment is made in an interface to
any particular database (since we code to DBI),
thus allowing us (theoretically) to use any
database for which a DBD module exists. In
practice, we did use one Sybase-specific fea-
ture, which we can and will in the future stop
using.

• We can spend our time focusing on the problem
at hand, instead of how to write to the database.

• Being free, the price is right.

• Since source code is available, if there is a
problem with it for which a fix is not available,
we can fix the bug ourselves.

Because parts of this system will need to run
with superuser privileges, we’re concerned about
safety of our code. Perl has some excellent safety fea-
tures: namely, the ability to identify ‘‘tainted’’ data
and support for arrays and buffers that grow dynami-
cally.

Finally, Perl is available on a huge number of
platforms. As long as we keep portability in mind, Perl
will provide us all of the language support necessary
to allow our code to run unmodified on essentially any
system we could use in the forseeable future.

Programs
rosterload is the program that loads rosters into the

database. In our environment, rosters are course
rosters that identify which students and instruc-
tors should be associated with a given section.
For the most part, rosterload just calls Ros-
ter::rosterload, which does all of the work. Our
plans are for rosterload and Roster.pm to be
modified to be able to load roster information
directly out of the Data Warehouse or from
email.

makeaccounts is the program responsible for creat-
ing things, that is, resources and accounts. First
it will initialize the resource methods, then it
creates any resources that don’t already exist.
Then it creates any accounts that don’t exist.
We have a cron job run makeaccounts runs twice
per day.

expireaccounts is our garbage collector; it’s respon-
sible for removing things from the system.
Expired resources are removed from both the
database and from the systems that were used
to support the account. After this has been
accomplished, it will remove entries in the
‘‘MembershipIn’’ table that have expired and
then any user resources that are specified for
the user in the database. cron runs expireaccounts
once per day.

notifier sends account removal notifications. All
accounts scheduled to be removed will receive
a seven day notification. Account that are ‘per-
sistent’ will also receive a 30 and 14 day notifi-
cation of expiration.1 Note that this includes not
only accounts for operating systems, but this
also includes ‘‘accounts’’ in software systems
like Sybase. As Pelendur continues to help us
blur the distinctions among different systems
that comprise the ‘‘computing environment’’,
we’ll move away from providing notification
that specific systems’ accounts will be unavail-
able and provide notification only on the user’s
‘‘meta-account’’ in the department. The Sybase

1The amounts of time on the notification are configurable
parameters.

80 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Curtin, Farrar, & King Pelendur: Steward of the Sysadmin

account will be created as soon as the student
shows up on the roster for a class that has this
resource. The account will always2 match the
Unix login name and will have the typical
default password.

crconfig is the course configuration interface for
instructors. This provides a convenient means
for them to manipulate the database in a con-
trolled manner, allowing them to change only
that which is under their administrative author-
ity without creating artificial restrictions that
require staff to perform their administrative
tasks for them. Instructors and their ‘‘proxies’’
(those whom they designate) to add and to
remove resources from a particular section and
a course default. Project and course directories
are also configured through this interface.

cradmin is the account management administration
tool. Essentially, this is the interface that is used
to manipulate the state of the database on any-
thing that is in the database. Where crconfig
deals with abstractions and has a ‘‘course-spe-
cific’’ view of the world, cradmin allows manip-
ulation of non-course-related resources. The
user interface itself still works with many of
these abstractions, but it is in this program
where we can make changes to the user inter-
face to allow administration of new resources.

Modules
Here we describe the major modules of the Pelen-

dur system. Many of these modules are shared by vari-
ous standalone programs in the system.
IICFDB.pm is the module contains the generic rou-

tines for interacting with the account manage-
ment database. There is typically a routine for
each table for searching, adding, and removing.
They follow the naming convention get_<table-
name>, add_<table-name>, remove_<table-name>.
Table names are converted to lowercase and
underscores are used where there would be
white space (‘‘MembershipIn’’ becomes mem-
bership_in]). For some tables an update function
exists also. The get_ routines are all polymor-
phic and will do different searches depending
on what data is passed to the routine. This mod-
ule also contains the routines to walk the
database recursively (resolve_pids) in order to
resolve all dependencies and provide an up-to-
the-second view of an account’s properties, as
determined by what the database knows about
the account.

IICFLog.pm is our logging mechanism. Presently,
this basically accepts messages and puts them

2‘‘Always’’ is a pretty strong word. There are a few ex-
ceptions, as the result of ancient accounts that predate Pe-
lendur that still contain dashes (-) so they can’t be used as
logins to Sybase. If the username has a dash in it, the dash
will be converted to an underscore (_) for the Sybase ac-
count. New accounts are always created with names that
are portable across our systems so that these kinds of con-
versions will not be necessary.

in the ‘‘right place’’, but the intention is that it
will be a general-purpose log gatherer for all
applications in our environment.

IICFLogin.pm contains the routines that deals with
logins in our environment. It contains the rou-
tines that generates new usernames and default
passwords.

NT.pm contains the routines to do all things on the
NT systems. It is currently not implemented; an
older standalone account creation and deletion
system was developed locally for NT accounts.
Instead of implementing this part of the system
initially, we opted to focus on the Unix, Sybase,
and core database portions of the system, build-
ing an interface between Pelendur and the old
NT account management scripts. This decision
has turned out to work relatively well for us,
and has saved us from what could have become
a large amount of redundant work as Microsoft
seems to think that making major interface
changes from version to version of its operating
systems is an appropriate thing to do. Thus, we
can avoid writing most of NT.pm until the NT
based systems are on a newer version of the
operating system than the current programs
support.

PQuota.pm interfaces with the printing system’s
quota handling. We use LPRng [6] for our
printing system throughout the department.

ResourceMethods.pm is a module that contains all of
the methods for the resources in the account
management system. Each resource has its
method defined for it in the METHOD field in its
‘‘Classification’’ entry. When called, this
method will ‘do the right thing’ for the
resource. For example, a resource like ‘‘mailing
list’’ might have a method that specifies a pro-
gram to be run in order to create or to delete the
mailing list.

Roster.pm contains the routines for processing the
roster.

Sybase.pm contains all of the routines for dealing
with Sybase resources.

Unix.pm contains all of the routines for Unix
resources. It adds and removes accounts in the
password file, manipulates the group file, and
generates the Quotas file for disk quotas.

mkcisdir.pm is used to create and to remove directo-
ries on the Unix systems. It handles several
types of directories: users’ home directories,
group project directories, and the directories
used by Submit, our program for electronic lab-
oratory submissions. Where possible, this mod-
ule will run as the owner of the directory
instead of root.

The Effect of Pelendur

Our environment has benefited tremendously
from Pelendur in many ways. What used to be a

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 81

Pelendur: Steward of the Sysadmin Curtin, Farrar, & King

painful experience for all is now essentially a non-
event.
Labor

The total staff labor expenditure for processing
accounts between terms is greatly reduced.

• Accounts to be removed are no longer pro-
cessed manually. When an account has no more
references (managed through the MembershipIn
table), the account is garbage collected.

• Instructors would manually add and remove
students from their sections using hardcopy
provided by the university registrar. We now
get these data from the registrar directly and
automatically add and remove students.

Error Rate
Historically, this has been a problem. The old

software had to run by someone who knew its idiosyn-
crasies and limitations. Mistakes were frequent and
could easily require several hours to fix. Errors are
now much less frequent, because we get data directly
from the registrar and do not require any manual inter-
vention before account configuration. Because the
entire state of the system is driven by the database,
errors can now be fixed by making appropriate
changes in the database and waiting for Pelendur to
propagate them.

Since managing our systems with Pelendur, we
have been able to identify accounts that have expired
long ago but were never removed, to identify prob-
lems that arise because of an account being misclassi-
fied, and generally to free ourselves of the kinds of
concerns that come about when the administrators
need to manage things manually.
Latency

In section ‘‘Programs’’, we identified which
parts of the system run on a regular basis in our envi-
ronment. These are configurable to a site’s require-
ments. In our environment specifically, this means that
changes made take no more than one day to take
effect. This is a huge difference from the days, weeks,
or even more that it took under the old system.

Future Work

Quite a lot can still be done with Pelendur.
Specifically, we need to increase the number of sys-
tems against which we can interface, including native
NT account management, more intelligent

Conclusions

Account management can be greatly simplified
by taking a more abstract view and thinking of system
access as a property that results from the state of the
account. Pelendur has proven to be a highly effective
means of managing a very large number of highly
variable accounts.

Availability

Although the system has been designed and
implemented in a way that emphasizes flexibility and

freedom from very a very site-specific view of the
world, it will still take quite a bit of effort for another
site to bring Pelendur into production. We’re currently
working on finishing the functionality and hope that
we will be able to revisit some of the areas of the sys-
tem that work for us but would make it difficult or
impossible for other sites to use the system as-is. This
work is geared toward making a general release of the
system. We have no idea when this could possibly take
place.

Author Information

Matt Curtin is founder of Interhack Corporation,
which helps developers and system managers build
and run systems they can trust. He is also a Lecturer
at The Ohio State University’s Department of Com-
puter and Information Science. His current interests
include Lisp programming, secure systems develop-
ment, and Internet privacy. Reach him electronically at
cmcurtin@cis.ohio-state.edu .

Tami King is a senior software specialist for the
Computer and Information Science Department at The
Ohio State University. Since graduating from Utah
State University with a B.S. in computer science, she
has worked as programmer, UNIX systems adminis-
trator, and database administrator. She also managed a
group of UNIX systems administrators before return-
ing to programming, what she enjoys most. Her free
time is taken up by her husband, her new baby boy,
and pedaling out of sync. Reach her electronically at
tami@cis.ohio-state.edu .

References

[1] Arnold, Bob, ‘‘Accountworks: Users create
accounts on SQL, notes, NT, and UNIX,’’
Twelfth Systems Administration Conference
(LISA ’98), page 49, USENIX, Boston, Mas-
sachusetts, December 6-11 1998.

[2] Chapman, D. Brent, ‘‘Majordomo: How Imanage
17 mailing lists without answering ‘‘-request’’
mail,’’ Systems Administration (LISA VI) Confer-
ence, pages 135-143, Long Beach, CA,
USENIX, October 19-23 1992.

[3] Curtin, Matt, Creating an Environment for
Reusable Software Research: A Case Study in
Reusability, Technical Report OSU-
CISRC-8/99-TR21, The Ohio State University,
Department of Computer and Information Sci-
ence, August 1999.

[4] Geer, Daniel E. Jr., ‘‘Service Management at
Project Athena,’’ Large Installation Systems
Administration Workshop Proceedings, page 71,
Monterey, CA, USENIX, November 17-18 1988.

[5] Harris, J. Archer and Gregory Gingerich, ‘‘The
Design and Implementation of a Network
Account Management System,’’ 10th Systems
Administration Conference (LISA’96), pages
33-41, Chicago, IL, USENIX, September
29-October 4 1996.

82 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Curtin, Farrar, & King Pelendur: Steward of the Sysadmin

[6] Powell, Patrick and Justin Mason, ‘‘Lprng – An
Enhanced Printer Spooler System’’ Ninth Sys-
tems Administration Conference (LISA ’95),
pages 13-24, Monterey, CA, USENIX, Septem-
ber 17-22 1995.

[7] Riddle, Paul, Paul Danckaert, and Matt Metafe-
ria, ‘‘AGUS: An Automatic Multi-platform
Account Generation System,’’ In Ninth Systems
Administration Conference (LISA ’95), pages
171-180, Monterey, CA, USENIX, September
17-22 1995.

[8] Rosenstein, Mark A., Daniel E. Geer, Jr., and
Peter J. Levine, ‘‘The Athena Service Manage-
ment System,’’ USENIX Conference Proceed-
ings, pages 203-211, Dallas, TX, USENIX, Win-
ter 1988.

[9] Spencer, Henry, ‘‘Shuse: Multi-host Account
Administration,’’ 10th Systems Administration
Conference (LISA’96), pages 25-32, Chicago, IL,
USENIX, September 29-October 4 1996.

[10] Spencer, Spencer, ‘‘Shuse at two: Multi-host
Account Administration,’’ Eleventh Systems
Administration Conference (LISA ’97), page 65,
San Diego, USENIX, California, October 26-31
1997.

[11] Tomas, Gregory S., James O. Schroeder, Mer-
rilee E. Orcutt, Desiree C. Johnson, Jeffrey T.
Simmelink, and John P. Moore, ‘‘UNIXhost
Administration in a Heterogeneous Distributed
Computing Environment,’’ 10th Systems Admin-
istration Conference (LISA’96), pages 43-50,
Chicago, IL, USENIX, September 29-October 4
1996.

[12] John Viega, Barry Warsaw, and Ken Manheimer,
‘‘Mailman: The GNUmailing List Manager,’’
Twelfth Systems Administration Conference
(LISA ’98), page 309, Boston, Massachusetts,
USENIX, December 6-11 1998.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 83

