
USENIX Association

Proceedings of the
14th Systems Administration Conference

(LISA 2000)

New Orleans, Louisiana, USA
December 3– 8, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Aberrant Behavior Detection in Time
Series for Network Monitoring

Jake D. Brutlag – WebTV

ABSTRACT

The open-source software RRDtool and Cricket provide a solution to the problem of
collecting, storing, and visualizing service network time series data for the real-time monitoring
task. However, simultaneously monitoring all service network time series of interest is an
impossible task even for the accomplished network technician. The solution is to integrate a
mathematical model for automatic aberrant behavior detection in time series into the monitoring
software. While there are many such models one might choose, the primary goal should be a
model compatible with real-time monitoring. At WebTV, the solution was to integrate a model
based on exponential smoothing and Holt-Winters forecasting into the Cricket/RRDtool
architecture. While perhaps not optimal, this solution is flexible, efficient, and effective as a tool
for automatic aberrant behavior detection.

Introduction

Real time management of a service network
infrastructure at the IAP/ISP level is not a trivial task.
First, there is the sheer quantity of data generated on a
minute-by-minute basis. The WebTV production ser-
vice infrastructure consists of tens of switches and
routers, hundreds of host computers, and thousands of
application daemon instances to support a subscriber
base of over 1 million users. Second, there is great
variety in the types of data collected. The WebTV pro-
duction service monitors SNMP counters over net-
work links, host statistics such as CPU load and I/O
operations, and event logs for application daemons.
Every variable monitored, whether byte traffic on a
switch port, CPU load of a host machine, or requests
handled by a cookie daemon, generates a time series.
All of these time series reflect some part of the overall
service network health.

The first challenge therefore, is to collect, store,
and provide real-time access to this vast and diverse
data. The open-source software RRDtool [6] and
Cricket [1, 2] meet this first challenge. Using a web
browser, a network technician can quickly navigate to
and view a time series graph for a target and variable
of interest.

The network technician is likely to be interested
in aberrant behavior; that is, changes in the short-term
behavior of a time series (on the order of minutes or
hours) that are inconsistent with past history. Long-
term trends (on the order of weeks or months) are not
of interest from the service monitoring perspective
because one expects a time series to evolve in a
dynamic environment. Aberrant behavior may indicate
a performance bottleneck, application component fail-
ure, or system downtime. In some cases, aberrant
behavior is anticipated; other times it is not (see sec-
tion ‘‘Defining Aberrant Behavior’’).

The second challenge of network monitoring is
to automatically identify aberrant behavior in the
midst of thousands of service network time series.
Once such behavior is identified, an alert can be trig-
gered to bring the technician’s attention to the poten-
tial problem. Existing software tools provide some of
this functionality, but these solutions usually rely on
simple rules or thresholds (i.e., memory utilization
should be below 80%). These rules and thresholds are
sufficient for many applications, but they can’t detect
more subtle changes in behavior and they apply a
static criteria to detect aberrant behavior rather than a
dynamic one.

This paper describes a partial solution to this sec-
ond challenge of network monitoring at the IAP/ISP
level. Section ‘‘Description of the Model’’ discusses
the aberrant behavior detection algorithm, with a focus
on understanding the algorithm parameters. The bulk
of the software implementation is in RRDtool, which
is the focus of section ‘‘Enhancements to RRDtool.’’
Section ‘‘Enhancements to Cricket’’ discusses details
relevant for Cricket. The conclusion lists availability
of the software.

Defining Aberrant Behavior
Suppose a statistical model exists that describes

the behavior of a time series (or at least the character-
istics of interest). With such a model, one can define
aberrant behavior as behavior that does conform to the
model (or is not well described by the model).

Of course, aberrant behavior with respect to a
statistical model may or may not reflect a real event of
interest for the technician. In the case that it does not,
it is a false positive. Obviously, the ideal is to mini-
mize the rate of false positives while identifying all
events of real interest. However, this ideal can rarely
be achieved. In most detection systems, there is a trade
off between selectivity (avoiding false positives; also
referred to as specificity and precision) and sensitivity

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 139

Aberrant Behavior Detection in Time Series for Network Monitoring Brutlag

(ability to detect true positives; also referred to as
recall). While it is important to remain cognizant of
these issues, they become less important if one per-
ceives a statistical model for aberrant behavior as a
screening mechanism rather than a surrogate for the
expert judgement of a network technician.

Note that this definition treats each time series
independently of all others. No doubt there is much to
be gained by leveraging the relationships between ser-
vice network variables, but that is not addressed in this
paper.

Description of the Model

Model Design Goals
Many service network variable time series

exhibit the following regularities (characteristics) that
should be accounted for by a model:

1. A trend over time (i.e., a gradual increase in
application daemon requests over a two month
period due to increased subscriber load).

2. A seasonal trend or cycle (i.e., every day bytes
per second increases in the morning hours,
peaks in the afternoon and declines late at
night).

3. Seasonal variability. (i.e., application requests
fluctuate wildly minute by minute during the
peak hours of 4-8 pm, but at 1 am application
requests hardly vary at all).

4. Gradual evolution of regularities (1) through
(3) over time (i.e., the daily cycle gradual shifts
as the number of evening daylight hours
increases from December to June).

This list is by no means exhaustive; but it captures the
most important characteristics.

In addition to modeling time series regularities,
model design must consider the real-time monitoring
context. Complicated statistical models are unlikely to
be understood by network technicians and unlikely to
be feasible computationally in a real-time context.

Overview of the Model
Aberrant behavior detection is decomposed into

three pieces, each building on its predecessor:
• An algorithm for predicting the values of a time

series one time step into the future.
• A measure of deviation between the predicted

values and the observed values.
• A mechanism to decide if and when an

observed value or sequence of observed values
is ‘too deviant’ from the predicted value(s).

The proposed model is an extension of Holt-
Winters Forecasting, which supports incremental
model updating via exponential smoothing. The fol-
lowing sections discuss the model in some detail and
require some mathematical notation. Let
y1

. . . yt−1, yt, yt+1
. . . denote the sequence of values

for the time series observed at some fixed temporal
interval (recall RRDtool maps an irregular time series
to a regular interval). Let m denote the period of the

seasonal trend (i.e., the number of observations per
day).

Exponential Smoothing
Exponential smoothing [3] is a simple algorithm

for predicting the next value in a time series given the
current value and the current prediction. Let ŷt+1
denote the predicted value for time t + 1, then:
ŷt+1 = αyt + (1 − α)ŷt

The prediction is actually a weighted average of
all past observations in the time series. The premise of
exponential smoothing is that the current value is most
informative for prediction of the next value, and that
the weight of older observation decays exponentially
as the observation moves further into the past. It is an
incremental algorithm because the next prediction is
obtained by updating the current prediction with the
current observed value.

α is the model parameter and 0 < α < 1. It deter-
mines the rate of decay (1 − α) and the weight the
current value is given during the incremental update.

The Holt-Winters Forecasting Algorithm
Holt-Winters Forecasting [3] is a more sophisti-

cated algorithm that builds upon exponential smooth-
ing. Holt-Winters Forecasting rests on the premise that
the observed time series can be decomposed into three
components: a baseline, a linear trend, and a seasonal
effect. The algorithm presumes each of these compo-
nents evolves over time and this is accomplished by
applying exponential smoothing to incrementally
update the components.

The prediction is the sum of the three compo-
nents:

ŷt+1 = at + bt + ct+1−m
The update formulas for the three components, or
coefficients a, b, c are:

• Baseline (‘‘intercept’’):
at = α(yt − ct−m) + (1 − α)(at−1 + bt−1)

• Linear Trend (‘‘slope’’):
bt = β(at − at−1) + (1 − β)bt−1

• Seasonal Trend:
ct = γ(yt − at) + (1 − γ)ct−m

As in exponential smoothing, the updated coefficient
is an average of the prediction and an estimate
obtained solely from the observed value yt, with frac-
tions determined by a model parameter (α, β, γ).
Recall m is the period of the seasonal cycle; so the
seasonal coefficient at time t references the last com-
puted coefficient for the same time point in the sea-
sonal cycle.

The new estimate of the baseline is the observed
value adjusted by the best available estimate of the
seasonal coefficient (ct−m). As the updated baseline
needs to account for change due to the linear trend, the
predicted slope is added to the baseline coefficient.
The new estimate of the slope is simply the difference
between the new and old baseline (as the time interval
between observations is fixed, it is not relevant). The
new estimate of the seasonal component is the

140 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Brutlag Aberrant Behavior Detection in Time Series for Network Monitoring

difference between the observed value and the corre-
sponding baseline.

α, β, and γ are the adaptation parameters of the
algorithm and 0 < α, β, γ < 1. Larger values mean
the algorithm adapts faster and predictions reflect
recent observations in the time series; smaller values
means the algorithm adapts slower, placing more
weight on the past history of the time series.

Note that the update formulas imply an imple-
mentation need only to store the current values of the
slope and intercept, and a single period of seasonal
coefficients, as these stored values are replaced at each
iteration.

Holt-Winters Forecasting can also predict a time
series further than a single time step in the future [3].
This multi-step prediction provides a mechanism to
handle missing data.
Confidence Bands: Measuring Deviation

Confidence bands measure deviation for each
time point in the seasonal cycle; this mechanism mod-
els seasonal variability. The measure of deviation is a
weighted average absolute deviation, updated via
exponential smoothing:

dt = γ|yt − ŷt| + (1 − γ)dt−m
Here dt is the predicted deviation at time step t. The
update formula for dt is similar to that of ct. They even
share the same adaption parameter, γ. The confidence
band is simply the collection of intervals
(ŷt − δ− ⋅ dt−m, ŷt + δ+ ⋅ dt−m) for each time point
yt in the series.

δ+ and δ− are scaling factors for the width of the
confidence band. Often, a symmetric confidence band
is desired and δ+ = δ−. In this case, denote the com-
mon parameter δ. Given some assumptions and statis-
tical distribution theory, sensible values of δ are
between 2 and 3 [7].
Aberrant Behavior Detection

A simple mechanism to detect an anomaly is to
check if an observed value of the time series falls out-
side the confidence band. However, this mechanism
often yields a high number of false positives. A more
robust mechanism is to use a moving window of a
fixed number of observations [7]. If the number of
violations (observations that fall outside the confi-
dence band) exceeds a specified threshold, then trigger
an alert for aberrant behavior.

Formally, define a violation as an observation yt that
falls outside the interval:

(ŷt − δ ⋅ dt−m, ŷt + δ ⋅ dt−m)
Define a failure as exceeding a specified number of
threshold violations within a window of a specified
numbers of observations (the window length).
Temporal Smoothing of Seasonal Cycle and Varia-

tion
As discussed thus far, each component of the

seasonal coefficients vector is determined indepen-
dently. It seems reasonable to assume that the seasonal

effect is a smooth function over the period, not a dis-
continuous series of points. A similar argument
applies to the seasonal deviations. Note that exponen-
tial smoothing performs smoothing across seasonal
cycles, but does not perform temporal smoothing
within a seasonal cycle.

At a cost of adding some additional overhead to
the implementation, the model performs temporal
smoothing within a cycle for the seasonal coefficients
and deviations. The smoother used is an equal-weight
moving average, with a window of 0. 05m.

Choosing Model Parameters
The model parameters need to be set and tuned

for the model to work well. There is no single optimal
set of values, even restricted to data for a single vari-
able. This is due to the interplay between multiple
parameters in the model.

For example, consider two observations in
sequence, yt and yt+1. The intercept (a), slope (b), and
seasonal (c) coefficients all ‘absorb’ some part of the
difference between yt and yt+1 during the exponential
smoothing update. It is safe to assume some of the dif-
ference is noise, so updates to the coefficients need not
account for all of the difference between yt and yt+1.
The values of α, β, and γ determine the relative share
of the difference assigned to a changing baseline, a
changing linear trend, and a changing seasonal coeffi-
cient.

Here are some common sense guidelines for set-
ting parameters:

• α: At least one of α, β, and γ should allow
adaptation in a short time frame. As seasonal
updates occur infrequently for each coefficient
(once per cycle), and the goal of β is to capture
a slowly changing linear trend, the most logical
choice is α. Use exponential smoothing weights
to make an educated choice for α. The sum of
the most recent n weights is 1 − (1 − α)n and
of course the sum of all weights is 1 (ignoring
initialization, see section ‘‘Initialization’’).
These facts can be manipulated to choose α
using the formula:

α = 1 − exp

log (1 − total weights as %)

of time points

log() denotes the natural logarithm. For exam-
ple, if one wants observations in the last 45
minutes to account for 95% of the weights, and
observations occur at five minute intervals
(nine time points), then the formula yields
α = 0. 28. This formula can be rearranged using
simple algebra to compute either the total
weights as a percentage or the number of time
points (elapsed time). For example, if α = 0. 1,
then the most recent hour of observations at
five minute intervals (12 time points) accounts
for 75% of the baseline prediction.

• β: As the purpose of β is to capture a linear
trend longer than one seasonal cycle, it is

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 141

Aberrant Behavior Detection in Time Series for Network Monitoring Brutlag

logical to choose β such that one seasonal cycle
does not account for a majority of the exponen-
tial smoothing weights. The formula discussed
previously applies with β replacing α. For
example, if the period of the cycle is one day at
one observation every five minutes (288 per
day), then setting β = 0. 0024 will guarantee
that observations within the last day account for
less than 50% of the smoothing weights.

• γ: The seasonal adaptation parameter can also
be selected using exponential smoothing
weights using a variation of the previous for-
mula. Note this single parameter controls both
seasonal coefficient and deviation adaptation,
on the assumption that seasonal trend and vari-
ability evolve together over time at roughly the
same rate.

• δ: As noted in confidence bands section, the
scaling factor of the confidence bands can be
chosen by appealing to statistical distribution
theory. Reasonable values fall in the interval [2,
3]. Choose 2 to detect more failures (which
may just mean a higher rate of false positives).

• Window length and threshold: Given the goal
of real-time monitoring, the window length
should be at most on the order of an hour (i.e.,
for five minute intervals, choose a window
length between 9 and 12). A higher threshold
will make the model robust to false positives,
but perhaps at the cost of missing true failures.
These parameters are probably the most diffi-
cult to set a priori.

Initialization
The model requires initial values for the inter-

cept, slope, seasonal coefficients, and deviations (sea-
sonal variability). These could be set arbitrarily, com-
puted from a long history of past data, or bootstrapped
from data as it becomes available. The implementation
in RRDtool is to bootstrap the algorithm from a cold
start.

Initial values exert influence for some time. The
analysis of exponential smoothing weights in the pre-
vious section assumes that influence of initial values
has become negligible. For the intercept coefficient,
the weight of the initial value in exponential smooth-
ing for observation t is (1 − α)t−1. Similar formulas
hold for β and γ. These formulas can be used to calcu-
late the influence of initial values. For example, if the
seasonal period is one day, 10 days have elapsed since
initialization, and γ = 0. 1, then the weight of the ini-
tial value in the predicted seasonal coefficient is 0.39.
In contrast, the weight of the most recent observation
(which in the long run is the most influential) is only
0.1.
Alternatives

While the model is designed to meet several
goals, it is not optimal. The proposed algorithm lacks
a formalism found in some other models. It is cer-
tainly true that there is no uniformly superior

forecasting algorithm for all time series, but consider
the comments of researcher Richard Lawton [5]:

The Holt-Winters method is one of the best
known forecasting techniques which allows the
seasonal pattern to adapt over time... When
compared with other methods the technique
has been found to perform relatively well and it
has the merit of being understood by users who
lack a statistical background without sacrific-
ing the ability to adapt to changing patterns in
the data.

Enhancements to RRDtool

RRD is the acronym for Round Robin Database.
RRD is a system to store and display time-series data
[6]. It stores the data compactly, minimizes I/O opera-
tions for real-time updates, and presents useful graphs
by processing the data at different temporal resolu-
tions.

This section describes the implementation and
usage of aberrant behavior detection in RRDtool.
Some familiarity with the internals of the current
release (1.0.x) of RRDtool is assumed, as this section
makes reference to the pre-existing architecture.

Motivation

There are several reasons why support for aber-
rant behavior detection is integrated within RRDtool,
as opposed to implemented as a standalone program.
These include:

• Facilitates efficient real-time application of
aberrant behavior detection. An external pro-
gram would have fetch data from the RRD at
the same frequency of update, while code
within RRDtool is guaranteed to operate on this
data already in-memory. Efficiency is a top pri-
ority for the service network at the IAP/ISP
level, where RRDtool can be essential part of
the monitoring system of hundreds of network
interfaces and application services.

• Leverages ability of RRDtool to perform tem-
poral interpolation (data updates at irregular
intervals) and conversion of counters to rates.

• Leverages the graphing capabilities of RRD-
tool. Graphs relevant to aberrant behavior
detection can be generated using the existing
syntax of RRDtool.

• Leverages client software designed to run with
RRDtool (i.e., Cricket).

Architecture

On disk, the round robin database (RRD) is orga-
nized into sequential sections, round robin archives
(RRA). Within each RRA is a section for each of the
data sources (variables) stored in this RRD. Each RRA
is defined by a consolidation function which maps pri-
mary data points (PDP) to consolidated data points
(CDP). At another level, an RRA is just an array of
data values that is updated in sequence according to
some function at some fixed time interval.

142 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Brutlag Aberrant Behavior Detection in Time Series for Network Monitoring

On its face, the aberrant behavior detection algo-
rithm needs at least two arrays, one to store the fore-
cast values corresponding to each primary data point,
and a second to store the predicted deviation corre-
sponding to each PDP. As implemented, the seasonal
coefficients and deviations that are used to calculate
the forecast and predicted deviations are stored in a
second pair of RRAs. These arrays have length equal
to the seasonal period and are updated once for each
PDP. Failures are tracked by a fifth RRA, which deter-
mines violations and failures on each update.

The intercept and slope coefficients required for
the forecast are updated for every primary data point
and are unique for each data source. As only the most
recent value of each is required (see ‘‘The Holt-Win-
ters Forecasting Algorithm’’), these parameters are
stored in a temporary buffer in the header allocated for
each RRA-data source combination in the RRD (the
CDP buffer). This buffer is flushed back to disk on
every call to RRD update.

The adaptation parameters are the same for all
data sources within that RRA. They are stored in the
RRA parameter buffer, which is read only during RRD
update.

Therefore, implementation of the aberrant behav-
ior algorithm adds five new ‘consolidation functions’
to RRDtool
HWPREDICT: an array of forecasts computed by

the Holt-Winters algorithm, one for each PDP.
SEASONAL: an array of seasonal coefficients with

length equal to the seasonal period. For each
PDP, the seasonal coefficient that matches the
index in the seasonal cycle is updated.

DEVPREDICT: an array of deviation predictions.
Essentially, DEVPREDICT copies values from
the DEVSEASONAL array to preserve a his-
tory; it does no processing of its own.

DEVSEASONAL: an array of seasonal deviations.
For each PDP, the seasonal deviation that
matches the index in the seasonal cycle is
updated.

FAILURES: an array of boolean indicators, a 1 indi-
cating a failure. The CDP buffer stores each
value within the window. Each update removes
the oldest value from this buffer and inserts the
new observation. On each update, the number
of violations is recomputed. The maximum
window length enforced by this buffer is 28
time points.

Usage

This section illustrates how to use the aberrant
behavior detection algorithm in RRDtool through an
example. The monitoring target will be a router inter-
face on a link between two data centers in the WebTV
production service network. The variable will be the
outgoing bandwidth rate (in Mbps). Bandwidth usage
follows a daily cycle and SNMP is polled at five
minute intervals.

Creating a RRD file

The first step is to create a RRD for this target
with aberrant behavior detection enabled. In order to
simplify the creation for the novice user, in addition to
supporting explicit creation the HWPREDICT, SEA-
SONAL, DEVPREDICT, DEVSEASONAL, and
FAILURES RRAs, the RRDtool create command sup-
ports implicit creation of the other four when
HWPREDICT is specified alone. To take advantage of
this, use the following syntax:
RRA:HWPREDICT:<row count>:

<alpha>:<beta>:<period>

Where:
row count is the number of forecasts to store before

wrap-around; this number must be longer than
the seasonal period. This value will also be the
RRA row count for DEVPREDICT RRA.

alpha is the intercept adaptation parameter, which
must fall between 0 and 1. The same value will
be also be used for gamma.

beta is the slope adaptation parameter, again
between 0 and 1.

period is the number of primary data points in the
seasonal period. This value will be the RRA
row count for the SEASONAL and DEVSEA-
SONAL RRAs.

Using this implicit creation option creates the FAIL-
URES RRA with a default window length of 9 and a
default threshold value of 7. The default row count of
the FAILURES RRA is one period.

Here is an example of the create command, using
this syntax:
rrdtool create monitor.rrd -s 300 \
DS:ifOutOctets:COUNTER:1800:0:4294967295 \
RRA:AVERAGE:0.5:1:2016 \
RRA:HWPREDICT:1440:0.1:0.0035:288

After creation parameters can be changed using the
tune command. RRDtool supports several new tune
flags:
--alpha --beta --gamma
--window-length --failure-threshold
--deltapos --deltaneg

Each of these flags takes a single argument that corre-
sponds to parameters discussed in section ‘‘Choosing
Model Parameters.’’ The gamma flag will reset the
adaptation parameter for both the SEASONAL and
DEVSEASONAL RRAs (setting both to the same
value). Both deltapos and deltaneg set the scale param-
eter for the upper and lower confidence band respec-
tively, the default value for both is 2.

For example, suppose the technician is unhappy
with the default window length and threshold for the
FAILURES RRA implicitly created by the previous
command. Issue the command:
rrdtool tune monitor.rrd \

--window-length 5 \
--failure-threshold 3

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 143

Aberrant Behavior Detection in Time Series for Network Monitoring Brutlag

The remainder of the example uses the default window
length of 9 and the default threshold of 7.

Other options of the create command, including
syntax and details of the explicit creation of the new
RRAs, are discussed in a detailed implementation doc-
ument [4] and the RRDtool manual [6].

rrdtool graph example.gif \
DEF:obs=monitor.rrd:ifOutOctets:AVERAGE \
DEF:pred=monitor.rrd:ifOutOctets:HWPREDICT \
DEF:dev=monitor.rrd:ifOutOctets:DEVPREDICT \
DEF:fail=monitor.rrd:ifOutOctets:FAILURES \
TICK:fail#ffffa0:1.0:"Failures Average bits out" \
CDEF:scaledobs=obs,8,* \
CDEF:upper=pred,dev,2,*,+ \
CDEF:lower=pred,dev,2,*,- \
CDEF:scaledupper=upper,8,* \
CDEF:scaledlower=lower,8,* \
LINE2:scaledobs#0000ff:"Average bits out" \
LINE1:scaledupper#ff0000:"Upper Bound Average bits out" \
LINE1:scaledlower#ff0000:"Lower Bound Average bits out"

Listing 1: Graph generation command.

Figure 1: Observed bandwidth with Confidence Bounds for May 31

Detecting Aberrant Behavior

The aberrant behavior detection algorithm
requires nothing unusual for the RRDtool update com-
mand; the collection mechanism (i.e., Cricket invok-
ing SNMP) will run normally. Now suppose some
time has passed and the network technician is monitor-
ing outgoing bandwidth at the router interface. He can
view a graph of daily activity, including confidence
bands and any failures, with the command in Listing
1.

TICK is a new graphing option in RRDtool. For
every non-zero value in the DEF or CDEF argument,
it plots a tick mark. The length of the mark (line) is

specified by the third argument (after the color code)
as a decimal percentage of the y-axis. 1.0 is 100% of
the length of the y-axis, so the tick mark becomes a
vertical line on the graph.

Figure 1 is an example of this daily graph gener-
ated on Wed, May 31, 2000 for the router target
described previously. The thin lines are the confi-
dence bands and the vertical bars represent failures
(actually multiple failures in sequence – once the
observed value strays outside the confidence bands it
remains outside the bands for roughly a two hour
period in both cases). The TICK graph option gener-
ates the bars from the FAILURES RRA.

The graph suggests that bandwidth on this outgo-
ing link is increasing faster than expected by the
model (past history). It is up to the network technician
to decide if this represents aberrant behavior of inter-
est. One approach the technician might take is to view
the time series for this router interface over a longer
time period.

144 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Brutlag Aberrant Behavior Detection in Time Series for Network Monitoring

With hindsight, it is easy to demonstrate some-
thing unusual is going on and the aberrant behavior
detection model is catching it in real time. Figure 2 is
the time series for the week and half period from May
24, 2000 to June 2, 2000. It is clear that Wed, May 31,
is unusual. Bandwidth increases in two steps: once in
the early morning and again in the early afternoon. In
this case, the dip to 0 in the early morning hour and
the subsequent jump can be attributed to a scheduled
downtime for the service network. Perhaps the
remainder of bandwidth activity on Wed has the same
cause, in which case aberrant behavior detected is a
false positive in the eyes of the network technician.

Figure 2: Router Interface bandwidth May 24-June 2

Initialization
As alluded to in the previous initialization sec-

tion, the implementation is designed to use bootstrap
initialization. The intercept coefficient is initialized to
the first observed value. The slope is initialized to 0,
predicated on the assumption the linear trend over
time is close to 0. If this is not the case, the time
required for the Holt-Winters algorithm to gravitate
away from 0 will depend on the seasonal adaptation
parameter, gamma. During the first seasonal cycle of
observed values, seasonal coefficients are initialized.
During the second seasonal cycle of observed values,
seasonal deviations are initialized. Unknown values
during the first two seasonal cycles can complicate
initialization. Basically, the implementation initializes
any coefficients it can at the earliest opportunity; refer
to the detailed implementation document [4].

Enhancements to Cricket

Cricket is a front-end to RRDtool [1, 2]. Cricket
manages multiple time series via RRDtool in a target
configuration hierarchy. The configuration hierarchy
(or config tree) is a flexible approach to grouping tar-
gets with common time series variables, graphing
characteristics, and other properties. The Cricket col-
lector provides built-in and extensible mechanisms for

gathering data and feeding it to RRDtool. The collec-
tor manages SNMP calls and reads application event
logs. The Cricket grapher generates time series graphs
using the capabilities of RRDtool in real-time and
serves them up as web pages. The graphs are orga-
nized via directory pages generated to match the con-
fig tree.

Monitoring
RRDtool has no mechanism for raising alerts,

while Cricket does. Cricket provides several types of
monitor-thresholds, which are defined in the config
tree in a target dictionary section. Each monitor-thresh-
old entry can contain multiple monitors. The basic
functionality of a Cricket monitor-threshold is to fetch
the most recent value from one of the RRAs of the tar-
get RRD file, check some criteria, and take some user-
defined action if the criteria fails.

For efficiency and simplicity, Cricket 1.1
includes a new type of monitor-threshold specific for
aberrant behavior detection. This monitor, failures,
joins the existing Cricket monitors relation, value, and
hunt. The general Cricket 1.1 monitor-threshold syn-
tax permits a comma-delimited list of monitors. The
syntax of each monitor is:
<data source>:<monitor type>:
<monitor args>:<action>:<action args>

The failures monitor does not take any arguments. For
example, to send an SNMP trap whenever a failure is
recorded for the ifOutOctets data source used in the
example, the network technician adds the following
entry to the appropriate target dictionary section:
my-monitor-threshold =

"IfOutOctets:failures::SNMP"

Note that currently in Cricket 1.1, SNMP actions do
not require any arguments, but the tag trap-address
must be defined in the target dictionary. This may
change in the future as Cricket 1.1 is still under devel-
opment.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 145

Aberrant Behavior Detection in Time Series for Network Monitoring Brutlag

The failures monitor searches for a FAILURES
RRA in the RRD file for the specified data source and
if successful fetches the most recent value. If this
value is 1, indicating a failure, it triggers the specified
action. Through this mechanism, a network technician
can easily be notified when the algorithm identifies
something of interest.

Note that while the aberrant behavior detection
RRAs, if created, apply to all data sources in the RRD
file, the monitoring mechanism can be enabled for
specific data sources or none at all.
HTML Navigation Links

Given the complexity of the RRDtool graph
command, the Cricket 1.1 implementation provides a
simple mechanism to view graphs relevant to aberrant
behavior detection.

Cricket generates HTML navigation links to
graphs using the new RRAs if it detects the string
‘HoltWinters’ in the name of the view. The view must
consist of a single data source that is not multi-target.
It verifies these restrictions before enabling the navi-
gation links. There are three navigation links added:
Confidence Bounds: displays the target data source

using the Hourly Time Range with upper and
lower confidence bands. The confidence band
scaling factor (delta) cannot be obtained
directly from the RRD file. Specify this factor
with the confidence-band-scale tag in the graph
dictionary. The default value (if the tag is omit-
ted) is 2.

Failures: displays the target data source with
prospective failures marked with vertical yel-
low lines (or yellow bars for failures in
sequence) using the Hourly Time Range.

Confidence Bounds and Failures: the combination
of the both of the preceding graphs.

Conclusion

There is a need to meet the second challenge of
networking monitoring: automatic aberrant behavior
detection. The model and software outlined here are a
solid approach to the problem, working within the
architecture of the existing open-source solutions
RRDtool and Cricket. There is ample room for future
work, especially in a solution that exploits not only the
past history of a service network variable, but the rela-
tionships between service network variables.
Software Availability

The RRDtool implementation is available as a
patch to the current release of RRDtool at
http://cricket.sourceforge.net/aberrant. This web site
also includes the more detailed reference document [4]
on the implementation in RRDtool. The Cricket
enhancements are part of Cricket 1.1, available at
http://cricket.sourceforge.net/.

Author Information

Jake Brutlag is a statistician with the network
operations group at Microsoft WebTV. He obtained

an MS degree in statistics from the University of
Washington in 1999. He can be reached via email at
jakeb@corp.webtv.net or U.S. mail at Microsoft
WebTV; 1065 La Avenida; Mountain View, CA
94043.

References

[1] Jeff R. Allen, The Cricket reference guide, http://
cricket.sourceforge.net/support/doc/reference.html .

[2] Jeff R. Allen, ‘‘Driving by the rear-view mirror:
Managing a network with Cricket,’’ Proceedings
of the 1st Conference on Network Administra-
tion, 1999.

[3] Peter J. Brockwell and Richard A. Davis, Intro-
duction to Time Series and Forecasting, Springer,
New York, 1996.

[4] Jake D. Brutlag, Notes on rrdtool implementation
of aberrant behavior detection, http://cricket.
sourceforge.net/aberrant/rrd_hw.htm .

[5] Richard Lawton, ‘‘How should additive Holt-Win-
ters estimates be corrected?’’ International Jour-
nal of Forecasting, 14:393-403, 1998.

[6] Tobi Oetiker, The rrdtool manual, http://ee-staff.
ethz.ch/oetiker/webtools/rrdtool/manual/index.html.

[7] Amy Ward, Peter Glynn, and Kathy Richardson,
‘‘Internet service performance failure detection,’’
Performance Evaluation Review, 26:38-43, 1998.

146 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

