
USENIX Association

Proceedings of the
14th Systems Administration Conference

(LISA 2000)

New Orleans, Louisiana, USA
December 3– 8, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



xps: Dynamic Tree Watching under X
Rocky Bernstein – Breakaway Solutions

ABSTRACT

The xps program dynamically displays the Unix processes as a tree or forest in an X Window,
the roots on the left and the leaf processes (those with no children) on the right. The status of each
process running, sleeping, stopped, etc., can be indicated by different colors. Different users can
appear as different colors too.

Process selection can be made per user, all users, or through a regular-expression pattern.

In contrast to the terminal-based pstree or tree-widget based programs, the tree display uses
diagonal lines, and effort is made to effectively use the full 2-dimensional area of the screen by
balancing levels and centering the children of a node between their parent. A goal of the program
is to give an idea of what’s going on graphically as things may be constantly changing. Therefore
the display algorithm tries to keep processes close to their parents to reduce the amount of
scrolling to see localized process creation and destruction. Some effort is also given to make sure
that the tree layout doesn’t get wildly reorganized when there are small or localized changes. This
makes it easier for the eye to pick up and recognize the changes over a potentially large display
area.

We describe here criteria for tree animations such as this one and how the xps layout
algorithm works.

There are some other miscellaneous features of xps. One can select viewing the processes by
a single user, a regular expression for users, by all users, and perhaps show kernel processes. One
can click on a process to get more information (via ps or a user-specified program) about that
process, send a signal, or set the process priority, assuming you have the permission to do so.

Since programs of this ilk can consume a bit of CPU on their own, some effort has been
made to turn off the update process when the program is iconified or not visible for some other
reason such as being obscured by another window. Some attention has been paid to make
algorithm display fairly fast in most situations, although it has to be admitted that this comes
sometimes at the expense of a nicer layout.

What Is xps? Why xps?

There are a number of front ends or GUIs that
perform various underlying commands, and some-
times one wants to see what’s going on behind the
scenes. Some examples include:

• Learning more about what is going on in con-
figuration and installation processes; make or
GNU configure, for example

• Tracking down zombie creation
• Understanding the processes for a user or con-

tained in a process group; these generally clus-
ter into subtrees

• Helping distinguish a process via its lineage.
For example one may have many bash sessions
running. Some may be spawned from sshd,
some from telnet, some via emacs or an xinit ses-
sion.

To glean what’s going on, many systems admin-
istrators use ps or top or a top variant, like gtop. The ps
program can list the process id and its parent process
id. However it is sometimes useful to display the par-
ent-child relation graphically.

Considerations for Doing a Tree Layout for xps:
Tr ee Animations

xps uses a custom tree-layout algorithm for posi-
tions nodes and draws lines between them using low-
level Xlib calls. Probably each time a new graphics
library came out I considered ditching the custom tree-
layout routine with a generic tree package. However to
date, I’ve not found an acceptable one.

Tree widgets are often used for browsing file
systems or menu systems. Generally these objects are
fairly static. There is generally a way to collapse or
expand a branch in the tree; this makes sense when
information doesn’t change all that much. But in the
context of xps, sometimes the new or changed infor-
mation is precisely what you want to see. So instead,
in xps, symbolic or filtering rules are used to focus the
display, rather than by zooming in or out from a user-
selected tree branch. In particular, one can select the
area of interest by a regular expression which is
matched against the process-owner name.

In trees with menus or files, the display is pretty
much static, and therefore the time users spent to

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 95



xps: Dynamic Tree Watching under X Bernstein

customize the display may be cost effective; it may
not be as important to spend time initially making con-
nections between tree objects immediately visually
distinct. Convention or experience seems to indicate
that it is acceptable to use a Manhattan-metric line
connection style, that is, where tree lines either go hor-
izontally or vertically. See Figure 1 for a tree layout
using Manhattan-metric lines.

emacs bash

tcsh make pod2html

gcc cc1

gcc as

gcc cpp

tcsh netscape

make

Figure 1: Lopsidedness and space-wasting layout
using a Manhattan-metric tree widget.

The tree-layout requirements of xps are perhaps a
bit more difficult to satisfy. In fact xps might be better
thought of as an animation rather than a static charting
program, and I am not aware of much literature on
doing animations with trees or forests.

For an analogy, consider the differences between
viewing a still-life painting and an animated cartoon.
The cells of an animated cartoon do not have to be as
perfectly rendered as a painting. Instead it is more
important in an animation to make the series of cells
relate to convey a story or action.

Below we gives a simple example of the kinds of
problems faced.

In a world where things don’t change, like a fig-
ure in a book, most people will find it most it pleasing
for graphs with one or two children to look as in the
left-hand part of Figure 2 rather than the left-hand part
of Figure 3.

child1

root childroot

child2

Figure 2: Aesthetic tree layout when things don’t
change.

child1

child2root

root child1root child1

child2

root

child1

Figure 3: Possibly better tree layouts when trees shift
between one another.

However, now consider the case where things are
constantly changing. Suppose we want to chart what
is going on when we have a process that forks a pro-
cess, child1, and then forks a number of other pro-
cesses sequentially. For a moment there will be child2;

it dies, and then suppose a moment later a new pro-
cesses, child3, is spawned. Suppose that now runs for a
short period of time and dies; so we are back to the
single child1; then a new process child4 starts up and so
on.

In this scenario, if you render the one or two
child processes as in Figure 2, you will see a bit of
flicker. This is distracting and does not assist compre-
hending what’s really going on: that a new process is
being started and finished while nothing is happening
to child1. If instead the graphs were rendered as in
Figure 3, the display is more pleasing to the eye in
animation; it is less spastic and more comprehensible
even though the left-hand or right-hand side in isola-
tion may not be the most esthetic rendering of the
graph.

In sum, hysteresis of layout can help visualiza-
tion.

Now consider the differences between a Manhat-
tan-metric layout of the variety one often sees with a
tree widget, and one that uses diagonal lines in an arti-
ficial but not uncommon situation as is often seen in
xps.

Notice in Figure 1, how the root of the tree,
emacs, is very far removed from its bottom-most node.
This is not a problem with the Manhattan-metric con-
nection style per se. However almost all most tree
widget programs do this kind of layout; to set the posi-
tion of a node, the layout algorithm can be extremely
simple since it doesn’t have to consider the positions
of the children.

In addition to the lopsidedness, there’s a bit of
space that is wasted between make and netscape that
doesn’t appear in Figure 4. Furthermore, the blank
area to the right of bash and pod2html is reclaimed
reducing the overall dimensions of the graph. How-
ever, the more-compact layout is at not at the expense
of readability.

maketcshemacs make

gcc

gcc

gcc

cc1

as

cpp

bash pod2html

tcsh netscape

Figure 4: Layout. Nodes are more centered around
their children; diagonal lines improve readability.
Layout makes better use of available space and
therefore dimensions are reduced.

Finally, compare Figure 1 and Figure 4 to see
how the use of diagonal lines helps readability.

Experience has suggested these display criteria
for a tree-animation program such as xps:

• The layout needs to be fast – it is performed
every second

• The layout should be compact
• The layout should have hysteresis – reduce

flickering which is annoying to watch and
makes finding important changes hard to spot

• The layout should be ‘‘pretty’’ on the display so
users can understand the relationships quickly

96 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA



Bernstein xps: Dynamic Tree Watching under X

We now go into some of these needs in more
detail.

Fast Layout
In designing any monitoring program, such as xps, a
cardinal rule should be: don’t trash the system you are
trying to monitor.

Because layout needs to be fast and work for a
large number of nodes, positioning decisions should
be pretty much linear. Currently one pass from root to
the leaves is made. I’ve considered making a back-
ward pass as well – leaves to roots.

The program has a number of hacks to avoid lay-
out recalculation when it is not needed. It checks to
see if processes have changed; if not, nothing is
changed. However this is tricky since xps shows the
status of each process (e.g., whether it is running or
sleeping or stopped), and if this alone changes some
redisplay of the node color (not position) is needed. If
the display becomes iconified or fully obscured, no
layout is computed.

Pretty Layout

Experience has shown that it is preferable to
draw straight lines for parent – child connections
rather than diagonal lines since diagonal lines take
longer to draw and can appear jagged unless antialias-
ing is used. (Antialiasing also generally takes more
time to compute and draw.) On the other hand, when
needed, I find diagonal lines are easier to follow than
Manhattan-metric lines.

Similarly, I’ve found that lining things up hori-
zontally and vertically helps.

Layout Heuristics

The key to a program like this is its tree-forest
display algorithm. In the previous section we
described desirable qualities; in this section we’ll give
a rough idea of the actual heuristics used. In the next
section we go over how this is implemented and the
time complexity of the layout algorithm.

Trees tend to be narrow at the root and get bushy
as one moves towards the leaves. Therefore the
approach used in xps is put nodes into fixed levels
(which run horizontally) as we move from the roots to
the leaves (left to right here).

The algorithm we use pretty much makes one
pass to keep things fast. We keep track of the maxi-
mum number of nodes at a given level as we move
from roots to leaves. As the breadth increases, the gap
between levels decreases up to a minimum threshold.
When things get too tight, the overall dimensions of
the graph increases; in display, the tree breadth is
shown in the vertical direction.

Figure 5 gives an example of how levels are redi-
vided as we move deeper in a tree.

Putting things in levels increases the likelihood
that parent-child nodes will line up and that they will

stay lined up over time. Actually, although it might be
useful to have xps take into account old positions of
node as discussed in a previous section, right now it
doesn’t; it is just an artifact of the way the layout
occurs that this tends to happen.

maximum

breadth: 1 3 3 4 4 4

A

Figure 5: Tree layout along maximum-breath levels.
Dotted lines show the current levels that are in
effect for layout at subsequent levels. The node
labeled A has rank 2 and virtual rank 3.

After creating the levels for a given depth, the
dotted lines in Figure 5, xps next positions the node for
that depth. To this end, the program keeps track of its
level position or virtual rank in that depth, and com-
pares it to the virtual rank of its parent. The virtual
rank differs from the number of nodes placed so far
(or rank), when we’ve decided to leave a level slot
empty so as to position a child closer to its parent. In
Figure 5, the node marked ‘‘A’’ has a virtual rank of 3,
while its rank is 2. This is because we’ve moved the
node down to its level slot 3 so it will line up with its
parent.

Note that since the number of levels only
increases, and when this happens inter-level space
between level generally decreases, if the virtual rank
of child is less than or equal to the virtual rank of its
parent, it can be positioned no further down than its
parent.

When setting the position of a node, xps tries to
position the virtual rank of the middle child close to or
less than the virtual rank of the parent, but not so
much that the overall breadth is increased.

Figure 6 shows what goes on here. In the upper-
left diagram we show the virtual ranks and before
readjustment; to the right of that, after the readjust-
ment at the new depth. In the bottom-left we see what
happens when the new level is attached to a node fur-
ther down; since centering the children would increase
the overall breadth and dimensions of the tree we do
not center around the middle child. The bottom-right
graph show a heuristic not employed by xps but might
be if a backward pass were made: readjusting the par-
ent.

There is one layout problem that should be men-
tioned and is shown in Figure 7.

We see here that in drawing lines from the end of
a node, nodes with a short name can sometimes cross
over a neighboring node name. Currently xps does not

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 97



xps: Dynamic Tree Watching under X Bernstein

try to prevent this from happening. We have experi-
mented with doing a layout as in Figure 8 without
much success. Most of the time, though, the lines do
not go through process labels.

Figure 9: Aesthetic tree layout when things don’t change.

Layout Algorithm implementation

The program needs to do a topological sort. A
depth-first search is done to assign depth number.

The roots are then sorted by uid and pid. There is
generally a small number of roots, often one. At
depths deeper than the root, nodes are first arranged
by attachment to a parent.

Within the children of a node, sorting is done by
a bubble sort. Many people with computer science

training cringe when they hear this, because they have
been taught a bubble sort takes O(n2) time in the worst
case, while there are many sorting algorithms that take
O(n log n) time in the worst or average case. However,
a bubble sort has an advantage our most sorting algo-
rithms: when used on almost sorted data, the running
time is linear.

In the context of xps, the processes are often
pretty much sorted by process id. The bubble-sort
code we use does a check to stop early when the items
are fully sorted. Also, it should be noted that the num-
ber of items to be sorted is often relatively small, since
the sort is performed only on children of a node. A
bubble sort generally has less overhead than most

98 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA



Bernstein xps: Dynamic Tree Watching under X

other sorting programs. Still, a check on the number of
children should be made and a sort like quicksort
could be used if the number of children exceeds some
threshold like 40 (which is in my experience rare).

2

3

4

1

1

2

3

4

3

1

2

3

Figure 6: Example showing positioning heuristic.

inetd

name-of-very-very-long-program

init ftpd

ftpd

ftpd

ftpd

ftpd

name-of-another-very-long-program

Figure 7: Crossover problems. This can be avoided
by starting the vertex after inetd further to the
right. Also note that following these lines would
be easier if the difference in slopes is increased.

inetd

name-of-very-very-long-program

init

ftpd

ftpd

ftpd

ftpd

ftpd

name-of-another-very-long-program

Figure 8: Crossover problems addressed by moving
the drawing point further out. Increased sloped of
lines may also increase readability. Compare with
Figure 7.

The sorting to arrange things into levels by par-
ent is O(npc2) for n nodes, p non-leaf nodes, and
where c is the maximum number of children a parent
has. This is a rough analysis and looks unpromising,
but in practice is probably pretty good. I suppose a
radix sort could be done on the levels. Then we’d have
O(n + pc2).

Still someone might want to time various algo-
rithms. The program is not linear. Faster tree-layout
and arranging algorithms would be helpful in handling
larger trees.

Other Niceties of xps

xps does a sort by user id and by process id
within that. This tends to group related processes
together and the process id arranges things by age. It

has been suggested that if it is desirable to sort pre-
cisely by age, that should be done instead of sorting by
process id.

xps has the ability to filter out processes by user
id or userid – regular expression. Each user is assigned
a different color. Reducing the amount of display has a
two-fold benefit: it not only unclutters the display but
it also reduces the amount of time needed for display.

Finally, xps has the ability to point and kill. (The
interface hasn’t been developed to the point of arcade
games, but still it might give the systems administrator
a heightened feeling of power; in contrast to mass kill
programs like skill, it can be satisfying to see the pro-
cess die before your very eyes.)

A screenshot from the program is given in Figure
9.

Future?

Just about everything could be improved. The
distribution contains an extensive list of things to do.
Above were some suggestions for how tree layout
might be improved.

The thing I would most like to see is xps ported
to the KDE qt and the GNOME gtk+ and glib libraries.
Any volunteers?

Display is done by drawing on a canvas. This is
primitive. Process names are not widget labels, just X
strings drawn on a canvas. Figuring out the process
under the mouse and showing which process is
selected is a bit low-level and not tool-like. Currently,
a horizontal and a vertical linear search is done to find
the process id under the mouse. Binary search might
be faster.

Alternatively, if a full-fledged widget for the
nodes of a tree were used, then X (or an X-toolkit)
would worry about when the widget is selected; pre-
sumably it uses an algorithm at least as good as binary
search. Making the selected node look, well, selected
would then be done by the toolkit.

It would be nice to benchmark the various toolkit
approaches for efficiency.

One might experiment to compare speed and
intuitiveness of using a canned tree widget versus a
hacked layout customized for this application. Person-
ally, I prefer the tree layout, but the code is not toolkit
idiomatic.

Currently, the program contains coordinates of
nodes before its position gets updated. However noth-
ing else related to the history of the layout is saved,
such as how long a node has been in the same posi-
tion. It might be interesting to experiment with algo-
rithms which make incremental improvements over
time using say local heuristics. Analogous is the splay-
tree algorithm which tends to make a tree balanced
over time by making small localized changes as nodes
are accessed.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 99



xps: Dynamic Tree Watching under X Bernstein

Acknowledgements

Derik Lieber wrote the original version of this
program.

Many people have read and made helpful sug-
gestions on this paper including Stuart Frankel, Ph.D.,
George MacDonald, and Mike Welles.

Related work

pstree by Werner Almesberger found on Linux
distributions shows a static Manhattan-metric process
tree relation using character-oriented graphics.

Another program named pstree, by Lars Chris-
tensen, does about the same thing and runs on other
versions of Unix. Find it at ftp://ftp.thp.Uni-Duisburg.
DE/pub/source/ .

I. Herman, G. Melançon, M. S. Marshall ‘‘Graph
Visualisation and Navigation in Information Visualisa-
tion’’ can be consulted for a survey on graph visual-
ization and navigation techniques, used in information
visualization. For example it cites the classic paper on
tree layout, E. M. Reingold and J. S. Tilford, ‘‘Tidier
Drawing of Trees,’’ IEEE Transactions on Software
Engineering, SE-7(2), pp. 223-228, (1981).

However a number of subsequent papers includ-
ing those found in the survey given above question the
tree heuristics used in this paper. For xps, I have not
found this paper all that useful, although it is an inter-
esting read. See the survey at http://www.cwi.nl/
InfoVisu/Survey/StarGraphVisuInInfoVis.html .

Finally George MacDonald’s treeps program is
similar. Find a home page at http://www.slip.net/gmd/
tps/treeps.htm .

Availability

See the project’s home page at http://www.
netwinder.org/rocky/xps-home . The program is avail-
able from ftp://netwinder.org/users/r/rocky/xps.tar.gz .

Author Information

Rocky ‘‘Falling squirrel’’ Bernstein left the Uni-
versity of Maryland with two bachelor’s degrees and
then attended the Stevens Institute of Technology
where he earned a master’s degree. Rocky has worked
in a number of institutions, such as the City University
of New York, IBM Research, NASA Goddard Insti-
tute for Space Studies, The Associated Press (AP), and
– currently – at ‘‘Breakaway Solutions.’’ His e-mail
address is rocky@panix.com .

100 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA


