USENIX Association

Proceedings of the
14th Systems Administration Conference
(LI1SA 2000)

New Orleans, Louisiana, USA
December 3-8, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

An Expectant Chat about Script Maturity
Dr. Alva L. Couch — Tufts University

ABSTRACT

Using scripts to automate common administrative tasks is a ubiquitous practice. Powerful
scripting languages and approaches support seemingly ‘efficient’ scripting practices that actually
compromise the robustness of our scripts, as well as indirectly detracting from the stability and
maturity of our support infrastructure. This is especially true for scripts that automate complex
interactive processes using the scripting tools Expect or Chat. I present a formal methodology for
the design and implementation of interactive scripting that, with a little more effort than writing a
simple Expect script, produces scripts with substantially improved robustness and permanence.
My scripting tool Babble interprets a detailed structural description of an interactive session as a
script. Using this declarative, fourth-generation language, one can craft interactive scripts that are
easier to perfect, inherently more robust, easier to maintain over time, and self-documenting.

Introduction

The amazing powers of current rapid prototyping
languages strongly entice us to ease our burdens by
writing simple scripts to automate repetitive adminis-
trative tasks. But the nature of our profession also
encourages us to cut corners on these scripts, writing
in haste to satisfy often inadequately predefined needs.
Our scripts are not subjected to rigorous software
engineering process or testing. They are easy to write
but almost completely undocumented and difficult for
anyone but the author to understand and maintain. The
process of script writing is evolutionary rather than
planned, driven by expediency rather than coherent
overall design. This accelerates the ‘software rot’ that
is unavoidable in all software development processes
[3].

But even when we employ the best accepted
software engineering process, writing system adminis-
tration automation scripts is actually more difficult
than writing many other types of software. Adminis-
trative scripts have strong couplings to their operating
environment and make substantive changes to their
environment as they execute. They are highly embed-
ded [2] systems with complex preconditions and
requirements for script success. An administrative
script can be faced with any pre-existing conditions,
be required to modify anything, and be required to
produce most any result. And errors in a script exe-
cuted with administrative powers can have dire
results.

We can most easily understand the perils in writ-
ing scripts by considering the target system configura-
tion as a collection of global variables. No one writes
‘normal’ software using global variables anymore,
because of the danger of creating code that makes
undocumented and untraceable changes in unpre-
dictable places. But we do the equivalent in writing
privileged administrative scripts on a day-to-day basis.

Scripts and Organizational Maturity

Scripts are not simply passive tools that we can
use or ignore on a whim. Once deployed, they have an

2000 LISA XIV — December 3-8, 2000 — New Orleans, LA

active role in determining the maturity of our service
organization as defined in the System Administration
Maturity Model, or SAMM [18], based upon the
Capabilities Maturity Model of software engineering
[7, 29]. One goal of SAMM is to encourage stable
organizational structures in which particular staff
members are interchangeable and replaceable on a
moment’s notice. The scripts that we craft to ease our
lives can violate this principle in a rather subtle way.

Ad-hoc scripts often possess hidden usability
constraints and behaviors only known to the author. If
they work when we use them, fine; else we page the
author, who repairs the damage thus inflicted. It is
easy for the rest of us to relax into complacency as
long as the author responds to pages in a timely man-
ner. But regardless of the benevolence and good inten-
tions of the author, using such a script compromises
the maturity of the whole service organization,
because the author becomes an irreplaceable compo-
nent and service bottleneck instead of being inter-
changeable with other staff.

Because of this effect, some site managers (who
shall remain nameless) prohibit ad-hoc scripting and
automation, so that anything that cannot be automated
by high-quality, well-documented, industrial-strength
automation tools is done entirely by hand, avoiding
scripting wherever possible. I take the controversial
stance that this seemingly strange decision is justifi-
able. By making this choice, all their staff remain
interchangeable and replaceable on a moment’s notice,
thus increasing their support organization’s stability
and maturity, at the cost of reducing individual pro-
ductivity.

I formed this controversial opinion from direct
experience. I am not an average script writer. I have
written over 30,000 lines of Perl in the ten years I
have known the language, to achieve many different
ends. But I have also had a unique opportunity to
observe the impact of my own scripts upon operations

15

An Expectant Chat about Script Maturity

in my absence. When I ‘retired’ two years ago from
technical to managerial duties, I left all of my ‘clever’
administrative scripts in the hands of another highly
qualified staff member. Little by little, over the course
of two years, [had to make the administrative decision
to ‘retire’ each of these scripts in order to make opera-
tions more efficient. Most of them were not crafted
well enough to outlast my direct involvement in using
them, so that I became a bottleneck in my own opera-
tions whenever they failed. The only exceptions were
scripts 1 very heavily documented and widely dis-
tributed, at great personal effort.

Assessing Script Maturity

While we can assess the quality of scripts using
traditional software quality metrics [25], the relative
importance of these metrics depends upon how script
quality affects service organization maturity. In this
context, a script exhibits high quality when its use
does not depend upon specialized and esoteric knowl-
edge, so that any properly trained and authorized staff
member can utilize it with predictable and helpful
results. While traditional quality factors such as docu-
mentation, reliability, robustness, and maintainability
remain important, the peculiar properties of the
administrative environment in which we utilize these
scripts suggest some new quality factors that are more
relevant and focussed upon our mission:

1. precondition awareness: does the script under-
stand the conditions under which it will func-
tion correctly?

a detection: can the script detect condi-
tions under which it will not function
and avoid problems?

b assurance: can the script change the sys-
tem so that preconditions are satisfied?

2. convergence. does repeating the script produce
the same effect?

a self-consistency: does repeating the
script produce the same results?

b non-intrusiveness: does the script avoid
repeating unnecessary intrusive actions
that can potentially disrupt services?

3. postcondition awareness: does the script check
upon what it should be accomplishing?

a verification: does the script check
whether it did what it intended to do?

b validation: do script changes have
appropriate external effects, as observed
from another machine?

4. atomicity.: does each script do related things as
a unit, so that there are no partial effects that
produce service failures?

a transaction control: is there a mecha-
nism whereby the script can detect par-
tial completion?

b rollback: is there a mechanism whereby
the script can back out of changes made
in the case of a failure?

These factors all concentrate upon assuring pre-
dictable script behavior that leaves the affected system

16

Couch

in a predictable and hopefully usable state, regardless
of the identity of the particular administrator using the
script.
Avoiding Scripting

The simplest way to avoid quality pitfalls of
scripting is to utilize an automation tool whose design
exhibits the above quality factors. Cfengine [4, 5, 6]
and its relatives provide pre-written configuration
methods possessing convergent properties. All the
administrator has to do is to describe what to accom-
plish, and Cfengine will accomplish it in the least
intrusive way. Cfengine is highly aware of required
preconditions and elegantly deals with their absence.
It fails predictably if it cannot accomplish its tasks.
Although it does not provide transaction control, a
user can craft this through careful configuration [12].
In effect, Cfengine provides most of the control one
can get from a script, and assumes responsibility itself
for the quality of its actions.

Cfengine is one of many tools available for
avoiding scripting. My own Slink [9] solves the same
problem for symbolic link tree hierarchies, and also
provides a library of ‘effective administrative abstrac-
tions’ [10] with appropriate convergent properties for
use in custom Perl scripts. Other file distribution
methods that avoid or otherwise encapsulate scriptable
actions include RPM (which supports scripts for cus-
tom actions) [1], rdist [8], and my own distr [11]. In
my opinion, whenever one can replace scripts with
powerful, reliable, and well-documented management
tools, one should.

Unfortunately, there are many very common
administrative problems that current high-quality tools
do not address. While assuring appropriate contents
for configuration files is relatively easy via file distri-
bution (and interactive editing) approaches, control-
ling processes and other dynamic elements is a much
more difficult task that usually requires some kind of
custom scripting.

Short of avoiding scripts, we can better manage
them and avoid writing too many. PIKT [22, 23] pro-
vides portability mechanisms for scripts that allow one
script to function in a heterogeneous environment
through preprocessing. Last year, we discussed how
the logic programming language Prolog [12] sub-
sumes the function of PIKT and supports script con-
vergence, preconditions, and atomicity perhaps better
than most scripting languages. But we concluded that
coding in Prolog has its own unique difficulties and is
not for everyone.

Then how should the mere mortals among us
arrange to receive the benefits of scripting without the
detriments? Providing scripts with the appropriate
kinds of robustness is expensive in terms of coding
labor, but utilizing naive scripts may be equally
expensive in terms of administrative stability, because
only people ‘in the know’ can deal with their deficien-
cies.

2000 LISA XIV — December 3-8, 2000 — New Orleans, LA

Couch

Interactive Scripting

To better understand the problems involved in
scripting, I utilize a scripting example problem which,
to my knowledge, presents almost all possible difficul-
ties. Almost all network components have serial ‘con-
soles’ from which commands can be issued, and begin
their lives in a state that requires some kind of manual
configuration via interactive console commands.
Routers, switches, and network appliances have to be
assigned Internet addresses and networking informa-
tion before I can utilize the Simple Network Manage-
ment Protocol (SNMP) to finish the job. Typical
UNIX and Linux servers must be built from the con-
sole before I can utilize automated methods to com-
plete configuration. And if the network dies, then the
only ‘sure’ method of interacting with potential cul-
prits is still the trusty serial console.

Automating interaction with console interfaces
poses many problems above and beyond just knowing
how to write scripts. A human performing administra-
tive actions must read reams of documentation, under-
stand the meanings of commands, and adapt to mes-
sages from the console to determine future commands.
A script trying to mimic these actions begins execu-
tion unaware of the device’s current state, meanings of
commands, or history of changes. It must discover
these by parsing dialogs as it executes.

The easy way to configure a device is through
‘invasive’ scripting that erases the whole device con-
figuration and starts over each time. This gives the
script complete initial knowledge of the state of the
device by clearing all data before making changes,
which in turn makes writing the script a simpler task.
For example, to add a new user, one can erase all users
and then create them all again, including the new ones,
much to the dismay of people currently using the
device!

A ‘convergent’ script [12] changes the device
from an unknown initial state to a desired one, without
unnecessarily interrupting concurrent use of the
device. The script must discover that state, compare it
with what is desired, and craft a minimal set of actions
that will accomplish needed changes. This process is
much more complex than simple ‘invasive’ scripting,
but much more desirable because it will not interrupt
the function of correctly configured devices. Most
devices support this kind of interaction rather poorly.
In fact,

Convergence is not a property of the device, or

of its configuration, but of our ‘best practices’

in managing it while maintaining an appropri-

ate level of service for others.
This makes crafting convergent scripts both particu-
larly difficult and particularly important, as they
embody all aspects of human interaction, including
device knowledge, configuration requirements, and
management policy.

2000 LISA XIV — December 3-8, 2000 — New Orleans, LA

An Expectant Chat about Script Maturity

My Goals

I began the work of this paper by looking for a
better way to write Expect [19] or Chat scripts that
will enable ‘convergent’ bootstrapping and adminis-
tration of console-scriptable network nodes. I needed
something like this in order to be able to reliably
recover from errors made by students in building
experimental networks. Left to herself, and given full
reign over a network device, a student can unknow-
ingly break SNMP (or other) management control
over network devices, thus making ‘front door’ recov-
ery techniques unreliable.

My second motivation was to bring the process
of scripting closer to the ‘best practices’ I already
understand. The tightest coupling I can make is to
relate automated scripts to the commands I would
have to issue myself in order to accomplish the same
task. I consider this a much tighter ‘semantic cou-
pling’ than, say, SNMP requests to accomplish the
same changes: SNMP requests look very different
indeed from the administrative commands to which
they correspond.

The Lightwave ConsoleServer 3200

My example application is to create a convergent
script that will automatically maintain the configura-
tion of a LightWave ConsoleServer 3200 [30]. This is
a serial console switch that allows access to any one of
up to 32 serial consoles from up to 16 simultaneous
incoming telnet sessions. It is remarkably easy to con-
figure, but configuration involves setting many param-
eters, and these may only be set by hand using a serial
command-line interface. There is no SNMP interface
available and management functions are not network-
accessible by any means. This device, once config-
ured, also allows script access to all other consoles in
my site, via telnet within a dedicated private
(RFC1918) administrative subnet.

I wish to use the ConsoleServer in college
coursework in order to give students access to remote
Linux consoles, so that they may practice configuring
Linux systems that are physically located in a pro-
tected location. This means that the configuration of
the ConsoleServer will be changing frequently in
order to allow new students access to the consoles. I
already maintain databases of the students who should
be given access to particular consoles. The trick is to
craft a convergent mechanism by which I can assure
that the appropriate students have access to appropri-
ate machines, by adding and deleting accounts for par-
ticular students as they rotate through lab exercises.

Easy or Impossible?

One might think that this project is easy until one
understands the true complexity in the interactions.
Let us consider the simple subtask of making sure the
switch is accessible to the correct students, and that
they possess appropriate privileges. To add a user, one
participates in a dialog similar to this:

17

An Expectant Chat about Script Maturity

LCI3200>1login admin

PLEASE ENTER PASSWORD ****

sys admin>adduser

Number of available user records: 196
Number of users defined: 4

Enter user id | USER ID > foo
Enter case sensitive password

| PASSWORD > ****x=

Re-enter case sensitive password
| PASSWORD > ****xx

0-17 | MAX CONCURRENT LOGINS: 1 > 1
Allowed devices example:

1-5,10 | DEVICES 0 > 1-11

Allowed listen devices example:
1-5,10 | DEVICES 0 > 0

Allow user to clear device buffer
(Y/N) | YES > N

Clear screen after a command
(Y/N) | YES > Y

Enter user id | USER ID >

sys admin>logout

LCI3200>

(in this paper, long lines in examples are folded to fit
within columns). With Chat, one can craft this spe-
cific dialog, but employing variables in the dialog is
awkward at best. With Expect, one can write a TCL
[24] subroutine that performs this task, where all user
inputs are variables. Then one can call the subroutine
multiple times to add multiple users.

This all seems relatively straightforward until we
consider what can go wrong during the script. The
user could have been created already, so that all we
need to do is to modify settings and privileges. This
requires executing a different command edituser. The
answers to any of the above questions, as specified by
our script user, could be inappropriate. In this case the
device repeats the question:

Allow user to clear device buffer
(Y/N) | YES > No

Allow user to clear device buffer
(Y/N) | YES >

The device does not accept ‘No’, just ‘N’. Improper
answers leave the device asking the same question
over and over again, so that the script must issue a
control-C to reset the interface after any script failure.
We must include one ‘if” statement in our script to
catch each possible failure.

Making the script ‘convergent’ requires much
more work. We must teach the script how to gather
data on existing users, and how to determine users that
have not yet been added. Modifying users so that they
have new privileges is a matter of reading each user’s
profile, comparing it with desired data, and changing
it if necessary. Each of these processes is more com-
plex than the example above. The net result is that the
‘convergent’ version of the script has an enormous
number of possible execution paths, depending upon
what goes wrong. This high ‘branching complexity’
[20] will cause the script to be very expensive to write,
debug, and maintain.

18

Couch

If T write this script under pressure, I am obvi-
ously not going to have the time to do this correctly
and will miss some case. So to use my script, I have to
watch for failures, correct the values of parameters,
and run the script again, perhaps after cleaning up
after what it did the previous time. If I become impa-
tient enough, I will modify the script to better handle
some of the failures, in order of annoyance to me.

As 1 address the annoyances, I create another
problem. As my script becomes increasingly clever, it
is evolving with abandon, without functional bound-
aries or documentation. As it grows, it becomes like-
wise increasingly clever and increasingly unmaintain-
able. Any time the device changes, the script fails and
I am the only hope of repairing it. I am well on the
way to owning an irreplaceably valuable script that
renders its author irreplaceable as well. This is what
we call ‘job security.’

It is for this reason that I used to consider the
goal of creating ‘convergent’ interactive scripts (that
apply minimally intrusive changes in order to assure
device state) practically impossible.

Jackson System Design

In software engineering practice, one manages
project complexity and avoids this kind of develop-
mental ‘script rot’ by applying a formal design
methodology that controls development in order to
keep scripts both understandable and reusable. Fortu-
nately, the methodology we need was well understood
during the punched card era of computing, and only
needs to be resurrected and reapplied!

Jackson [15, 16] claimed that the way to properly
design a program for processing punched card stacks
is to link the structure of the program with the struc-
ture of the stack that it processes. He created a simpli-
fied structural model that replaces program flowcharts
with ‘Jackson Diagrams’ that are the same for the pro-
gram and its input. Each diagram depicts containment
and sequence of inputs or program parts, utilizing
nodes for parts and undirected edges for relationships,
reading from top to bottom and left to right. The dia-
gram:

A
/)N
B C D

represents a thing ‘A’ that consists of subparts ‘B, ‘C’,
and ‘D’ in that order. This thing can either be a stack
of cards or the program that processes them in sequen-
tial order. Loops and branches in the program are indi-
cated by annotating the diagram. Repeated items dur-
ing a loop are starred, and optional items are annotated
with a ‘0’

For example, the diagram below refers to a deck
of cards containing a structure A, which consists of
structures B, C, and D, where B consists of multiple
copies of E, and D might contain either J or K.

2000 LISA XIV — December 3-8, 2000 — New Orleans, LA

Couch

Jackson’s key idea was to interpret this diagram
also as the structure of a program to process the cards:
begin A;
begin B;
for (some cases)
begin E;
begin F; end F;
begin G; end G;
end E;
end B;
begin C; end C;
begin D;
if (some condition)
begin J; end J;
if (some condition)
begin K; end K;
end D;
end A;

The program must look something like this if the cards
are structured the same way.
Applying Jackson’s Principle
I began this project ‘expecting’ to utilize an

enhanced version of Expect to address state awareness
and convergence problems in traditional scripts. I ini-
tially added enhanced handling of parsing and variable
binding, similar to that in PIKT, in an effort to make
scripts shorter and easier to understand. My approach
to this problem changed dramatically in mid-project,
however, when I realized that Jackson’s methodology
applies to the structure of the input/output streams
with which we as administrators control the device.
The structure of these streams (of prompts and com-
mands) is predetermined by device design and one’s
intent as an operator. This pattern can be mimicked by
a script in order to accomplish the same intent:

The structure of a fully functional interac-

tive script is exactly parallel to the branch-

ing and looping structure of the device

interactions in which it must engage.

This observation would have come to naught if I
had used Jackson’s diagrams as above, for they
become unwieldy when used to describe interactions
of this complexity. Fortunately, I did not need to uti-
lize these, because one can use a variant of the Exten-
sible Markup Language (XML) [13, 26] to perform
the same function. For this, I employ the XML tags:

1. <repeat>: the equivalent of Jackson’s star; indi-
cates repetition of patterns within an /O
stream.

2. <branch>: the equivalent of Jackson’s ‘0’; indi-
cates that something is one of many possible
options.

For example, the Jackson diagram above can be repre-
sented as:

2000 LISA XIV — December 3-8, 2000 — New Orleans, LA

An Expectant Chat about Script Maturity

<A>
<BO>LE>
{repeat><F/><G/></repeat>
</E>S/B>
<c/>
<D>
{junction>
<branch><J/></branch>
<branch></branch>
</junction>
{junction>
<branch><K/></branch>
<branch></branch>
</junction>
</D>
<TA>

where
e <X> marks the beginning of X.
e </X> marks the end of X.
e <X/> marks the beginning and end of X. This is
equivalent with <X></X>.

With this model in mind, I realized that my so-
called ‘high-quality scripts’ looked much more like
structural declarations than scripts, and that the non-
structural imperative commands were obfuscating my
understanding of the structure that the scripts docu-
mented. I was worrying about ‘which variables to set’
in the scripts, while I should have been worrying
about the structure of interactions.

My obvious next step was to split each script into
two parts: one part that documents structure and
another that acts upon that structure. In the beginning,
I considered the ability to separate structure from
action as an extra ‘toy’ capability of my scripting tool.
But eventually, as my structural markup language
evolved in its ability to express detailed structure, I
realized that:

For most purposes, crafting of individual
interactive scripts can be replaced by an
intelligent scripting engine that parses
detailed structural specifications of the
interface and its desired configuration, and
then proceeds to assure that configuration
by exploiting documented interface struc-
ture.

At first glance this method of scripting may seem
ridiculously awkward, but in practice it is much easier,
faster, and more reliable than scripting. Once the
scripting engine is written, all one must do is to docu-
ment the streams that it controls. This involves speci-
fying the sequence, variant content, conditional struc-
ture, and topology of the commands that the interface
understands. One accomplishes this by collecting and
annotating example sessions. If one can do something
manually, and react to all possible responses, one can
script the process. The ‘script’ becomes documenta-
tion describing what varies in the sessions, what
options or branches there are in the process, and the
‘causal intent’ of each interaction, e.g., creating a user.

19

An Expectant Chat about Script Maturity

Stream-structured Design

My variant of Jackson’s method documents the
structure of I/O streams through a series of simple and
straightforward steps. Each step requires modifying an
example script of a user session by adding XML-like
markup tags. These tags form a Stream-Structure
Markup Language, or SSML. When this process is
completed, I feed the sum total of all sessions I have
recorded, all appropriately marked and annotated, to a
‘scripting engine’ that I call ‘Babble’. This engine uti-
lizes structural documentation to decide how to inter-
act with the device.

For example, let us first consider how one docu-
ments the process that deletes a user from the Light-
wave 3200. The first step is to collect an example dia-
log that accomplishes this, using the script and cu com-
mands upon a connected UNIX host. This produces a
file:

Script started on Sat Sep 16 16:29:13 2000

% cu -1 cua/b -b 8"M"M
Connected”"G™M

LCI3200>1ogin admin™M

PLEASE ENTER PASSWORD ****"M

sys admin>deletu”H "Heuser foo"M

Delete user:foo Yes or No (N):Y"M

sys admin>logout™M

LCI3200>"."M

Disconnected”"G™M

% exit™M

script done on Sat Sep 16 16:30:29 2000

~

where the prefix ~ indicates invisible control charac-

ters.
Standardize Input

My second step is to remove the header and
trailer, together with chaff such as "H that indicates a
backspace (together with characters I backspaced
over). I convert &, <, and > to their XML equivalents
&, <, and > so that they will not conflict with
the XML tags I will add in the next step. I convert the
remaining special characters to their Perl escape-string
equivalents for easy readability and editing.

\r\n

LCI3200>login\sadmin\r\n
PLEASE\SENTER\sPASSWORD\s****\r\n
sys\sadmin>deleteuser\sfool\r\n

Delete\suser:foolsYes\sor\sNo\s (N) :Y\r\n

sys\sadmin>logout\r\n

LCI3200>
In the above, \r represents return and \n represents line-
feed, \s represents space, and \007 represents bell (con-
trol-G). After this transformation, whitespace is
ignored in all further steps and may be used to indent
for clarity.

Mark Input and Output

The next step is to annotate the remaining text so
that I know what is input and what is output. There is
not yet an automated way to do this, so I manually
insert get and put tags to distinguish things the

20

Couch

interface sent from those I typed. At the end of this,
untagged text will be ignored.
<brook name="delete">
<put>\r</put>\n
<get>LCI3200></get>
<put>login\sadmin\r</put>\n
{get>PLEASE\sENTER\sPASSWOR\s</get>
<put>****\r<{/put>\n
{get>sys\sadmin></get>
{put>deleteuser\sfoo\r</put>\n
{get>Delete\suser:foo\sYes
\sor\sNo\s (N) :</get>
<put>Y\r</put>\n
{get>sys\sadmin></get>
{put>logout\r</put>\n
{get>LCI3200></get>
</brook>

I call a little part of an I/O stream a brook (!). One
subtlety is that since the \r’s are typed by us but the \n’s
are typed by the responding system, the \n are outside
the respective put’s. If I instead place the \n inside the
put, the scripting engine will add an extra line-feed to
every command, perhaps with problematic results.

Identify Variants

The next step is to document which strings vary
in the stream, depending upon what I wish to accom-
plish with this script. I call these strings variants to
distinguish them from traditional variables, with
which they share only a superficial resemblance. In
my example, only the administrative password and the
name of the user to delete may vary. All else is
always the same. I mark and name variants where
appropriate, inserting (ignored) line breaks and inden-
tation for readability:

<brook name="delete">

<put>\r</put>\n
<{get>LCI3200>:</get>
<put>login\sadmin\r</put>\n
{get>PLEASE\sENTER\sPASSWORD\s</get>

<{put>

{var name="adminpass">****<{/var>\r
</put>\n

{get>sys\sadmin] ></get>
{put>deleteuser\s

{var name="username">foo<{/var>\r
</put>\r

{get>Delete\suser:

{var pattern="[a-zA-Z0-9]+">fool/var>
\sYes\sor\sNo\s (N) :{/get>
<put>Y\r</put>\n
{get>sys\sadmin></get>
<put>logout\r</put>\n
{get>LCI3200></get>

</brook>

There are two kinds of variants. A named variant is
something to be placed into put commands or discov-
ered during get commands. There are two of these:
adminpass and username. A named variant has to be
assigned a value in order to be put, but acquires a
value after a get. An unnamed variant is only valid
within a get and represents variant input to be matched

2000 LISA XIV — December 3-8, 2000 — New Orleans, LA

Couch

and skipped over, documented by a Perl regular
expression pattern.

In Expect, at this point, I would have to assign
these values to variables outside the realm of the
device language, in TCL. In SSML, these variable
bindings are accomplished by comparing this descrip-
tion(of where variables appear) with a different XML
database of appropriate values for each variant. In this
way specifics of configuration are kept separate from
the process by which one configures a thing.

Classify Echo Types

The next step is to carefully classify variant out-
put into one of several classes. There are three classes
of output, corresponding to echo options: normal echo
(full duplex, the default), no echo, and starred echo
(for passwords). These are indicated by tags that con-
tain output within a put:

{put><{stars>

{var name="adminpass">****<{/var>
{/stars>\r<{/put>\n

The default is that what I type shows up in the
output in full-duplex mode. Placing output inside a
stars tag documents that stars are displayed instead of
what I type, while a noecho environment indicates that
there is no echo at all, as in typical password dialogs.

Document Conditional Behavior

The next step is to indicate any branching or con-
ditional behavior in the overall flow of the script. First
it is possible that I will already be logged in when the
script starts. In this case, I wish to skip the administra-
tor login, a simple branch:

<put>\rd/put>\n
<{junction>
<branch>
{get>LCI3200>:</get>
{put>login\sadmin\r</put>\n
{get>PLEASE\sENTER\sPASSWORD\s</get>
{put><stars>
{var name="adminpass">****<{/var>
{/stars>\r<{/put>\n
{get>sys\sadmin></get>
<{/branch>
<branch>
{get>sys\sadmin></get>
<{/branch>
<{/junction>

Each branch starts with a get that is used to select
which branch to execute. If I receive a non-administra-
tive prompt, I log in, else I skip the process. Appear-
ances can be deceptive: this is not a method, but docu-
mentation. The stream can take two paths, and I have
now documented both of them.

Another branch will be taken if the user name |
choose does not exist. I can document this branch by
collecting more data:

sys admin>deleteuser foo
User foo does not exist

To deal with this case, which is perfectly acceptable

2000 LISA XIV — December 3-8, 2000 — New Orleans, LA

An Expectant Chat about Script Maturity

since | wanted to delete the user anyway, I can modify
the master script by adding a branch describing the
new response:

{put>deleteuser\s
{var name="username">foo<{/var>\r
</put>\n
{junction>»
<branch>
{get>Delete\suser:

{var pattern="[a-zA-Z0-9]+">fool/var>
\sYes\sor\sNo\s (N) :
</get>
<put>Y\r</put>\n
<{/branch>
<branch>
{get>User\s
{var pattern="[a-zA-Z0-9]+">foo{/var>
\sdoes\snot\sexist<{/get>
</get>
{/branch>
</junction>
{get>
sys admin>
{/get>
If I receive the error message, I simply ignore it. The
default action in SSML, if there is no match to a
branch, is to fail with a script error.

Associating Values With Variants

The next step is to actually invoke a script engine
upon the documentation in order to perform the docu-
mented function. This is a matter of binding variants
to appropriate strings and calling the scripting engine
to interpret the results. This in turn requires creating
declarations of variants separate from — but in agree-
ment with — the stream declarations I have made. For
example, for my brook described above, I might
declare:

{var name="adminpass">PASS<{/var>
{var name="username">couch<{/var>

to assign values of PASS and couch to adminpass and
username, respectively. For simplicity, variant values
are organized in a single global declaration in a sepa-
rate file.

Repeating Commands

Most of the time, however, I do not wish to
delete just one user. In SSML, I accomplish repeated
tasks implicitly (as we did previously in Prolog [12])
by declaring sets of instances of variable values to use.
I force an action to repeat by defining a variant that
holds a set of instances, matched with a repeat markup
that processes the instances. The structure of instances
in the configuration data must be parallel to the struc-
ture of repeat tags in the markup. This process is aided
by a simple but powerful name scoping mechanism.

For example, suppose that I wish to delete both
users foo and bar. I create a brook to do both, by insert-
ing the brook I have already created into a repeat con-
text:

21

An Expectant Chat about Script Maturity

<brook name="expunge">

{repeat instances="people">
{insert brook="removeuser"/>
{/repeat>

<{/brook>

The variant people consists of two instances of data
needed by removeuser:
{repeat name="people">
{instance>
{var name="username">foo<{/var>
{var name="adminpass">PASS</var>
{/instance>
{instance>
{var name="username">bar</var>
{var name="adminpass">PASS<{/var>
{/instance>
{/repeat>

Each set of distinct values is called an instance of the
process. During the repeat, each instance is processed
in turn. During processing of a particular instance, the
script engine augments the top-level variant declara-
tions with new variable values for each case in turn,
then invoking the brook with these new values. Vari-
ants declared outside the repeat clause keep their val-
ues unless shadowed by definitions inside an instance,
so I could have accomplished the same effect through:
{var name="adminpass">PASS</var>
{repeat name="people">
{instance>
{var name="username">foo<{/var>
<{/instance>
{instance>
{var name="username">bar</var>
{/instance>
{/repeat>

As the variant adminpass occurs outside the block of
instances, and is not shadowed within them, it is avail-
able to the contents of the repeat markup for each
instance. Variant bindings during a repeat are strongly
typed but dynamically scoped. The kind of variant
(repeat or text) must exactly match its usage, but vari-
ants brought into scope by a repeat are available to
any contained repeats or subprocess invocations. This
allows one to declare multiply-dimensioned loops by
defining two sets of instances with non-overlapping
variant names, one set for each repeat.

Discovering Configuration

This variant binding scheme also works in
reverse to allow us to inductively discover the values
of variants for a set of instances. Suppose I want to
get a list of all users. I know that the command for that
is listusers:

sys admin>listusers
User id > COUCH
User id > FOO

User id > BAR

sys admin>

In my last use of repeat, the instances over which I
iterated were all arguments to put commands. I can
discover users by reversing this process, referring to

22

Couch

the variants within a get command:
<brook name="listusers">
{put>listusers\r</put>\n
{while instances="people">
{get>User\sid\s>\s
{var name="username"
pattern="[A-Z0-9]+">
COUCH</var>\r\n
</get>
</while>
{get>sys\sadmin></get>
<{/brook>

This creates several instances, all known under the
name people, where each one contains the username of
one user of the device.

The difference between repeat and while lies in
their control over instances. repeat does something for
a fixed number of instances, while while inductively
discovers instances as they appear in the output, and
creates a list of all of them. This has the effect of
updating variant space for the discovered values, eras-
ing any previous value of the structured variant people,
where each instance contains a current username,
mined out of the output by using the regular expres-
sion pattern expression pattern ‘[A-Z0-9]+’.

In this example, the while exits upon a timeout,
after which instances discovered during each com-
pleted pass through the while process become instances
of the repeat variant people, overwriting any previous
values. At this time we know all the names of users,
and could now, e.g., delete all of them by invoking the
‘expunge’ brook above.

Convergent Processes

Until the last example, I have not employed vari-
ants that are computed at runtime. The reader might
ask what good it does to discover variable values if
there is no script to utilize these values. The scripting
engine itself, with appropriate guidance, can utilize
this data to great advantage, or even print a new con-
figuration file representing the current configuration
of the device.

Assuring values of individual configuration
parameters non-intrusively is fairly trivial. The engine
reads them, and if they are incorrect, changes them
accordingly. For it to do this, it is sufficient to instruct
the engine on how to read and write particular config-
uration parameters, with appropriate branching to deal
with different cases.

Difficulties arise, however, when one wishes to
efficiently update a part of the configuration contain-
ing an unknown number of instances of a thing. For
example, in assuring that my idea of current users
agrees with that of the device, I start with two lists of
users, one in hand and one already configured on the
device. To update the users, the engine must read cur-
rent user information from the device, note differences
between current and desired users, and proceed to
modify the configuration so that the desired informa-
tion becomes current. To empower the engine to
behave intelligently in this case, I must document a

2000 LISA XIV — December 3-8, 2000 — New Orleans, LA

Couch

few processes that act on the same variants, including
how to read the user list, how to read details on one
user, and how to add, delete, and modify one user’s
data. All of this information together describes a con-
vergent process that will update the user list to have
desired contents.

So far, I have used SSML to describe more or
less traditional program flow that is also representable
using Expect. In this example Babble transcends
Expect’s capabilities by responding intelligently to
documentation. Babble reads the user list and adds,
deletes, or modifies users as needed, checking its work
at every step by reading what it has written. In this
way, five short declarations are used to synthesize one
incredibly complicated action that would be impracti-
cal to code as a single declaration. This complexity
thus migrates from the documentation into the script
engine where it belongs.

Exceptions

Some devices have particularly annoying user
interfaces. For example, the 3Com Corebuilder 9000
prints the contents of SNMP traps on the console
while one is trying to configure it, sometimes in the
middle of typing commands. To configure this device,
one must ignore these alerts while issuing configura-
tion commands. One can do this in SSML by declar-
ing an ‘exception’ pattern to check for and discard if
present. This arranges for the trap data to be discarded
whenever it appears, regardless of context. This would
be incredibly awkward to arrange in Expect, as the
exception pattern would have to be included in every
pattern match in the whole script!

Babble

Babble is a scripting engine that parses SSML
specifications and performs desired configuration
tasks. It is implemented as a set of cooperating Perl
packages that parse both stream documentation and
variant declarations, and allow one to selectively
invoke individual brooks or convergent processes with
desired parameters. It is implemented as a Perl library
because of the many and varied forms in which I store
configuration information, in the hope that any exter-
nal specification of configuration policy can be trans-
lated into an appropriate set of variant declarations
using Perl. Input to each invocation consists of an I/O
stream with which to interact, a compiled SSML parse
tree, a name of a branch to invoke, and a multi-level
associative array describing variants and sets of
instances to be processed. The output of each call is
the modified variant array, modified to reflect any gets
executed during the script.

This version of Babble is so new that the only
application I have so far crafted is the one described
herein. I can report from this that crafting Babble
scripts to control the 3200’s configuration was accom-
plished unbelievably quickly, because scripts almost
always worked correctly the moment they had correct

2000 LISA XIV — December 3-8, 2000 — New Orleans, LA

An Expectant Chat about Script Maturity

syntax according to the parser and builtin configura-
tion tester included with Babble! Debugging was
almost entirely a process of responding to complaints
from Babble itself about mismatches of names, syntax
errors, etc. The only specialized knowledge I needed
was an understanding of how to accomplish specific
things in Babble that I was used to accomplishing
using scripting.

While I designed Babble specifically for serial
console interaction, it can be used to automate any
serial interactive process, including UNIX commands,
telnet, etc, in the same manner as Expect. E.g., one
can use it to parse the output of ps and then use the
result to interact with the process table using explicit
kil commands. Babble does not — and never will —
have the ability to perform direct system calls.
Employing solely console commands documents ‘best
practice’ at the expense of script speed and resource
efficiency, perhaps a proper decision.

Limitations

Babble of course refers to the tower of Babel
from the Bible, because like the builders of the tower,
it speaks all languages, but without comprehension.
This lack of comprehension is the root of all of its per-
manent limitations. The commands Babble executes
have no meaning to Babble itself, but are simply
abstract patterns of interaction learned from experi-
ence. When that experience is somehow incomplete, it
fails. When interacting with a complex device, this
experience can never be complete and some failure is
assured.

State Coherence

Babble’s greatest weakness is nearly invisible in
the example. Every script in the example requires hid-
den preconditions in order to function, and scripts
must be strung together so that the postconditions of
each script satisfy the preconditions of the next. The
most important precondition is interface state, which
is not even representable in the current markup lan-
guage. The state of the interface indicates, e.g.,
whether the interface is in unprivileged or privileged
mode, and whether the process is at a command
prompt or within an interactive dialog. These hidden
preconditions and postconditions affect the success of
every script, in particular, every subbrook of a conver-
gent process must start from — and end within — the
same exact interface state.

Version Control

Another serious deficiency of Babble is that it
cannot explicitly encode version information to assist
it in dealing with identical hardware devices running
different software or firmware. Each device revision
requires a completely independent Babble script. This
deficiency, alas, is completely intentional.

Babble’s ‘topological algebra’ of structural tags
is designed for automated merging of brooks that rep-
resent special cases of the same task on the same

23

An Expectant Chat about Script Maturity

device. This will be accomplished in the future via
‘parallel tree walks’ through the descriptions to be
combined, in which one combined description
emerges with appropriate junctions and branches
inserted. So far, all attempts I have made to combine
this feature with version control have compromised
this automated merging capability, by making the
algorithms for automated merging unnecessarily awk-
ward or perhaps even impossible.

Branching in Babble is a temporal phenomenon
while versioning is spatial in character. Problems arise
in temporal merging when spatial merging has been
done first; one does not have enough information to
complete the merge unless the streams being merged
have identical spatial structure. I consider automated
merging and temporal coherence more important than
version control, and believe that version control may
have to be handled by a completely different tool,
much as PIKT provides a metalayer for managing ver-
sions of normal shell scripts.

Paranoia

Babble’s run-time checking borders on paranoia.
Unlike Expect scripts, which check only for specific
cues in the input stream, Babble checks for full-duplex
echo of output, as well as compliance of input with all
markups one specifies. Scripts abort on any deviation.
Babble also frequently ‘checks its work’” by reading
parameters it has modified.

If one wishes even more paranoia, Babble allows
one to craft scripts that validate behavior rather than
merely verify. Unlike verification, which simply
checks that parameters are being set correctly, valida-
tion checks that parameters have the appropriate exter-
nal effects. For example, after enabling telnet on a
device, one can telnet into it to check that it works;
after creating a user, one can login as that user from
another device. These detailed sanity checks would be
impractical to craft via traditional methods, but are rel-
atively easy to craft in SSML because the engine is
handling most of the details of error detection and
branching.

Awkwardnesses

Alas, Babble’s documentation format was driven
by many expediencies. I used XML syntax because I
was used to writing XML parsers. This was not the
optimal match. Because of this, I had to escape all
special characters in an awkward way so that they
would not interfere with XML parsing. In fact, the
syntax is not, strictly speaking, fully XML compliant.
To make it possible to drop into Perl during a script, I
had to allow embedded Perl, but in true XML one
would have to escape &, <, and > in Perl code, render-
ing it unreadable. Thus I allow regular Perl and pre-
process the documentation file, escaping all special
characters in Perl scripts before parsing the result as
XML.

This awkwardness, however, gives me the ability
to incorporate features into Babble that are difficult to

24

Couch

code for any other base language. A Babble configura-
tion is a ‘literate program’[17] that represents several
different facets of a process, including documentation,
procedure, and policy, in one convenient package. The
reason I chose XML for the base language of Babble
was to enable me to render descriptions of these facets
in HTML for viewing on any web browser. This is an
invaluable debugging aid that will become a feature of
Babble in the very near future. More important, the
interactions that Babble undertakes with a device can
themselves be represented in XML, so that each invo-
cation can be described in HTML as well, with hyper-
links from the transcript of the invocation to parts of
the configuration that determined its shape.

Critique

This approach is superior to writing scripts with
Expect for several reasons. It avoids classical verifica-
tion problems associated with script development, so
that process refinement is much less dangerous than
when writing real scripts. This strength is negated,
however, if one employs regular programming as part
of processing a stream. Babble also avoids one of the
main difficulties in scripting with Expect: the need to
craft complex regular expressions to parse input of
irregular structure.

Avoiding Verification Problems

The greatest obstacle to using traditional script-
ing is that verifying the correct behavior of scripts is
difficult. I avoid some of the difficulties by crafting
documentation of a pre-existing condition, not a com-
puter program. During the time I am tuning and per-
fecting documentation, the ‘script engine’ that utilizes
the documentation remains unchanged. I thus simplify
the problem of verifying my process into two prob-
lems: verifying the script engine itself as a program,
and verifying the documentation as a description of
external behavior. The engine need only be verified
once. Verifying accuracy of its subsequent uses only
requires checking its input for accuracy.

This fact makes refining a description much eas-
ier than refining a true script. The form of documenta-
tion is sufficiently simple that traditional limits to
script validation do not apply. One can use automated
static verification tools to exhibit possible sub-paths,
validate syntax, and check correspondence between
stream and parameter declaration structure. Thus one
can largely avoid the problems of ‘software rot’ that
plague the maintainers of true scripts.

The trick of separating documentation from pro-
gramming only works if one can avoid embedding real
program code into the documentation. If one must,
one loses most of the benefits of the approach. In
order to avoid this, one must be able to compile a
complete parameter space before one starts the engine.
If one cannot, but must compute configuration param-
eters ‘on the fly’ during the script, simple process doc-
umentation no longer suffices. Then one must drop

2000 LISA XIV — December 3-8, 2000 — New Orleans, LA

Couch

into Perl during a stream, so that my intended docu-
mentation now again assumes the role of a program.
Of course, when one must do this, one compromises
many of the strengths of the approach, in the very
same way that employing embedded TCL weakens the
maintainability of Expect.
Simplifying Regular Expression Syntax

While regular expression pattern matching is one
of the most powerful features of Expect, TCL, and
Perl, it is also one of the most dangerous and
unwieldy. The parenthetic syntax for binding sub-
strings to output variables is a source of constant con-
fusion. The most common error is counting parenthe-
ses incorrectly so that variables are bound to incorrect
values. In SSML, all parenthetic matching is implicit
in the order of variables within a get, and parentheses
are not enabled in the regular expression patterns. This
makes the patterns much easier to craft and debug, and
there is no danger of mismatched variables, as in par-
enthetic patterns or split statements.

This convention replaces one weakness with
another (hopefully lesser) weakness. When crafting
documentation, one must be careful to declare variants
using appropriate regular expressions so that the pat-
tern that the engine derives from your declarations is
not ambiguous. For example, it is poor practice to
declare two adjacent variants whose patterns create
ambiguity in assigning values to the variants:

{var name="poor" pattern="[A-Z]+[0-9]+">

{var name="style" pattern="[0-9]*">

When the engine tries to match these two variants
against the input ‘AB1234’, the first pattern match
causes an early binding of the variant poor to ‘ABI’,
after which the second pattern matches ‘234’. But
matching these patterns could just as well have split
the input into AB12’ and ‘34’, ‘AB123” and ‘4’, or
‘AB1234’ and °’.

Thinking Declaratively

Several limitations of SSML are entirely inten-
tional. One cannot negate a pattern in SSML, or use a
regular ‘for’ loop. These are not simple oversights, but
based upon fundamental limits of the theory of auto-
matic program verification.

Veritying the correctness of regular scripts with-
out exhaustive testing is impractical. The most com-
mon method of verification is called ‘weakest precon-
dition analysis’ [14, 21, 28]. To use this method, one
clearly documents preconditions and postconditions of
the script, and then analyzes the script line by line
from end to beginning, starting from desired postcon-
ditions and carefully computing the preconditions
needed to assure those postconditions. A script is ‘cor-
rect’ if the preconditions actually required to assure
postconditions are ‘weaker’ (i.e., less demanding) than
the stated preconditions we document. This process is
easy to perform automatically for scripts containing
only linear code with no loops, but is equivalent in

2000 LISA XIV — December 3-8, 2000 — New Orleans, LA

An Expectant Chat about Script Maturity

complexity to mathematical theorem proving for
scripts containing loops in which the same variables
are both set and used. Theorem proving takes far too
much time to be practical.

In practice, this means that the only practical
way to assure the quality of a script is to put it through
a full ‘regression test’ after any change. Because of
the complexity of the environment in which adminis-
trative scripts must run, this kind of testing is usually
impractical or perhaps impossible. This allows inci-
dental script bugs to remain hidden until they cause a
crisis, perhaps until the original author has long ago
moved on to other employment.

To be able to efficiently verify a program, one
has to ‘weaken’ the scripting language so that limits to
automatic verification do not apply. SSML documen-
tation contains no loops that would present problems
for a ‘weakest precondition’ verifier, unless one inten-
tionally reads a variable and sets it inside a repeat
scope in the same brook. Doing this in SSML consti-
tutes a markup error that future versions of Babble
will be able to detect and report.

The current implementation performs only lim-
ited verification, including reporting disagreement on
names and types of variants between stream documen-
tation and value declarations. The structure of SSML
will allow future versions of Babble to locate more
kinds of common programming errors, including over-
lap or ambiguity of regular expression patterns, as
well as ambiguity of intent, such as writing data dur-
ing a stream that should only be reading it, or vice
versa.

Relearning Common Techniques

Writing SSML specifications requires that one
learn new equivalents for common but less reliable
scripting techniques. For example, it is very common
for a traditional script to parse a line of input into an
array with a split command. E.g., in Perl, one can
write:

@parts = split(/\s+/,$1line);

where A\s+/ is a regular expression, $line is the unparsed
line, and @parts is an array of fields within the line.
Babble does not allow this kind of matching in a
straightforward way, but there are two equivalent con-
structions. First, one can name all parts of the line to
be matched, and match them individually:

{var name="first" pattern="["\s\n]+">

{var pattern="\st">

{var name="second" pattern="["\n]+">

{var pattern="\s+">

{var name="third" pattern="["\s\n]+">

where the pattern [\s\n]+ matches non-whitespace,
while the pattern \s+ matches whitespace. This will
bind first, second, and third to the next three whites-
pace-delimited fields. If there are a fixed number of
fields, this is the best possible documentation on their
structure.

25

An Expectant Chat about Script Maturity

If there are several fields for which one does not
know a field count, such as a list of ports separated by
commas, one can instead declare a repeating structure:

{while instances="ports">
{junction>
<branch>
{var name="port"
pattern="["\s\n]+">
</var>
<{/branch>
<branch>

{var pattern=",\st"><{/var>

{var name="port"

pattern="["\s\n]+">

{/var>

{/branch>
</junction>
<{/while>

The complexity here is more apparent than real. This
declares a sequence of input in which there are
repeated instances of a port, where each pair of port
numbers are separated by whitespace and a comma.
The branching structure indicates that it is possible
that there is whitespace in front of each instance. If,
e.g., the input is 2, 5, the data that this process binds
to the variant ‘ports’ has the structure:
{repeat name="ports">
{instance>
{var name="port">2<{/var>
<{/instance>
{instance>
{var name="port">5<{/var>
<{/instance>
{/repeat>

This data can in turn become the argument to a repeat
markup if one wishes to do the same thing to each dis-
covered port!

Automation

Many steps in this process can be automated or
streamlined so that much less user input is required.
For example, when capturing example sessions, a tool
that would capture and correlate both input and output
(using time stamps to determine relationships) could
generate the direction and echo markups that I created
by hand in the example.

There are subtle semantic difficulties in automat-
ing the task any further without human intervention.
For example, it is not possible to reliably infer the
positions of variant data — or the regular expressions
that describe them — from a few examples. A person
must mark these. But once input, output, and variants
are distinguished, multiple example sessions exhibit-
ing different branches for the same task can reliably be
combined automatically by parsing them, fusing their
parse trees, and then printing the result. A person must
nonetheless identify which set of brooks all accom-
plish the same task and should be fused. Likewise,
after I tell the engine which scripts read and write
data, the engine can automatically determine whether
write operations worked or not, by reading the results
and checking those against my intent.

26

Couch

Conclusions

When I began this work, I was possessed by the
traditional spirit that scripting can solve any problem,
and that all T had to do was to make scripting easier.
Even when applying the relatively declarative thinking
required for logic programming, I retained the old
script mentality and first tried to do ‘everything I
could do with Perl’. This attitude was the result of 28
years of conditioning, and it took a long while to ques-
tion this thinking, and even longer to unlearn old
habits in order to discover ways of doing without this
‘expressive power’.

The quality of our work, as script writers, is con-
trolled by fundamental theoretical limits known to
Computer Science. Normal scripts are difficult if not
impossible to validate and verify by any method short
of exhaustive testing. The unique properties of the
administrative environment make this testing impracti-
cal, while our lack of knowledge of the complete
effects of our actions hampers top-down thinking and
design. Babble cannot violate any of these limits, but
can carefully work around them. It discourages unpro-
ductive practices and shifts responsibility for script
quality — whenever possible — away from the script
itself and into a reliable intermediary component that
better interfaces desires with devices.

My journey has been a ‘tale of power’. Some-
times apparent power is an illusion. This illusion can
cost us much time and effort to avoid. It can sap
strength from our infrastructure while superficially
pleasing our egos. It can keep us from realizing its
effects, ‘trapping us in a lifestyle’ of seeming opu-
lence with an underlying and terrible cost. But the
first step in avoiding a trap is knowing of its existence.

We each seek personal empowerment in our own
ways, weaving a fabric of practices and tools that
gives us the stability and security we all crave as
human beings. Intrinsically we all know what the real
‘best practices’ are: those techniques that enhance our
personal empowerment and security. We may be given
these by a superior, or discover them ourselves via bit-
ter experience, but the result is the same.

If we can document these practices so that they
will outlast our attention and presence, we empower
others in the same way. Thus we can move beyond the
‘network of trust’ to form a ‘network of empower-
ment’ in which our community of administrators is
much stronger than the sum of its parts. This goal
requires putting the community above one’s self-inter-
est, in order that the community become strong
enough to protect us better than we can protect our-
selves. It requires looking beyond ‘job security’,
toward ‘mission security’. It requires acting fairly
within the ‘social contract’ that irrevocably binds us
with our organization in a pact of mutual protection
and shared mission.

Because true empowerment flows not from
inside ourselves, nor from our technologies, but from

2000 LISA XIV — December 3-8, 2000 — New Orleans, LA

Couch

caring community carefully woven around shared pur-
pose, vision, and dreams.

Availability

Babble will be available soon in alpha release
from http://www.eecs.tufts.edu/"couch/babble. While
it is written entirely in Perl 5 and should be portable to
all UNIX systems, the current version does not func-
tion properly in Linux due to a bug in the CPAN
pseudo-tty module Ptty.pm — I am working on this.

Acknowledgements

I first wish to thank intrepid system administrator
Andy Davidoff for putting up with me while I learned
the hard way how to be a good manager. Tufts admin-
istrators Rich Papasian, Lesley Tolman, and Tony Sul-
prizio were all excellent examples to me in learning
this lesson. Judy Jovanelly of Lightwave Communi-
cations, Inc. was most helpful in both suggesting the
Lightwave 3200 for my application, and helping me
repair a trivial bug in 3200 software that Babble’s
engine discovered through the engine’s megalomania
and paranoia. Max Ben-Aaron, Robert Osborn, and
Steve Moshier dedicated two lunchtimes to discussing
the paper and greatly improved its content. David
Krumme and Remy Evard read the manuscript and
provided helpful comments. Particular thanks to my
student research group, including Michael Gilfix,
Noah Daniels, John Hart, and Scott Pustay, for walk-
ing alongside me on this journey of discovery, and
putting up with endless discussions of what Babble
can do, before it could do it.

Author Biography

Alva L. Couch was born in Winston-Salem,
North Carolina where he attended the North Carolina
School of the Arts as a high school major in bassoon
and contrabassoon performance. He received an S.B.
in Architecture from M.L.T. in 1978, after which he
worked for four years as a systems analyst and admin-
istrator at Harvard Medical School. Returning to
school, he received an M.S. in Mathematics from
Tufts in 1987, and a Ph.D. in Mathematics from Tufts
in 1988. He became a member of the faculty of Tufts
Department of Computer Science in the fall of 1988,
and is currently an Associate Professor of Electrical
Engineering and Computer Science at Tufts. Prof.
Couch is the author of several software systems for
visualization and system administration, including
Seecube(1987), Seeplex(1990), Slink(1996) and
Distr(1997). In 1996 he also received the Leibner
Award for excellence in teaching and advising from
Tufts. He has assisted in maintaining the Tufts com-
puter systems for Computer Science teaching and
research since 1985, when he was a Ph.D. student. He
can be reached by surface mail at the Department of
Electrical Engineering and Computer Science, 161
College Avenue, Tufts University, Medford, MA
02155. He can be reached via electronic mail as

2000 LISA XIV — December 3-8, 2000 — New Orleans, LA

An Expectant Chat about Script Maturity

couch@eecs.tufts.edu. His work phone is +1 617-
627-3674.

References

[1] E. Bailey, Maximum RPM, Red Hat Press, 1997.

[2] B. Boehm, “Software Engineering Economics,”
IEEE Trans. Software Eng. 10, No. 1, 1984.

[3]1 R. Brooks, The Mythical Man-Month, Addison-
Wesley, Inc., 1982.

[4] M. Burgess, “A Site Configuration Engine,”
Computing Systems 8, 1995.

[5]M. Burgess and R. Ralston, ‘“Distributed
Resource Administration Using Cfengine,” Sofi-
ware: practice and experience 27, 1997.

[6] M. Burgess, "Computer Immunology", Proc.
LISA-XII, 1998.

[7] K. Caputo, CMM Implementation Guide: Chore-
ographing Software Process Improvement, Addi-
son-Wesley-Longman, Inc, 1998.

[8] M. Cooper, “Overhauling Rdist for the ’90’s,”
Proc. LISA-VI., Usenix Assoc., 1992.

[9] A. Couch and G. Owen, “Managing Large Soft-
ware Repositories with SLINK,” Proc. SANS-95,
1995.

[10] A. Couch, “SLINK: Simple, Effective Filesys-
tem Maintenance Abstractions for Community-
Based Administration,” Proc. LISA-X, Usenix
Assoc., 1996.

[11] A. Couch, “Chaos out of order: a simple, scal-
able file distribution facility for ‘intentionally
heterogeneous’ networks,” Proc. LISA-XI,
Usenix Assoc., 1997.

[12] A. Couch and M. Gilfix, “It’s elementary, dear
Watson: applying logic programming to conver-
gent system management processes,” Proc.
Lisa-XIII, Usenix Assoc., 1999.

[13] C. Goldfarb and P. Prescod, The XML Handbook,
2nd Edition, Prentice-Hall, Inc., 2000.

[14] C. A. R. Hoare, “An axiomatic basis for com-
puter programming,” Comm. ACM 12, pp.
576-581, 1969.

[15] M. A. Jackson, Principles of Program Design,
Academic Press, 1975.

[16] M. A. Jackson, System Development, Prentice-
Hall, 1983.

[17] D. Knuth, “Literate Programming,” Computer
Journal 27,No. 2, 1984.

[18] C. Kubicki, “The System Administration Matu-
rity Model — SAMM,” Proc. LISA-VII, Usenix
Assoc., 1993.

[19] D. Libes, Exploring Expect, O’Reilly and Assoc.,
1994.

[20] T. McCabe, “A software complexity measure,”
IEEE Trans. Software Engineering 2, 1976.

[21] B. Meyer, Introduction to the Theory of Pro-
gramming Languages, Prentice-Hall, Inc, 1990.
Chapter 9: “Axiomatic Semantics.”

27

An Expectant Chat about Script Maturity

[22] R. Osterlund, "PIKT: Problem Informant/Killer
Tool", to appear in Proc. LISA-XIV, 2000.

[23]R. Osterlund, “PIKT Web Site,” http://pikt.
uchicago.edu/pikt.

[24] R. Ousterhout, TCL and the TK Toolkit, Addison-
Wesley-Longman, Inc, 1994.

[25] R. Pressman Software Engineering: A Practi-
cioners’ Approach, Fifth Edition, Prentice-Hall,
Inc., 2000.

[26] E. Ray with C. Maden, Learning XML, O’Reilly
and Assoc., est. release Jan. 2001.

[27]1 L. Wall, T. Christiansen, and R. Schwartz, Pro-
gramming Perl, 2nd edition, O’Reilly and
Assoc., 1996.

[28] D. Watt, Programming Language Syntax and
Semantics, Prentice-Hall, Inc., 1991.

[29] The Carnegie Mellon Software Engineering
Institute, The Capability Maturity Model: Guide-
lines for Improving the Software Process, Addi-
son-Wesley-Longman Inc, 1995.

[30] Lightwave Communications, Inc, http://www.
lightwavecom.com .

28

Couch

2000 LISA XIV — December 3-8, 2000 — New Orleans, LA

