
USENIX Association

Proceedings of the
14th Systems Administration Conference

(LISA 2000)

New Orleans, Louisiana, USA
December 3– 8, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Extending UNIX System
Logging with SHARP

Matt Bing & Carl Erickson – Grand Valley State University

ABSTRACT

System messages in a UNIX system are handled by syslog. The responsibilities of syslog are
to filter and disperse program generated messages based on a priority code contained in each
message. Filtering with priority codes is not sufficient to generate enough usable information for
the system administrator. Utilities which do regular expression parsing of syslog messages
typically do not run continuously and thus are limited by a lack of state in detecting potentially
important patterns in syslog messages.

SHARP (Syslog Heuristic Analysis and Response Program) improves the monitoring of
systems by extending the existing syslog infrastructure with programmable modules. These
modules use a library with a simple API to perform near real time analysis based on the messages
they register to receive. System administrators can use SHARP to improve the services provided
by their systems without the need for constant manual evaluation of message logs. The SHARP
system and several modules were tested in a higher education production environment during the
spring of 2000. Experience with SHARP indicates that it is stable, reliable, and improves the
overall operation of a laboratory while not significantly increasing the workload on the system
administrator.

Syslog

The ‘‘system logger’’, or syslog, gives programs
a standard interface to report interesting events to the
administrator. These messages are read by a back-
ground daemon and routed accordingly. The data
which a program passes to syslog is called a message.
A message consists of two parts: priority and textual
data [9]. The priority of a message also contains two
parts: an encoded facility and level. The facility of a
message is a general category into which the message
fits. The level of a message is a way for the program
to rate the severity of the message, typically ranging
from emerg to debug. The textual data of a syslog mes-
sage is a string provided by the program that describes
the event being logged.

Programs use library calls to send a syslog mes-
sage. The library allows the program to choose a facil-
ity and level pair, as well as the text describing the
message. The library will typically prepend informa-
tion such as a timestamp, hostname, program name,
and PID [7]. The library then delivers the message to
the syslog daemon.

The syslog daemon, syslogd, acts as the router for
system messages. When it receives a message from a
program, it in turn must decide what to do with the it.
Most commonly this action involves writing the mes-
sage to disk, but other potential actions include print-
ing it to the system console, notifying online users, or
forwarding the message to another system. syslogd
makes these decisions based on a configuration file
written by the system administrator. The rules in this
configuration file are based entirely on the priority of
the message.

Shortcomings of syslog
The standard syslog daemon1 lacks many impor-

tant features. These features impact the the reliability
of message delivery and the integrity of messages
after delivery.

There is no standard structure for writing syslog
messages. A cleverly written program could bypass
the syslog library calls and write directly to the listen-
ing syslogd socket. When syslogd reads this message, it
will prepend default priority information and route the
message according to these defaults [8]. While the
lack of message structure is not critical for system
operation, it does not encourage good programming
form.

When syslog messages are forwarded over a net-
work the problem of time synchronization arises.
There are techniques for network time synchroniza-
tion, but even short skews of seconds are a problem.
When syslogd receives a message from a remote host,
it writes the message to disk as it was received and
does not provide an additional timestamp. When ana-
lyzing messages, this lack of consistent timestamping
makes strict ordering impossible.

Some versions of syslog have the ability to route
messages based upon regular expression filtering. This
allows greater discrimination and handling of mes-
sages than is possible with priority filtering. Sophisti-
cated classification and processing of messages is still
difficult with regular expression filtering. Extending
syslog in this manner violates the UNIX design

1This refers specifically to the 4.4 BSD implementation
[8].

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 101

Extending UNIX System Logging with SHARP Bing & Erickson

philosophy of simple tools doing one thing well. Extra
processing must be performed with each message,
which decreases message handling capacity.

SHARP Module

Remote

Machine

Disk
syslogd

sharpd

Hostname
Program name
PID
Timestamp

Module Library

Adds to message

Priority
Text

Syslog

Message Generating
Program

Library

Administrator
Email, pager, console

Current syslog implementation

Figure 1: syslog and SHARP

When the syslog system is compiled, the differ-
ent facilities and levels are hard coded into the system.
Most systems have eight different local facilities to
give the programmer a set of alternative facilities.
Some programs assume that a single local facility is
available for exclusive use when this is not necessarily
the case. With as few as eight local facilities available,
there may be conflicts between programs. There is no
way for the programmer to extend this limit without
significantly altering the architecture.

When syslogd writes a message to a file, all prior-
ity information is lost. After the message has been
written, syslogd drops the message, forever losing
potentially important forensic data. The priority of the
message could be useful in that it shows the state of
the program that generated the message. While the
text of a message is the most immediately helpful por-
tion, it should not be treated as the only valuable
piece.

After the message has been written to a file, any
person with write access to the file, authorized or not,
may alter the contents of the file. While there is no
way to stop any intruder with total access to a system,
there are cryptographic protocols designed to detect
alterations in log files [3]. These protocols write a

sister log file containing cryptographic information to
verify the integrity of the messages.

There is currently an IETF working group [2]
that is attempting to create a new standard to solve
many of these problems.
Extensions to syslog

Shortcomings in syslog and the need for
improved message analysis have spawned several util-
ity programs. These programs read syslog messages,
perform analysis, and direct the results. These tools
are used by administrators to automate analysis of
messages.

The simplest and most common type of message
analysis is the grep-style filter. This type of program
regularly parses syslog messages written to disk for
predefined messages. In its simplest form, this pro-
gram is a shell script spawned from cron that uses reg-
ular expressions to grab messages from a log file [6].
These types of utilities have value, but only as post
mortem tools. By the time the administrator has seen
the output, a significant amount of time may have
occurred where a potential problem may no longer be
fixable. Imagine an administrator runs a regular
expression filter nightly, only to find out the next
morning that the company database has been filled for
hours, rendering the system unusable.

Another type of tool does the same style of pars-
ing, but in real-time. These utilities, swatch [1] being

102 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Bing & Erickson Extending UNIX System Logging with SHARP

the most prominent, read syslog messages in real-time,
perform string based parsing, and direct the output.
The limitation of this type of system is the ability to
form complex routines based on messages. While you
can configure this device to pass messages to an out-
side program, state is not saved across invocations.
Assume an administrator has a swatch filter that dials a
pager each time the company database is filled. When
a database fills, it usually complains repeatedly, not
just with just a single message. With a swatch style fil-
ter, the administrator will be paged as many times as
the database error message occurs.

SHARP

All of these shortcomings with syslog point to
the need for another tool that is able to perform real-
time analysis and execute complex heuristics while
retaining compatibility with the current style of system
logging. The SHARP (Syslog Heuristic Analysis and
Response Program) system attempts to address many
of these architectural shortcomings. SHARP offers an
interface for heuristic analysis programs to wisely uti-
lize system logs. System administrators can decrease
the burden of manually reviewing logs and improve
the overall fluidity of the system by using SHARP.

Architecture
SHARP was designed for both simplicity and

reliability. Simplicity is necessary to not obfuscate an
already complex architecture of UNIX messaging.
Reliability is necessary to guarantee the proper han-
dling of messages and the overall stability of the sys-
tem. A single mishandled message could lose informa-
tion crucial to the administrator.

The SHARP architecture consists of three parts.
SHARP modules are registered processes that perform
some sort of heuristic analysis. The modules use a
simple library interface to connect to sharpd, the
SHARP daemon. sharpd communicates directly with
the syslog system and receives a copy of every system
message from syslogd. The library does the work of
connecting to sharpd and passing the received mes-
sages back to the module.

Using the library interface, resident SHARP
modules can specify the priority of messages they
would like to receive. When syslogd receives a mes-
sage, it passes it to sharpd, which in turn passes the
message to only the interested modules. The modules
perform their heuristics and can take various actions
such as logging, emailing, or notifying the administra-
tor.

When sharpd passes a message to a module, the
message has been parsed and placed in a predefined
structure to standardize analysis. This structure con-
tains the time the message was received, the priority,
the host that generated the message, and the text of the
message. Communication with modules occurs over
UNIX domain sockets. Using UNIX domain sockets
provides further extensibility for replacement with

internet sockets. A SHARP system could forward
messages to modules residing on separate systems for
analysis.

To report its findings, a SHARP module may
choose to send a syslog message. If a module reaches
a conclusion based upon previous messages, this new
syslog message could report its findings at a higher
level than the previous messages. This higher level
message might be noticed by the administrator, while
the previous messages of a lower level may have
slipped past. Modules could use syslog messages as a
rudimentary version of interprocess communication.
Care must be taken by the module programmer not to
generate messages that would travel in an infinite loop
between the SHARP and the syslog architectures.

Example Usage

For example, a module could track user patterns
and report anomalous behavior. There are multiple
user entry points into a UNIX system: ssh, telnet, ftp,
rlogin, and so forth. Since each point of access is
equally valid, it would be insufficient to monitor only
one. SHARP is a perfect system to correlate this login
information. The SHARP module would indicate to
sharpd that it only wishes to receive messages about
logins. Over time, the module would build up a
database of user patterns such as the time of login and
the remote host from which the user is accessing the
system. When the module receives information about
a new login, it would report anomalous behavior based
on a configurable degree of confidence. Suppose a
user normally only logs in to the system from a
machine local to the office and only during business
hours. When the SHARP module sees the same user
logging in from a system across the Internet at 3am, it
would report the strange behavior.

A SHARP module could be written to handle the
problem of an administrator being inundated with
pages due to a flood of messages. This SHARP mod-
ule would maintain a queue of incoming messages to
be paged, and throttle similar messages. With this
module, the administrator could fine tune the ability of
programs to flood the notification path of urgent mes-
sages.

A Complete System: nsyslogd and SHARP

As previously shown, the current syslog system
is inadequate for a system such as SHARP to operate
at full potential. A replacement for syslogd that does
not have as many problems can be used. nsyslogd
solves many of these problems by extending the func-
tionality of the standard syslog system [5].

nsyslogd uses TCP instead of UDP for network
message delivery. TCP, a connection oriented, reliable
protocol, is much safer to use on long network paths.
TCP is more difficult to spoof than UDP, but not
impossible. nsyslogd can also use SSL over TCP,
which gives network connections host authentication
and data encryption.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 103

Extending UNIX System Logging with SHARP Bing & Erickson

nsyslogd uses a hash based algorithm [3] to guar-
antee message integrity. For each file destination a sis-
ter log is created containing chained hashes of the
written logs. An external program is executed to check
the integrity of the logs against the hash file.

Messages

Exits

�
�
�
�

New process init()

run()

filter()

specificed SHARP
with

Registered

callback()

filter()

Filter

not in SHARP

Process
exists,

Processing Complete

exit()Deregistered
From
Sharp

Processing
Received
Messages

Waiting
for

Process

Figure 2: SHARP module state diagram.

Other syslog replacements have similar features,
but nsyslogd has one prevailing feature that is useful to
the operation of SHARP: priority preservation. When
nsyslogd writes a message to a destination, it includes
the priority information. SHARP uses this feature to
filter messages for delivery to interested modules only.
Without this feature SHARP is forced to flood each
message to every module, which in turn is expected to
do its own parsing.

sharpd communicates with nsyslogd by means of
a UNIX domain socket. nsyslogd can be configured to
write all system messages to a socket where sharpd
receives them and passes them to interested modules.

nsyslogd was written by Darren Reed and is
freely available on the Internet. It has been ported to
multiple UNIX platforms. It has proven to be a reli-
able alternative to the standard syslog that, when
paired with SHARP , becomes an even more powerful
system.

Modules

Modules utilize the framework provided by
SHARP. A module is defined as any program that uti-
lizes the SHARP module interface and receives mes-
sages from sharpd. Developers of modules include a
single header file and link their module against the
SHARP library. The interface is presented along with
a simple example that illustrates proper usage.

Module interface
The interface to the module library consists of

only three core functions and is designed to be as sim-
ple and flexible as possible for the programmer.

void sharp_filter (const char *fac, const char *lev)
Register interest in messages of facility fac and
level lev. A wildcard facility named all is

available that matches every facility. This func-
tion may be called any number of times, but
must be called before sharp_init().

int sharp_init (const char *name);
Connect to sharpd and register with the corre-
sponding name. 0 is returned on success, -1 on
error. This function must be called before
sharp_run().

void sharp_run (void (*callback)());
Begin receiving messages from sharpd. callback()
is the function that handles a received message
and must be of a particular prototype. sharp_run()
is distinct from sharp_init() to allow for future
developments in SHARP that perform run-time
checks on modules when they connect to sharpd.

void callback (sharp_msg m); ---begin:quotation--->
The function defined by the programmer that
performs analysis on the message passed as a
parameter. When callback() returns, the
sharp_run() function again waits for another mes-
sage from sharpd.

The data structure containing the message from
sharpd is of the following format:
typedef struct sharp_msg {
time_t time; /* sharpd timestamp */
char pri[]; /* priority */
char host[]; /* originating host */
char text[]; /* message text */

} sharp_msg;

Each string field is of a fixed length defined in
the header file for security and robustness. Since this
structure is just a copy of a message, the module is
allowed to alter the contents of sharp_msg.

The function atexit() is used to force execution of
a SHARP library function that deregisters itself with
sharpd. The programmer does not explicitly have to
deregister the module. Figure 2 shows the state of a
module as it connects to sharpd, receives messages,
processes them, and finally exits.

104 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Bing & Erickson Extending UNIX System Logging with SHARP

Example Module: mark
To fully illustrate the simplicity and flexibility

involved with authoring a SHARP module, an exam-
ple is presented here to introduce the interface to
potential programmers. This module is called mark
because it reads syslog mark messages and reacts
when a problem occurs.

syslogd can be configured to generate a message
of facility mark at a predefined interval. This message
is a ‘‘heartbeat’’ to show that syslogd is still running.
The mark module reads these messages and reacts if it
does not receive one at a predefined interval. Listed
below is the source code, edited for both clarity and
brevity. See Listing 1.

#include "sharp.h"

#define TIMEOUT 60 /* threshold seconds */

static time_t last;

void main(int argc, char *argv[])
{

sharp_filter("mark", "info");
sharp_init("mark");

signal(SIGALRM, alarm);
alarm(TIMEOUT);
sharp_run((void*) mark_callback);

}

void mark_callback(sharp_msg m) {
if(m.time-last > TIMEOUT)

react();
else

last=now;
}

void alarm() {
/* Did not receive the mark message */
react();

}

void react() {
/*
* Possible reactionary methods include sending an email,
* dialing a pager, or sending a syslog message.
*/
sharp_email("admin@localhost", "syslogd died");

}

Listing 1: mark module.

Note that this example is a skeleton and does
require extra coding to be fully functional. The exam-
ple only shows the code necessary to monitor syslogd
on a single host. Adding support to the module for
multiple hosts is straight forward.

Also included with the SHARP system are utility
functions that modules would often have to use, such
as sharp_email(), shown in the above example.

Current and Planned Modules

The authors have implemented and tested several
SHARP modules. It is hoped that the SHARP web site

comes to be a central point for module sharing in the
spirit of the Open Source movement. The modules
which we have implemented or anticipate implement-
ing include:
mark The mark module outlined above receives

heartbeat messages from any number of syslog
daemons on remote machines. If a message is
not received in a configurable amount of time,
the mark module assumes the remote host or
network is down and informs the administrator.

userpattern A module that gathers statistical data of
the system use of users and reports anomalies.
For instance, a particular user is known to only
use the system during office hours and connects
only from a particular host. When the module
notices that the user is online at 3am from an
off-site host, the module would report this
anomaly. This shows the power of a heuristic,
stateful approach in monitoring.

useralert A module that alerts the administrator when
a particular user connects to the system. This
module can also be used to centralize login
records for multiple machines.

dailyfilter This module emulates the functionality of
syslog utility programs. It filters out all syslog
messages based upon regular expressions and
email the output.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 105

Extending UNIX System Logging with SHARP Bing & Erickson

problemalert Critical errors repeated more than a
threshold number of times over a set period
escalate notification (ie paging the sysadmin).
Works well with the ‘‘all’’ wildcard.

firewall This module receives firewall logs and ana-
lyzes trends and anomalies.

Experience using SHARP

The Computer Science and Information Systems
department at Grand Valley State University maintains
a network of machines known as the Experimental
Operating Systems Laboratory, or EOS lab. The EOS
lab consists of 28 Linux workstations and one central
file and authentication server. Because of its classical
network architecture, this environment was optimal
for testing a working implementation of SHARP. Due
to the enormous amount of system messages, they are
generally ignored by the EOS administrators and only
used as an autopsy instrument.

Results
It was determined each workstation generates an

average of 250 system messages per day. The main
server for the lab generates an average of 36,000 sys-
log messages per day. The total number of system
messages generated in the EOS lab averages just
above 42,000 per day. If this rate were normally dis-
tributed over the course of 24 hours, a message would
appear every 2 seconds, way beyond the sensory
capacities of any human to manually monitor. These
statistics are highly site and service dependent, but
should offer a general idea as to message rates.

The SHARP system has worked smoothly on this
network. The concept of a centralized logging system
seems to be the best operating environment for
SHARP. Individual host installations of SHARP do
not scale well when dealing with large networks. It is
much easier to configure a new system to forward all
syslog messages to a central logging system than to
install SHARP and the various corresponding mod-
ules.

The EOS lab is a very small network in compari-
son to larger installations. SHARP is expected to scale
well to these much larger systems. Due to its nature,
the architecture is well suited for scalability. The cen-
tralized logging host could forward messages to
instances of SHARP on different systems. Each sys-
tem could have a unique set of modules. The socket
architecture built into SHARP allows seamless
changes between a local ==>[ignored: sc]<== UNIX-
domain socket and a network socket. SHARP would
thus easily support applications such as distributed
anomaly detection.

Future Work

With the experiences gained from using SHARP,
the authors have noted a few features that would both
aid module developers and improve overall perfor-
mance of the system.

• Patches for other implementations of syslogd to
pass priority information with messages.
SHARP users will not be forced to use nsyslogd.

• A global configuration file, such as /etc/
sharp.conf, would define variables that modules
could use. For instance, a module would call
sharp_get_var(ADMIN) to get the email address of
the administrator defined in the configuration
file. This way potentially dynamic information
would not have to be hardcoded into modules.

• Support for other languages besides C that have
better text processing capabilities. Ideally a Perl
module will be the first to be implemented.

• Support threadSHARP library calls.

Conclusion

The traditional UNIX message facility is inade-
quate for the active monitoring and response required
of system administrators of even moderately large net-
works. Working with the existing syslog infrastruc-
ture, SHARP can improve the quality of monitoring,
while at the same time reducing the burden on the sys-
tem administrator.

Our goals for the design of SHARP have been
met. SHARP is compatible with syslog, and hence
requires no changes to future or existing message gen-
erating programs. SHARP ’s architecture is simple and
clean, promoting extensibility and sharing of modules.
The relatively small (approximately 2000 lines of
code) implementation of SHARP is indicative of its
simple and clean design.

SHARP’s modules allow for continuous monitor-
ing and the maintenance of state, which in turn sup-
port the implementation of monitoring heuristics not
possible with other extensions to syslog. The modules
we have implemented work as expected and have
proven their utility in a production environment.

We have tested SHARP in a production environ-
ment of a network of Linux workstations and a single
file/authentication server. Our testing has shown
SHARP to improve the monitoring of a network of
hosts by supporting a pro-active form of monitoring
by the system administrator.

Availability

SHARP and a few packaged modules are avail-
able in source code form from the official web site:
http://www.csis.gvsu.edu/sharp. This code is available
under the BSD license [4]. Both the SHARP daemon
and the modules have been compiled and tested on
multiple platforms.

Author Information

Matt Bing will receive his M.S. in Computer Sci-
ence from Grand Valley State University the day after
the conference. He currently resides in Ann Arbor,
Michigan working on intrusion detection systems for
Anzen Computing. His email address is matt@
csis.gvsu.edu .

106 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Bing & Erickson Extending UNIX System Logging with SHARP

Carl Erickson is an associate professor in the
CSIS department at Grand Valley State. Last year he
succumbed to start-up fever and is currently on leave
working as a software architect with XiphNet, Inc.
Reach him via email at erickson@csis.gvsu.edu .

References

[1] Stephen E. Hansen, E. Todd Atkins, ‘‘Central-
ized System Monitoring With Swatchp’’ LISA,
1993.

[2] ‘‘Security In Network Event Logging’’, August,
2000 IETF Draft available at http://www.mail-archive.
com/syslog-sec@employees.org/msg00466.html .

[3] Bruce Schneier, ‘‘Secure Audit Logs to Support
Computer Forensics,’’ ACM Transaction on
Information and System Security, v.1, n.3, 1999.

[4] BSD License http://www.freebsd.org/copyright/
license.html .

[5] Darren Reed, nsyslog, http://cheops.anu.edu.au/
avalon/nsyslog.html .

[6] FreeBSD /etc/security, http://www.freebsd.org/cgi
cvsweb.cgi/src/etc/security .

[7] BSD source lib/libc/gen/syslog.c .
[8] BSD source usr.sbin/syslogd/syslogd.c .
[9] BSD source sys/sys/syslog.h .

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 107

108 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

