
USENIX Association

Proceedings of the
14th Systems Administration Conference

(LISA 2000)

New Orleans, Louisiana, USA
December 3– 8, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

SubDomain: Parsimonious
Server Security

Crispin Cowan, Steve Beattie, Greg Kroah-Hartman, Calton Pu, Perry Wagle and Virgil Gligor1

– WireX Communications, Inc.

ABSTRACT

Internet security incidents have shown that while network cryptography tools like SSL are
valuable to Internet service, the hard problem is to protect the server itself from attack. The host
security problem is important because attackers know to attack the weakest link, which is
vulnerable servers. The problem is hard because securing a server requires securing every piece of
software on the server that the attacker can access, which can be a very large set of software for a
sophisticated server. Sophisticated security architectures that protect against this class of problem
exist, but because they are either complex, expensive, or incompatible with existing application
software, most Internet server operators have not chosen to use them.

This paper presents SubDomain: an OS extension designed to provide sufficient security to
prevent vulnerability rot in Internet server platforms, and yet simple enough to minimize the
performance, administrative, and implementation costs. SubDomain does this by providing a least
privilege mechanism for programs rather than for users. By orienting itself to programs rather than
users, SubDomain simplifies the security administrator’s task of securing the server.

This paper describes the problem space of securing Internet servers, and presents the
SubDomain solution to this problem. We describe the design, implementation, and operation of
SubDomain, and provide working examples and performance metrics for services such as HTTP,
SMTP, POP, and DNS protected with SubDomain.

Introduction

Common server operating systems such as
Linux, Windows, Solaris, etc. are subject to vulnera-
bility rot as security vulnerabilities (i.e., implementa-
tion bugs) are discovered in the component software
of these operating systems. For instance, a buffer over-
flow discovered in the BIND domain name server [15]
allowed remote attackers to gain root privileges on a
variety of system platforms, and a similar vulnerabil-
ity in Microsoft’s IIS (web server) [21] allows remote
attackers to gain administrative control of Windows
servers. The recommended defense for general pur-
pose servers is to keep the host system up to date with
vendor patches to close these vulnerabilities.

However, many of these systems are being
pressed into use as the basis for server appliances:
servers intended for largely unattended operation by
unskilled users. But because these operating systems
are subject to vulnerability rot, they need to be fre-
quently upgraded with vendor patches. While this is
an acceptable approach for general purpose servers
(where a skilled system administrator is expected to
maintain the system) it is not acceptable to appliance
users, who expect a device with the maintenance fac-
tor of a toaster.

1Cowan, Beattie, and Pu are formerly of the Oregon Grad-
uate Institute, where much of this work was done. Cowan
and Beattie are now with WireX Communications, and Pu is
now with the Georgia Institute of Technology. Wagle is still
with the Oregon Graduate Institute, and Gligor is with the
University of Maryland. Kroah-Hartman is with WireX.

The classical security solution to vulnerability
rot is the notion of least privilege: the technique of
granting subjects in a system precisely the capabilities
they need to perform their function, and no more [33].
Effective use of least privilege minimizes the potential
damage that results when a trusted program is pene-
trated by minimizing the degree to which the program
is trusted.

Security architectures that provide least privilege
mechanisms exist, but because they are either com-
plex, expensive, or incompatible with existing applica-
tion software, appliance vendors have not chosen to
use them. Existing defenses entail these complexities
precisely because they were designed to handle the
generality of a general purpose server, and thus must
deal with user least privilege. This generality compli-
cates the least privilege abstraction, making the
enforcement mechanism more complex to implement
and use.

This paper present SubDomain: an OS extension
designed to provide sufficient security to prevent vul-
nerability rot in server appliances, and yet simplify as
much as possible to minimize the performance,
administrative, and implementation costs. SubDomain
does this by providing a least privilege mechanism for
programs rather than for users. The security restric-
tions complement the system’s existing permissions,
allowing a program to be secured independent of who
may be using the program. This notion is especially
effective on server appliances, and enables program-
specific confinement information to be distributed

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 355

SubDomain: Parsimonious Server Security Cowan, et al.

with the program (see the section on SubDomain com-
patibility).

By specifically addressing least privilege for pro-
grams, we can provide a mechanism that has a rela-
tively small implementation and simple operation.
Small implementations are important for security sys-
tems to avoid vulnerabilities due to bugs in the
enforcement mechanism itself. Simple operation is
important for security systems to avoid misconfigura-
tion. Even more so than in most OS design issues, par-
simony is critical to security [33] making SubDo-
main’s relative simplicity of design and implementa-
tion an important feature.

We present the SubDomain notation for recur-
sively specifying the sub-domain of resources avail-
able to a software component, our implementation of
SubDomain as an enhancement to the Linux kernel,
our application of SubDomain confinement to several
example applications, performance metrics on the cost
of SubDomain confinement, and our analysis of the
security of a system protected by SubDomain.

The challenge of supporting least privilege is to
provide a specification system that is expressive
enough to specify privileges that are actually minimal,
is convenient enough that administrators can reason-
ably specify least privileges, and yet preserves com-
patibility and performance. While SubDomain strives
for simplicity relative to other least privilege mecha-
nisms, it provides for finer granularity least privilege
in one important regard: SubDomain can confine arbi-
trary software components, at a finer granularity than
the native OS process, i.e., procedures and modules.
This is especially important for component-based ser-
vices such as Apache [9] and its loadable modules (see
the section on confinement).

The rest of this paper is organized as follows.
The next elaborates on the problem of vulnera-
ble/buggy software, and describes the abstract solution
of least privilege to minimize the potential damage
due to attacks against vulnerable software. Readers
familiar with least privilege can skip ahead to the third
section, which describes the SubDomain security
enhancement, and how it advances over previous least
privilege mechanisms by providing finer granularity,
and simplifying the problem of confining suspect pro-
grams. The fourth demonstrates SubDomain’s com-
patibility by confining assorted software components,
including sub-process modules. The fifth section pre-
sents the performance costs of SubDomain confine-
ment. The subsequent section 6 describes related work
specifically addressing the problem of confining sus-
pect programs. The final section presents our conclu-
sions.

The Problem: Vulnerable Programs and Least
Privilege

Many security vulnerabilities result from bugs in
‘‘trusted’’ programs. A ‘‘trusted program’’ is a

program that runs with privilege that some attacker
would like to have, and the program fails to keep that
trust if there is a bug in the program that allows the
attacker to acquire that privilege. Some examples
include:
Buffer Overflows: Many privileged programs con-

tain ‘‘buffer overflow’’ vulnerabilities, a prob-
lem endemic to C programs that provide poor
bounds checking on user-supplied input. Buffer
overflows are very common [18, 19] and very
dangerous [32, 29], allowing attackers to take
control of programs from an anonymous node
on the internet.

Race Conditions: Many privileged programs also
contain ‘‘race condition’’ vulnerabilities. Here,
the problem is that careless root privileged pro-
cesses create files without adequate checking
for the prior existence of the file. The problem
is that the attacker can create a symbolic or
hard link in the file system between the time the
privileged program checks for existence and the
time it creates the file, with the result that the
root program unwittingly uses its authority to
corrupt some other critical file [12].

Special Character Processing: While few root
privileged programs are written in shell script-
ing languages, many other programs with
‘‘interesting’’ privileges are written as shell
scripts, especially CGI/ PERL [41] programs
for processing web forms. CGI programs run
with the authority of the web server, and must
process arbitrary input from arbitrary users. If
the attacker can provide input (using creative
URLs) to a CGI program that yields control to
the attacker, then the attacker can gain control
of the web server, e.g., the PHF program
(included in early NCSA and Apache web
servers) allowed the attacker to present a URL
to the web server that would cause PHF to start
an xterm on the attacker’s display [14].

Note that while ‘‘trusted’’ usually refers to highly
privileged processes (e.g., root processes) they can
actually be processes with any privileges that the
attacker wants but does not have. The general case is
that any program installed on a computer that pro-
cesses input from potentially hostile users becomes a
potential vulnerability. Eliminating these vulnerabili-
ties requires some form of assurance that the program
in question does not contain exploitable bugs, but this
kind of assurance is problematic. Some classes of
bugs, e.g., buffer overflow vulnerabilities, can be
eliminated through various compiler techniques [39,
17, 26, 37]. Other forms of vulnerabilities are unde-
tectable at compile time, e.g., race conditions [12] and
general logic errors.

The only way to assure the complete absence of
a security vulnerability in a program is through expen-
sive manual verification. In the absence of such verifi-
cation, one must either suffer the risk of potential vul-
nerabilities, or contain the potential damage. Note that

356 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Cowan, et al. SubDomain: Parsimonious Server Security

the activities we seek to constrain are ‘‘those that
cause damage to the system,’’ i.e., safety properties
[1] with respect to integrity. We are not addressing
other security issues, such as information flows [27]
that might disclose secrets. Readers already familiar
with least privilege mechanisms can skip to to the next
section for a description of SubDomain, our contribu-
tion to the field.

The Solution: Least Privilege
The classic solution to the problem of unknown

security vulnerabilities is to perform each activity with
the least privilege required to complete that task [33].
While this does not stop exploitation of these vulnera-
bilities, it does contain the damage as much as possi-
ble. An attacker who gets control of a least privilege
process can, at most, read secrets and corrupt data that
the exploited process has access to, and no more.

The challenge of supporting least privilege is to
provide a sufficiently fine-grained mechanism to spec-
ify privileges that are actually minimal, while also pre-
serving compatibility and performance. It is conceptu-
ally simple to divide system privileges into fine-
grained units and then attribute the exact required
privileges to a given activity, but the result of such an
approach is specification notation that is tedious to
maintain (breaking compatibility) and an enforcement
mechanism that is slow (breaking performance).

Practical least privilege therefore involves
abstracting the system resources to expedite least priv-
ilege specifications. Matching least privilege abstrac-
tions to native OS resources in turn enables efficient
least privilege enforcement. Least privilege is also a
useful notion in managing user privileges, leading
many systems to combine least privilege for users and
programs into a single mechanism, as described in the
next subsection.

However, if the problem is bugs in programs that
can be accessed by completely untrusted users, then
user-oriented least privilege mechanisms may become
awkward or inadequately expressive. The section on
users and rolls describes some more elegant
approaches to using user privilege mechanisms to con-
fine suspect programs. The third section discusses
SubDomain, our OS security enhancement that partic-
ularly address the problem of least privilege for pro-
grams, and a penultimate section discusses related
work specifically aimed at program confinement.

Using User Privileges to Confine Programs

Least privilege for users is a classic way of struc-
turing a system, and many operating systems provide
facilities for constraining the privileges of a given
user. User-oriented least privilege facilities can be
adapted to confining collection of programs by creat-
ing a synthetic user, and then running the program as
that user.

The classic example is the UNIX setuid facility:
the setuid bit for an executable file indicates that the
program runs with the privilege of the owner of the

file instead of the privilege of the invoking user. Often
this is used to create setuid root programs that provide
controlled access to protected resources by expanding
the privileges the program runs with to be all of root’s
privileges. To use setuid to confine a program to a
smaller set of resources, a new synthetic user can be
created that has those privileges, e.g., nobody. Pro-
grams can then be made setuid nobody to confine their
actions to a small set of privileges.

One limitation to this approach is that all user-
IDs, even synthetic user-IDs, can access all files on
the system that permit ‘‘other ’’ accesses. Another lim-
itation to this approach is that only root can create new
user-IDs. The result is that normal users cannot con-
struct ad hoc ‘‘sandboxes’’ for programs that they may
choose to install and run. Users are then left with their
choice of:

• beg the system administrator to create a new
user-ID for them,

• do not install software that is not trusted,
• run untrusted software without protection, none

of which is very appealing.

So in principle, synthetic user-IDs and the setuid
mechanism can support least privilege for programs,
but in practice it forces root to do all the work. There-
fore this technique is rarely deployed, people run un-
trustworthy software with much more privilege than is
necessary, and suffer the consequent security risks.

Users and Roles

Because synthesizing user-IDs is awkward, the
notion of a role emerged. A role is a collection of
related privileges [2]. In 1986, Bobert and Kain intro-
duced the notion of type enforcement: objects (files)
are assigned to types, subjects (processes) are assigned
to domains, and tables determine which domains have
access to which types. Badger et al expanded on this
notion [7, 8]. In a similar vein, role-based access con-
trol (RBAC) [22, 34] assigns users to roles, and then
grants privileges to the roles.

Similar to the setuid approach described previ-
ously, roles can be pressed into service confining pro-
grams to a least privilege set of resources by assuming
a specific role just prior to executing the program.
While using roles to confine programs is more elegant
than synthesizing user-IDs, it is still fundamentally
overloading a user-oriented access control mechanism
to manage software defects. In the next section, we
describe our mechanism to specifically address the
problem of vulnerable software.

SubDomain Security: Recursive Component Con-
finement

SubDomain is a kernel extension designed
specifically to provide least privilege confinement to
suspect programs. SubDomain allows the administra-
tor to specify the domain of activities the program can
perform by listing the files the program may access,
and the operations the program may perform.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 357

SubDomain: Parsimonious Server Security Cowan, et al.

SubDomain restrictions complement the native access
controls, in that SubDomain never expands the set of
files a program may access, i.e., any file access must
pass the native access controls and the SubDomain
restrictions before access is granted. Thus SubDomain
confinement makes a program monotonically safer to
run.

The next subsection describes the SubDomain
notation and semantics. Then, the subsequent subsec-
tion explains how SubDomain leverages work in safe
programming models like proof-carrying code [30] to
achieve component confinement below the granularity
of a native process. The final subsection describes the
SubDomain implementation.
SubDomain Notation & Semantics

Figure 1 shows a trivial SubDomain specifica-
tion, in which the foo program is given read access to
the /etc/readme file, write access to the /etc/writeme
file, and execute access to the /usr/bin/bar file. When
ever the program foo is run, by any user, it is restricted
to access these specified files with these modes. Sub-
Domain profiles can also grant access to directories
through simple globbing, i.e., the profile in Figure 1
grants the foo program to all files in /mydir.

foo {
/etc/readme r ,
/etc/writeme w ,
/usr/bin/bar x ,
/mydir/* r ,
}

Figure 1: Trivial subDomain.

foo {
/etc/readme r ,
/etc/writeme w ,
/usr/bin/bar x +{/etc/otherwrite w} ,
/usr/bin/baz x -{/etc/writeme w} ,
}

Figure 2: Relative SubDomain

The x (execute) capability is of particular impor-
tance: what restrictions should apply to the child pro-
cess? By default, the child process inherits the parent’s
SubDomain, preventing the confined program from
‘‘escaping’’ its confinement by executing an unre-
stricted child process. However, sub-components of
an application may require different capability sets
than the application as a whole. For instance, games
only need strong privileges to initialize video con-
trollers, and mail delivery agents only need strong
privileges to actually write to a user’s mail box. Thus
child programs can be given different constraints by
specifying a relative subdomain, denoted by a x fol-
lowed by a + or - followed by a SubDomain specifica-
tion. For example, Figure 2 shows a SubDomain for
foo that says that when the sub-component bar is run,
it can also have write permission to the /etc/otherwrite
file. Conversely, it says that when foo runs the sub-
component baz, it may not write to the /etc/writeme
file.

Sub-components may also want a SubDomain
that is completely unrelated to the parent domain. For
example, a web server application might need to send
some e-mail while processing a web form, and thus
invokes a mail delivery agent whose SubDomain is
completely different. We support this need with abso-
lute subdomains, denoted by a subdomain specifica-
tion following an x without a + or a -. Figure 3 shows
an example absolute subdomain in which the bar pro-
gram run from the foo program has access to a com-
pletely different subdomain than the foo program.

foo {
/etc/readme r ,
/etc/writeme w ,
/usr/bin/bar x {

/usr/lib/otherread r ,
/var/opt/otherwrite w ,

} ,
}

Figure 3: Absolute SubDomain.

When a confined process tries to perform a file opera-
tion that is not permitted, two things happen:

1. The syscall returns with the error EPERM, just
as if the attempt had failed due to a standard
UNIX file system permission error.

2. The kernel generates a syslog entry describing
the attempted violation. Intrusion detection
systems can thus collect what ever information
they want, and act accordingly, e.g., kill the
offending process if such drastic steps are
desired.

Sub-process Confinement
The section on related work describes several

other systems that provide program-confinement
mechanisms. However, with the exception of Java [4]
the smallest component that they can confine is a
native OS process. In contrast, SubDomain provides
the unique feature of being able to confine compo-
nents that are only a portion of an OS process. Histori-
cally of little practical interest, the need for sub-pro-
cess confinement comes from the rise in popularity of
scriptable servers and loadable modules. Let us
expand upon these concepts.

A ‘‘scriptable server’’ is a server program that,
from time to time, interprets a script or a program
within itself, i.e., server-side includes [5], PHP web
pages [6], Java servlets [3], etc. Such scripts are legiti-
mately sub-component programs requiring separate
confinement. Scriptable servers often have their own
security mechanisms, but in depending on such
restrictions, we are depending on application correct-
ness, which is the dependence we seek to avoid in the
first place. We would rather have a confinement mech-
anism that can be enforced by the operating system so
that we do not depend on the correctness of the server
application.

‘‘Loadable modules’’ or ‘‘plug-ins’’ is the notion
of providing a (fairly) fixed API in an application so

358 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Cowan, et al. SubDomain: Parsimonious Server Security

that extensions to can be loaded into the application,
either at start-time or run-time. ‘‘Plug-in’’ is the com-
mon term for desktop applications (i.e., Netscape Nav-
igator & Shockwave, Microsoft Word and EndNote)
while ‘‘module’’ is the common term for servers (e.g.,
Apache and mod_perl).

The mod_perl module for Apache provides a per-
fect example of the sub-process problem. PERL
scripts run at the behest of the Apache web server are
normally interpreted by starting a separate process to
run the PERL interpreter, and then interpreting the
PERL script in that separate process. mod_perl loads a
PERL interpreter directly into the Apache process to
avoid the cost of starting the PERL interpreter process.
While this is good for server throughput, it is bad for
security:

• Bugs in mod_perl can crash the Apache web
server process.

• Program-confinement mechanisms that only
operate on OS processes cannot confine scripts
interpreted by mod_perl separate from the
Apache web server process.

The SubDomain solution to the ‘‘scripting &
module’’ problem is to provide for subdomains for
sub-process components, in cooperation with the
enclosing application. The notation for a sub-process
subdomain is unchanged from that of separate-process
subdomains shown in Figure 1 through Figure 3. The
effect is to create a variety of ‘‘hats’’ that process can
wear, one for each sub-process component that it calls.
The ‘‘cooperation’’ required from the enclosing pro-
gram is that it should call the new change_hat() system
call before calling the sub-process component.

The requirement to call change_hat() implies that
we are once again trusting the application, which Sub-
Domain is supposed to avoid. However, we are trust-
ing the application code a great deal less, in that the
application only has to make appropriate calls to
change_hat(), which is much simpler than constructing
and enforcing an effective ‘‘sandbox’’ environment
[20]. Successfully calling change_hat() with the name
of a sub-component before calling the sub-component
seems easy enough to do correctly.

In addition to the requirement that enclosing
application correctly calls change_hat(), we also
require that the sub-component does not call
change_hat() to escape to a more liberal subdomain.
Here, we employ a cookie argument to change_hat() to
prevent the confined module from escaping. The con-
taining process initially calls change_hat() with a par-
ticular cookie value, and further change_hat() calls that
do not provide a matching cookie argument are treated
as security violations.

Thus for the containing process to prevent sub-
component from escaping from the change_hat() Sub-
Domain, it need only provide a cookie value that the
contained sub-component cannot easily guess. We rec-
ommend fetching a word from /dev/random, but any
reasonable source of entropy can be used.

The security of this method depends on the sub-
component not being able to read the parent process’s
cookie value. Here, SubDomain can leverage the
power of language-based security protection systems
such as proof-carrying code [30], strong type checking
[39, 26, 37], and other language-based protection
schemes [24, 40]. Such methods can, in principle,
prove that the sub-component will not invoke the
change_hat() system call.

Programming language techniques provide pow-
erful protection, but also impose significant practical
constraints, not the least of which is that the sub-com-
ponent needs to be written in a particular language. In
practice, we can still get reasonable assurance that the
sub-component cannot read the containing process’s
cookie value if it is written in a scripting language,
i.e., a language that is interpreted rather than one com-
piling to native CPU instructions. In the practical set-
ting of scripts for web servers, most such programs
that are executed by loadable modules are scripting
languages, e.g., PERL [41], PHP [6], and Java [3].
While no formal assurances are available, in practice it
is easy to trust, say, mod_perl to not address random
memory.

To see the power of this approach, consider the
chronic problem of securely supporting Microsoft’s
‘‘Front Page Extensions,’’ a collection of non-standard
HTML tags that the server interprets to provide more
dynamic HTML content. Microsoft provides a mod_fp
Apache module and collection of helper programs, but
they have a poor security history [36]. There is no cur-
rent practical method to securely support mod_fp.

SubDomain can solve the mod_fp problem by
treating web pages containing ‘‘Front Page Exten-
sions’’ tags as sub-components, and assigning each
such page to a subdomain. So long as the mod_fp mod-
ule can be trusted not to call the change_hat() system
call, then no errant action of mod_fp can violate the
security policy of the subdomain for the page it is
interpreting.

SubDomain Implementation
The basic architecture of SubDomain is shown in

Figure 4. The SubDomain policy engine is imple-
mented as a Linux [38] loadable kernel module. Fol-
lowing the usual UNIX permissions checking, the rel-
evant system calls (open(), exec(), read(), etc.) are
modified to check if the calling process is a confined
process. If so, the request is referred to the SubDo-
main module for further inspection. The SubDomain
module then either returns normally (if the request is
permitted) or returns an EPERM error (if the request is
denied).

Once loaded, the SubDomain module disables
module unloading to prevent tampering with the Sub-
Domain policy engine. A user-level parser reads sub-
domain profiles from /etc/subdomain.d/* to convert
the textual representation of profiles into kernel data
structures, and inserts the updated profiles into the

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 359

SubDomain: Parsimonious Server Security Cowan, et al.

kernel via a sysctl() interface. By convention, the
/etc/subdomain.d/foo file would confine the foo pro-
gram, but as shown previously, the actual name of the
confined program is in the file, so confining multiple
components with a single file is possible. Only root
processes can access this kernel interface, and SubDo-
main-confined programs may not access the profile
interface. In future work we will add further authenti-
cation requirements to the kernel’s profile interface.

/etc/subdomain.d/* Parser
text

Kernel

SubDomain

Module

data structuressysctl()

File access

requests

e.g. open(),

read()

Normal

access controls

Reject

Accept

Figure 4: SubDomain implementation

SubDomain Parsimony

SubDomain is simpler than competing least priv-
ilege mechanisms described in the section on related
work in both implementation and usage. With regard
to implementation, the SubDomain module and kernel
patches amount to 4500 lines of C code, and the non-
kernel parser is 825 lines. In contrast, the DTE kernel
enhancement [7, 8] is over 40,000 lines of code. The
relatively simple semantics of SubDomain enable a
smaller implementation. ‘‘Smaller ’’ is important for
security systems, where correctness is critical, because
bugs are approximately liner in code size.

SubDomain’s usage is simpler than its competi-
tors in that it is easier to devise and inspect SubDo-
main confinement profile than in other systems, which
we elaborate on in the next section.

SubDomain Compatibility

We test the compatibility of SubDomain by
putting it to work confining a variety of software com-
ponents common to Internet servers, both large and
small. SubDomain can confine binary-only programs,
so long as there is no need for sub-process confine-
ment. If sub-process confinement is required, then the
program source needs to be edited and re-compiled to
insert appropriate calls to change_hat().

Like the ‘‘synthetic user’’ approach mentioned
earlier, SubDomain confinement requires administra-
tor intervention. However, SubDomain confinement is
easier for the administrator in the following ways:
Ease of Application: A SubDomain profile does

not interfere with any other aspects of the sys-
tem except the SubDomain mechanism. Thus it

is easy to install a SubDomain profile along
with the confined program. In particular,
because the SubDomain profile is independent
of the system the program is being installed on,
the profile can be included with the program
being distributed. In contrast, it is difficult to
include a synthetic user in conventional pro-
gram packages (e.g., tar balls or RPM
packages).2

• It is easy for the administrator to inspect a Sub-
Domain specification to determine the precise
aspects of the system that are exposed to that
program. In contrast, the exposure entailed by a
synthetic user is non-obvious: the administrator
must consider all files that are accessible to
‘‘anybody,’’ which is a non-trivial exercise on
non-trivial file systems.
The Kernel Wrapper approach [23] provides for
confinement scripts that are full Turing-equiva-
lent programs. While this provides extensive
flexibility, it also means that the completeness
and safety of an inserted kernel wrapper is not
amenable to automatic analysis. In contrast,
SubDomain profiles are easy to inspect to
determine the security implications of updating
a SubDomain profile. Furthermore, it is strictly
safe to install a SubDomain profile where none
existed before, because SubDomain strictly
limits program privileges.

These factors have important implications for
software distribution. Because SubDomain confine-
ment profiles are system independent and guaranteed
to be safe to install, it becomes feasible to package
SubDomain confinement with the program itself. Thus
an end user can consider installing a new program on
a server appliance, and because of the SubDomain
confinement information packaged with the program,
the user can understand the security implications of
installing that program. In future work, we plan to

2Note that bundling synthetic user IDs is exactly the ap-
proach taken by qmail [11], which results in excellent se-
curity for qmail, but also imposes substantial packaging
difficulties that have hampered qmail’s spread.

360 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Cowan, et al. SubDomain: Parsimonious Server Security

develop future tools that will assist the administrator
in determining the security implications of a set of
SubDomain confinements

Which programs need to be confined with Sub-
Domain depends on the convenience and security
needs of the host system, and thus is an adjustable pol-
icy. The administrator can specify which of the fol-
lowing classes of programs must be confined with
SubDomain before they are allowed to execute at all:
All Programs: All programs that execute on the

host must be associated with a SubDomain,
either explicitly, or inherited from a SubDo-
mained parent program. This mode is suitable
for bastion hosts.

All Listed User-IDs: All programs running under
one of the user-IDs specified by the administra-
tor must be associated with a SubDomain. For
instance, the httpd user-ID runs many programs
on behalf of the web server, and SubDomain
confinement ensures that these programs will
not affect other parts of the system. This mode
is suitable for confining a potentially vulnerable
collection of services on a system that also
hosts critical data.

All root Programs: All programs running with a
real or effective user-ID of ‘‘root.’’ This mode
allows a SubDomain profile to be used to
achieve the classic goal of breaking up root’s
all-too-powerful privileges. The (defunct)
POSIX 1.e ‘‘capabilities’’ model subdivided
root’s powers into a static set of 32 separate
groups of ‘‘capabilities’’, and individual pro-
grams could assume part of root’s powers by
flipping on one or more of these sets of capabil-
ities. SubDomain allows arbitrary sets of privi-
leges to be grouped together, rather than accept-
ing the groupings specified by POSIX 1.e.

Only Specified Programs: Only the programs that
have a SubDomain specified are thus confined,
i.e., ‘‘default allow.’’ This mode assumes that
all programs on the host are adequately secured
except for the programs being SubDomained.
While not especially secure, this mode is con-
venient, e.g., for use on a client workstation to
run a suspect program recently downloaded
from the Internet.

The procedure for confining a program is to start
with a null subdomain specification, run the applica-
tion, observe the system log for complaints about
attempts to access files outside the subdomain, and
then add those files to the subdomain specification.
This procedure is presently manual, because due con-
sideration is required for two stages in this procedure:
Running the application: The application needs to

be run under all of the ‘‘kinds’’ of input that it
is expected to experience in a production envi-
ronment, i.e., a comprehensive test suite. Deter-
mining these inputs requires some knowledge

of the application to ensure complete coverage.
Failure to provide complete coverage results in
a subdomain that is too ‘‘tight’’, and the appli-
cation will occasionally fail to access resources
that it needs.

Granting the privilege: We are confining the appli-
cation precisely because we do not trust it, and
therefore we cannot automatically assume that
every file the application tries to access under
test is a legitimate file for the program to
access. The file should be included in the sub-
domain only after due consideration of the
security implications.

For applications where source code is available, pre-
dicting the set of required resources should be feasi-
ble. If anticipating the set of files an application needs
to access is truly difficult, then it is quite likely that
the application represents a significant security threat,
and should not be installed on hosts requiring security.

For applications where source code is not avail-
able, a run-time testing methodology must be used to
experimentally identify all of the file resources that a
program may try to access. To facilitate this, we use
the dep program that we developed for the InDepen-
dence project [16] (funded by a student grant from
USENIX). This program uses strace() to monitor the
execution of a subject program, and amasses a list of
all the files accessed. dep’s use of strace() imposes
heavier performance and compatibility overhead than
SubDomain, but is none the less sufficient for explor-
ing the file system domain of many programs. To fur-
ther ease use, dep accumulates files accessed across
multiple runs, so that a large test suite can be applied,
and then the list of files accessed inspected once at the
end of testing.

/home/httpd/cgi-bin/Count.cgi {
/etc/ld.so.cache r ,
/lib/lib* r ,
/lib/ld-linux.so.2 r ,
/etc/nsswitch.conf r ,
/etc/wwwcounter.conf r ,
/etc/localtime r ,
/var/log/httpd/wwwcount/wwwcount_log rw ,
/var/lib/wwwcount/* r ,
/var/lib/wwwcount/data/* rw ,

}

Figure 5: SubDomain for wwwcount CGI script

An example subdomain profile is shown in Fig-
ure 5, providing all of the resources needed to run the
wwwcount CGI program (a popular web page hit
counter program). Note the use of simple globbing to
reduce the size of the subdomain specification when
access to an entire directory is required. Figure 6
shows a more elaborate profile for the Apache web
server itself, under a particular configuration. A list of
some of the programs that we have confined and
tested, along with the size of their subdomains, are
listed in Table 1.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 361

SubDomain: Parsimonious Server Security Cowan, et al.

/usr/local/apache/bin/httpd {
/ r ,
/dev/null rw ,
/dev/urandom r ,
/etc/group r ,
/etc/hosts r ,
/etc/host.conf r ,
/etc/ld.so.cache r ,
/etc/localtime r ,
/etc/nsswitch.conf r ,
/etc/passwd r ,
/etc/resolv.conf r ,
/home/httpd/perl/* r ,
/lib/* r ,
/usr r ,
/usr/lib/gconv/ISO8859-1.so r ,
/usr/lib/gconv/gconv-modules r ,
/usr/lib/perl5/5.00503/* r ,
/usr/lib/perl5/site_perl/5.005/i386-linux/* r ,
/usr/local r ,
/usr/local/apache r ,
/usr/local/apache/conf/* r ,
/usr/local/apache/htdocs/* r ,
/usr/local/apache/logs* wl ,
/usr/share/locale/en_US/* r ,
/usr/share/locale/locale.alias r ,

}

Figure 6: SubDomain for Apache Web Server.

SubDomain Performance

Here we present a variety of SubDomain perfor-
mance measurements. The next section describes our
microbenchmarks on mediated system calls, and the
section after that describes our macrobenchmarks on a
confined PERL script interpreted by the mod_perl
Apache module.

System Call Standard Cost SubDomain Cost % Overhead

fork() 295 295 0%

exec() 1387 1487 7%

open() 3.71 5.39 45%

get_pid() vs. change_hat() 1.81 4.70 159%

Table 2: SubDomain Microbenchmarks in microseconds.

/perl/0/cgitest-001.cgi {
/usr/lib/perl5/site_perl/5.005/i386-linux/Apache/Registry.pm r
/etc/localtime r
/usr/lib/perl5/5.00503/* r
/home/httpd/perl/0/cgitest-001.cgi r
/home/httpd/perl/0/cgitemplate-001.html r
/home/httpd/perl/0/cgidata-001 r
/var/log/httpd/* w
}

Figure 7: Test PERL script’s SubDomain profile.

Microbenchmarks
Here we use the usual benchmarking technique

to measure affected system calls by crafting programs
that issue each system call 10,000 times, run the pro-
grams several times, discard the first run to avoid cold
cache effects, and average the remainder. All tests
were performed on a dual-processor Pentium III 700
MHz, with 256 MB of RAM. Table 2 summarizes
these results. We include measurement of the get_pid()

system call as a baseline for comparison against the
change_hat() system call, as get_pid() is commonly
regarded as the simplest system call.

As expected, he major overhead appears in the
open(), exec() and change_hat() system calls, where
SubDomain is checking the action against the subdo-
main specification for the confined process.

Program Size of SubDomain

Simple bash shell script 31 files
PHF CGI program 14 files
CGI Mail program 7 files
htsearch CGI program 11 files
wwwcount CGI program 10 files
Apache web server 33 files
lpd 16 files
lpq 10 files
lpc 11 files
Postfix Mail Delivery Agent 15 files
Postfix-script helper program 65 files

Table 1: SubDomain-confined programs.

Macrobenchmarks
Our macrobenchmark is SubDomain confine-

ment of a PERL script to be executed via the mod_perl
Apache module, thus exercising SubDomain’s capa-
bility to confine active content scripts. To exercise the
web server’s cache, we replicated the PERL script
1000 times, and used the Webstone performance
benchmark to measure the overhead cost of PERL
scripted web pages protected with SubDomain vs.
without protection. The PERL script itself reads two
files with some busy-work in between, simulating a
script that fetches a ‘‘container ’’ template from one
file, HTML content from another file, and does some
interim processing to merge the two, e.g., compute a

362 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Cowan, et al. SubDomain: Parsimonious Server Security

hit counter. The SubDomain profile for this script is
shown in Figure 7.

The test environment used the same dual-proces-
sor Pentium III 700 MHz server with 256 MB of
RAM, and a private network (crossover cable) via 100
Mbit ethernet.

The test results are shown in Table 3, measured
for 5 to 10 concurrent client connections. Tests were
run twice, and the results averaged. For all cases, the
SubDomain overhead is between 1% and 2%, i.e., in
the noise range.

of Connection Avg. Response Avg. Client
Clients Rate Time (ms) Throughput

Test

Standard 5 75.97 66.5 26.29

SubDomain 5 75.19 66.5 26.02

% Overhead 1% 0% 1%

Standard 6 78.14 77 27.04

SubDomain 6 76.56 78 26.49

% Overhead 2% 1.3% 2%

Standard 7 78.38 89 27.13

SubDomain 7 77.24 90.5 26.73

% Overhead 1.45% 1.7% 1.5%

Standard 8 78.26 102 27.08

SubDomain 8 76.71 104 26.54

% Overhead 2% 2% 2%

Standard 9 78.24 115 27.08

SubDomain 9 77.02 116.5 26.66

% Overhead 1.6% 1.3% 1.6%

Standard 10 78.43 127 27.15

SubDomain 10 77.07 129.5 26.67

% Overhead 1.7% 2% 1.7%

Table 3: SubDomain macrobenchmarks with WebStone.

Related Work

Here we describe work that, similar to SubDo-
main, specifically attacks the problem of confining
suspect programs. Despite the age of the notion of
least privilege [33], much of this work has emerged
relatively recently. It is our conjecture that this is a
result of a shift in emphasis from defending secrecy
(the dominant concern for military organizations) to
defending integrity (the dominant concern for Inter-
net-connected businesses) and the emergence of the
notion of survivability [35]. This list of related work is
necessarily partial, as the total body of related work is
very large.

TRON

The TRON system [10] is a kernel enhancement
for ULTRIX that can confine a program’s execution to

a protection domain consisting of a finite set of capa-
bilities in the form of file names. TRON adds the
tron_fork() system call, which functions exactly like
the classic fork() system call, except that it specifies
the protection domain as an extra argument. TRON is
semantically most similar to SubDomain: the protec-
tion domains are the same (sets of files) and are simi-
larly applied to host programs, orthogonal to user priv-
ileges. The major differences are:

• TRON is discretionary, while SubDomain is
mandatory. TRON provides user commands to
run programs in a confined domain, while Sub-
Domain always runs a specified program in a
confined domain. Thus in the usual DAC vs.
MAC trade-off, TRON is more convenient for
individual users, while SubDomain is more
convenient for securing entire systems, e.g.,
server appliances.

• TRON’s finest granularity is the ULTRIX pro-
cess; it cannot confine loadable modules.

Janus

Janus [25] is a user-level mechanism for confin-
ing programs to a specific set of resources. Intended to
confine ‘‘helper ’’ applications run from within a Web
browser, Janus uses the ptrace() system call and a
monitoring process to mediate all system calls made
by the helper application. If the action proposed by the
helper application violates a policy set by the user,
then the monitoring process rejects the request. This

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 363

SubDomain: Parsimonious Server Security Cowan, et al.

approach requires four system calls to be executed to
effect one confined system call.

Java 2 Security

The Java 2 security model [4] allows the JVM to
be configured to assign particular capabilities to desig-
nated Java classes, similar to the SubDomain notion of
assigning file system capabilities to programs. This is
an enrichment over the original Java security model
[26] which assigned one fixed set of capabilities to
remotely-loaded applets (almost nothing), and another
fixed set of capabilities to locally-loaded applets
(almost everything).

The Java 2 security mechanism is notable as the
only system other than SubDomain capable of confin-
ing sub-process components, in that Java classes are
typically smaller than the host OS processes. Natu-
rally, the Java 2 security model does not apply to non-
Java native executables.

chroot Jail

The chroot() system call3 makes the argument
directory be the effective root directory, i.e., ‘‘/’’ for
the invoking process. The point of this operation is
that the file system domain for the affected process is
now limited to the contents of the argument directory.
Any files that the application needs to access must be
placed inside the chroot directory, or the access will
fail.

The chroot technique is a popular form of con-
finement, in large part because standard kernels (e.g.,
Linux) support it. However, chroot has defects in all
three of the dimensions a security enhancement should
address:
Security: chroot jails are resistant to oblivious

attempts to escape the jail, i.e., attempts to
access files that are not accessible within the
jail. However, if the attacker can execute their
own code within the chroot jail, it is fairly easy
to break the jail and access outside files. Thus
jailed programs generally cannot be trusted
with strong privileges, i.e., it is insecure to
depend on chroot to confine a root process.

Compatibility: Each chroot’d program must have
the necessary components of the file system
replicated within its jail, which is problematic if
the program requires access to a large, complex
set of files, i.e., shell scripts need all invoked
programs replicated into the chroot jail. Thus
setting up a chroot jail can be a lot of tedious,
complex work. The chroot technique also
breaks programs that need to interact with other
parts of the system.

Performance: Because chroot jails require duplica-
tion of all resources needed by the jailed pro-
gram (soft or hard links could be used as escape
routes) they consume excessive disk space and
file system buffer cache space.

3‘‘man chroot’’ on most UNIX Systems

Type Enforcement

The type enforcement work [13, 7, 8] has
recently been extended to provide better support for
program confinement. Kernel hypervisors [28] pro-
vide a facility for installing small state machines that
intercept kernel system calls and enforce a security
policy. Such a facility can be viewed as a tool that
could be used to build a SubDomain-like least privi-
lege system. Fraiser, Badger and Feldman provide a
similar tool for building security policy enforcement
automata [23]. SubDomain provides the following key
advantages over this technique:
Parsimony: SubDomain is much simpler than the

TE and DTE implementations; the SubDomain
kernel code is approximately 1/10 the size of
the DTE kernel patch. Simplicity is critical in
security systems.

Safety: The DTE Wrapper system [23] allows code
to be inserted into the operating system to per-
form mediation. While this is a powerful tech-
nique, it is also dangerous: malicious DTE
wrapper code could just as easily be inserted. In
contrast, SubDomain profiles are easy to
inspect to determine the security implications
of updating a SubDomain profile. Furthermore,
it is strictly safe to install a SubDomain profile
where none existed before, because SubDomain
strictly limits program privileges.4

Application-Specific Mechanisms

Various application environments provide their
own least privilege-like mechanisms. For instance, the
PERL interpreter includes a facility known as ‘‘taint’’,
in which input provided to the PERL script cannot be
used to formulate an action (i.e., system() operation)
unless it has been ‘‘adequately’’ inspected by the
PERL script [41]. PERL also includes a ‘‘safe PERL’’
facility, where in the programmer can specify a set of
PERL operators that the script may not use.

Another application-specific least privilege
mechanism is the notion of ‘‘wrappers.’’ For example,
CGI Wrappers [31] causes a CGI script to be run with
the user-ID of the script owner, rather than the user-ID
of the web server. Combined with the synthetic user-
ID notion described previously, CGI Wrappers can
construct a least privilege environment for CGI
scripts.

PACLs: Program-based Access Control Lists

We believe PACLs [42] to be the first instance of
an access control system based on the program per-
forming the operation. The PACL system is the exact
dual of the SubDomain notion: files have an access
control list that enumerates programs that are permit-
ted to operate on that file. A simulated PACL system
was built and evaluated, but an actual PACL system
was never finished.

4This observation due to Blaine Burnham.

364 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Cowan, et al. SubDomain: Parsimonious Server Security

Status & Availability

The implementation is not complete with respect
to the description in this paper.

• The absolute and relative sub-domains
described earlier are not complete: child pro-
cesses either inherit the parent’s profile, or use
their own profile if one is specified.

• The multiple modes of requiring SubDomain
confinement described previously is only par-
tially implemented. The implementation cur-
rently supports ‘‘paranoid’’ mode where all pro-
cesses must have SubDomain confinement, and
‘‘open’’ mode, where only the programs that
are specified are confined by SubDomain.

SubDomain is implemented for Linux, and is available
from http://immunix.org . The kernel enhancement
portion is licensed under the GPL, and the non-kernel
portions are proprietary to WireX but available for
free for non-commercial use.

Conclusions

Vulnerable software is a major security problem,
mandating constant system administrator attention to
keep systems up to date with vendor-supplied security
patches. This is especially problematic for complex
Internet servers, which are required to provide exten-
sive services to anyone on the Internet. Some form of
confinement mechanism to approximate least privilege
is the generic solution, but often imposes more costs
than administrators deploying in ‘‘internet time’’ can
bear. Our SubDomain confinement mechanism
advances over previous confinement work, simplify-
ing both implementation and administration overheads
by confining programs instead of users.

This approach enables SubDomain confinement
to be packaged with programs, in contrast with con-
finement mechanisms that are bound to the system.
SubDomain also provides fine-grained protection,
confining software components finer than the host OS
process, providing the unique capability to protect
potentially vulnerable server modules such as
Microsoft’s Front Page Extensions to the Apache web
server. We have implemented and tested the system,
showing that it provides all three essential properties
of a security enhancement: enhanced security, soft-
ware compatibility, and preserved performance.

Author Information

Dr. Crispin Cowan is co-founder and Chief
Research Scientist of WireX Communications, Inc.,
and is a Research Assistant Professor at the Oregon
Graduate Institute, where he teaches graduate courses
in system security. His research focuses on making
existing systems more secure without breaking com-
patibility or compromising performance. Professor
Cowan has authored 28 refereed publications, includ-
ing those describing the StackGuard compiler for
defending against buffer overflow attacks. Reach him
electronically at crispin@wirex.com .

Steve Beattie is one of the original developers
and the current maintainer of the StackGuard compiler
enhancement. He is employed in the Advanced R&D
Group at WireX Communications, Inc., who gra-
ciously pays him to work on such fun projects as
StackGuard and SubDomain. He received a Masters
Degree in Computer Science from the Oregon Gradu-
ate Institute, and was previously employed as a Jack-
of-all-Trades Sysadmin in a Large Dead-Tree Publish-
ing Corporation.

Calton Pu received his Ph.D .from University of
Washington in 1986 and served on the faculty of
Columbia University and Oregon Graduate Institute.
Currently, he is holding the position of Professor and
John P. Imlay, Jr. Chair in Software at the College of
Computing, Georgia Institute of Technology. He is
leading the Infosphere project that combines his
research interests. First, he has been working on next-
generation operating system kernels to achieve high
performance, adaptiveness, security, and modularity,
using program specialization, software feedback, and
domain-specific languages. This area has included
projects such as Synthetix, Immunix, Microlanguages,
and Microfeedback, applied to distributed multimedia
and system survivability. Second, he has been working
on new data and transaction management by extending
database technology. This area has included projects
such as Epsilon Serializability, Reflective Transaction
Framework, and Continual Queries over the Internet.
He has published more than 30 journal papers and
book chapters, 100 conference and refereed workshop
papers, and served on more than 40 program commit-
tees. He is currently an associate editor of IEEE
TKDE, DAPD, and IJODL.

Greg Kroah-Hartman is one of the main Linux
USB developers, and the current Linux USB Serial
and USB Bluetooth driver maintainer. He is also the
author and maintainer of the Linux usbview program
which is being shipped in most of the major Linux dis-
tributions. His free software is being used by more
people than any closed source projects he has ever
been paid to develop. He is currently employed in the
Advanced R&D group at WireX Communications Inc,
and has a Bachelors Degree in Computer Science.

Perry Wagle received his MS in Computer Sci-
ence at Indiana University in 1995, and in 1997 he
headed to the Oregon Graduate Institute to join the
Immunix project’s survivability research, where
among other things, he was was the primary program-
mer of the StackGuard enhancement to GCC. Rather
than go with WireX like the rest of Immunix last year,
he stayed at OGI to work on the Infosphere project.
He is interested in applying programming language
technology to operating systems problems. For exam-
ple, survivability presents an interesting problem: how
effectively can you transform or assist legacy code
that is intolerate to security faults so that it responds
sensibly to attacks?

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 365

SubDomain: Parsimonious Server Security Cowan, et al.

Virgil D. Gligor received his B.Sc., M.Sc., and
Ph.D. degrees from the University of California at
Berkeley. He has been at the University of Maryland
since 1976, and is currently a Professor of Electrical
and Computer Engineering. He has worked in the
areas of acces control on several UNIX systems an is
the co-designer of two automated tools, one for
covert-channel analysis of (C language) source code
(written in PROLOG), and the other for penetration
analysis, which have been used by IBM Corporation
for analysis of Secure Xenix and for TIS Inc Trusted
Xenix. His work helped define precisely the notion of
the denial of service, and received the Best Research
Paper Award at the 1988 IEEE Symposium on
Research in Security and Privacy for research work in
this area (paper co-authored with his graduate student
C.F. Yu). He is the co-author of several US patents in
the areas of intrusion detection, penetration analysis
methods and tools, and role-based access control.

References

[1] Alpern, Bowen and Fred B. Schneider, ‘‘Defin-
ing Liveness,’’ Information Processing Letters,
21(4):181-185, 1985.

[2] Amoroso, Edward, Fundamentals of Computer
Security Technology, Prentice Hall, Englewood
Cliffs, NJ, 1994.

[3] Anonymous, The Java Web Server Architecture
Overview, http://www.javasoft.com/products/java-
server/documentation/webserver1.1/ , 1997.

[4] Anonymous, JDK 1.2 Security, http://java.sun.
com/products/jdk/1.2/docs/guide/security/index.html ,
March 1998.

[5] Assorted, NCSA HTTPd Tutorial: Server Side
Includes, http://hoohoo.ncsa.uiuc.edu/docs/tutorials/
includes.html .

[6] Assorted, PHP Hypertext Processor, http://php3.
org/ .

[7] L. Badger, D. F. Sterne, et al., ‘‘Practical Domain
and Type Enforcement for UNIX,’’ Proceedings
of the IEEE Symposium on Security and Privacy,
Oakland, CA, May 1995.

[8] Lee Badger, Daniel F. Sterne, David L. Sherman,
Kenneth M. Walker, and Sheila A. Haghighat,
‘‘A Domain and Type Enforcement UNIX Proto-
type,’’ Proceedings of the USENIX Security Con-
ference, 1995.

[9] Brian Behlendorf, Roy T. Fielding, Rob Hartill,
David Robinson, Cliff Skolnick, Randy Terbush,
Robert S. Thau, and Andrew Wilson, Apache
HTTP Server Project, http://www.apache.org .

[10] Andrew Berman, Virgil Bourassa, and Erik Sel-
berg, ‘‘TRON: Process-Specific File Protection
for the UNIX Operating System,’’ Proceedings
of the 1995 Winter USENIX Conference,
USENIX Association, 1995.

[11] D. J. Bernstein, qmail, http://cr.yp.to/qmail.html ,
1990.

[12] M. Bishop and M. Digler, ‘‘Checking for Race
Conditions in File Accesses,’’ Computing Sys-
tems, 9(2):131-152, http://olympus.cs.ucdavis.
edu/bishop/scriv/index.html , Spring 1996.

[13] W. E. Bobert and R. Y. Kain, ‘‘A Practical Alter-
native to Hierarchical Integrity Policies,’’ Pro-
ceedings of the 8th National Computer Security
Conference, Gaithersburg, MD, 1985.

[14] CERT, Advisory CA-96.06: Vulnerability in
NCSA/Apache CGI Example Code, ftp://info.
cert.org/pub/cert_advisories/CA-96.06.cgi_example_
code , September 1996.

[15] CERT, Advisory CA-98.05: Multiple Vulnerabilities
in BIND, ftp://info.cert.org/pub/cert_advisories/
CA-98.05.bind_problems , May 1998.

[16] Crispin Cowan, Ryan Finnin Day, and Hao Zhao,
InDependence: Automating the Discovery of
Application Dependencies, http://www.cse.ogi.
edu/DISC/projects/independence, 1997.

[17] Crispin Cowan, Calton Pu, Dave Maier, Heather
Hinton, Peat Bakke, Steve Beattie, Aaron Grier,
Perry Wagle, and Qian Zhang, ‘‘StackGuard:
Automatic Adaptive Detection and Prevention of
Buffer-Overflow Attacks,’’ 7th USENIX Security
Conference, pages 63-77, San Antonio, TX, Jan-
uary 1998.

[18] Crispin Cowan, Perry Wagle, Calton Pu, Steve
Beattie, and Jonathan Walpole, ‘‘Buffer Over-
flows: Attacks and Defenses for the Vulnerabil-
ity of the Decade,’’ DARPA Information Surviv-
ability Conference and Expo (DISCEX), January
2000; Also presented as an invited talk at SANS
2000, Orlando, FL, http://schafercorp-ballston.
com/discex , March 23-26, 2000.

[19] Michele Crabb, ‘‘Curmudgeon’s Executive Sum-
mary,’’ The SANS Network Security Digest,
Michele Crabb, editor, Contributing Editors:
Matt Bishop, Gene Spafford, Steve Bellovin,
Gene Schultz, Rob Kolstad, Marcus Ranum,
Dorothy Denning, Dan Geer, Peter Neumann,
Peter Galvin, David Harley, Jean Chouanard,
SANS, 1997.

[20] Drew Dean, Edward W. Felten, and Dan S. Wal-
lach, ‘‘Java Security: From HotJava to Netscape
and Beyond,’’ Proceedings of the IEEE Sympo-
sium on Security and Privacy, Oakland, CA,
http://www.cs.princeton.edu/sip/pub/secure96.html ,
1996.

[21] eEye, IIS Remote Hole, http://www.eye.com/
database/advisories/ad06081999/ad06081999.html ,
June 1999.

[22] David F. Ferraiolo and Richard Kuhn, ‘‘Role-
Based Access Control,’’ Proceedings of the 15th
National Computer Security Conference, Balti-
more, MD, October 1992.

[23] Tim Fraser, Lee Badger, and Mark Feldman,
‘‘Hardening COTS Software with Generic Soft-
ware Wrappers,’’ Proceedings of the IEEE

366 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Cowan, et al. SubDomain: Parsimonious Server Security

Symposium on Security and Privacy, Oakland,
CA, May 1999.

[24] Neal Glew and Greg Morrisett, ‘‘Type-Safe
Linking and Modular Assembly Language,’’
Twenty-Sixth ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages,
pages 250-261, San Antonio, TX, http://
www.cs.cornell.edu/talc/papers.html , January 1999.

[25] Ian Goldberg, David Wagner, Randi Thomas,
and Eric Brewer, ‘‘A Secure Environment for
Untrusted Helper Applications,’’ 6th USENIX
Security Conference, San Jose, CA, July 1996.

[26] James Gosling and Henry McGilton, ‘‘The Java
Language Environment: A White Paper,’’ http://
www.javasoft.com/docs/white/langenv/, May 1996.

[27] J. A. McLean, ‘‘A General Theory of the Com-
position for Trace Sets Closed Under Selective
Interleaving Functions,’’ Proceedings of the
IEEE Symposium on Security and Privacy, pages
79-93, Oakland, CA, May 1994.

[28] Terrance Mitchem, Raymond Lu, and Richard
O’Brien, ‘‘Using Kernel Hypervisors to Secure
Applications,’’ Proceedings of the Annual Com-
puter Security Application Conference, Decem-
ber 1997.

[29] Mudge, How to Write Buffer Overflows, http://
l0pht.com/advisories/bufero.html, 1997.

[30] George C. Necula and Peter Lee, ‘‘Safe Kernel
Extensions Without Run-Time Checking,’’ Pro-
ceedings of the USENIX 2nd Symposium on OS
Design and Implementation (OSDI’96), http://
www.usenix.org/publications/library/proceedings/
osdi96/necula.html , 1996.

[31] Nathan Neulinger, CGIWrap: User CGI Access,
http://www.unixtools.org/cgiwrap/ , 1997.

[32] Aleph One, ‘‘Smashing The Stack For Fun And
Profit,’’ Phrack, 7(49), November 1996.

[33] Jerome H. Saltzer and Michael D. Schroeder,
‘‘The Protection of Information in Computer
Systems,’’ Proceedings of the IEEE, 63(9),
November 1975.

[34] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and
C. E. Youman, ‘‘Role Based Access Control
Models,’’ IEEE Computer, pages 38-47, Febru-
ary 1996.

[35] Howie Shrobe, ARPATech ’96 Information Sur-
vivability Briefing, http://www.darpa.mil/ito/
ARPAT ech96_Briefs/survivability/survive_brief.
html , May 1996.

[36] Marc Slemko, Microsoft FrontPage 98 Security
Hell, http://www.worldgate.com/marcs/fp/ , October
1997.

[37] Robert E. Strom and Shaula Alexander Yemini,
‘‘Typestate: A Programming Language Concept
for Enhancing Software Reliability,’’ IEEE
Transactions on Software Engineering,
12(1):157-171, January 1986.

[38] Linus Torvalds, et al., Linux Operating System,
http://www.linux.org/ .

[39] United States Department of Defense, Reference
Manual for the Ada Programming Language
ANSI/MIL-STD-1815A-1983, United States
Department of Defense, February 1983.

[40] Robert Wahbe, Steven Lucco, Thomas E. Ander-
son, and Susan L. Graham, ‘‘Efficient Software-
Based Fault Isolation,’’ Proceedings of the Four-
teenth ACM Symposium on Operating System
Principles (SOSP’93), pages 203-216, Asheville,
NC, December 1993.

[41] Larry Wall, Tom Christiansen, and Randal L.
Schwartz, Programming Perl, O’Reilly & Asso-
ciates, Inc., 2nd edition, 1996.

[42] D. R. Wichers, D. M. Cook, R. A. Olsson, J.
Crossley, P. Kerchen, K. Levitt, and R. Lo,
‘‘PACL’s: An Access Control List Approach to
Anti-viral Security,’’ Proceedings of the 13th
National Computer Security Conference, pages
340-349, Washington, DC, October 1-4 1990.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 367

