
USENIX Association

Proceedings of the
14th Systems Administration Conference

(LISA 2000)

New Orleans, Louisiana, USA
December 3– 8, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Fokstraut and Samba – Dealing with
Authentication and Performance Issues

On A Large Scale Samba Service
Robert Beck & Steve Holstead – University of Alberta

ABSTRACT

At the University of Alberta, we have approximately 55,000 user id’s using central services
authenticated by Kerberos. We use AFS for central file service. We use Samba to provide
Windows compatible access to much of our central file service. Samba contains a number of
useful features for Microsoft Windows compatibility, including a kludge to deal with the problem
of Windows sending an all uppercase version of a user’s password. We observed that when
Windows connects to a share, it frequently attempts many incorrect passwords repeatedly before
trying the correct one. This created a very heavy authentication load on our central Samba service
when users would connect every morning and authenticate. We observed this load and noticed that
most of our problems were caused by repeated attempts to authenticate, and the high cost of
checking these attempts.

To help reduce the load due to authentication, we implemented FOKSTRAUT, a set of
modifications to Samba to cache recent password failures and successes in a DBM database built
by the Samba server as it runs. By caching the recent failures we avoid expensive re-checks of the
(many) other passwords Windows likes to send us. We also cache the correct case of the real
password, and by doing so we avoid the expensive overhead of ‘‘cracking’’ an all uppercase
password When Windows decides to send one. We also use FOKSTRAUT to cache the NT and
LanMan password hashes of a users password once we see a successful authentication. This then
allows us to use the newer Windows NT password hash after the user has connected once, without
having to centrally convert and maintain a large SMB password file, and while maintaining the
ability of our server to access services such as AFS which can not be authenticated against using
the Windows password hash alone. Performance on our service has been drastically improved
since the implementation of FOKSTRAUT.

Introduction

Our experience started with a performance prob-
lem. We are a large site which uses Kerberos [1, 2]
with approximately 55,000 user ID’s. We have a large
scale Samba [4] service which serves up files from our
central AFS [3] file service using the Microsoft Win-
dows (Windows) [9] SMB protocols [5, 6]. It was and
is exceedingly popular with our on-campus clients
who use it to access centrally maintained file space
when they must use a Windows machine. The problem
we had was that while the service would perform well
during the day, it would fall over under a crippling
load in the mornings when users would establish their
initial connections. This problem hit us rather sud-
denly this last year when various factors resulted in a
large increase in use at the start of a school term. We
then set out to determine the source of the problem
and what, if anything, we could do about it.

The Source of our Problem

We examined the server at various times, and we
found that it was completely CPU bound in the morn-
ings when users were connecting, with many individ-
ual smbd processes competing for CPU. Once this had

been determined, we set out to find out where it was
spending its time by adding a few key little diagnostic
printfs to our Samba code. Watching the users con-
nect in the morning we found the source of our CPU
hogs.

On connection, many of our users’ machines
would try several times with a password that obvi-
ously wasn’t their password on our service. Several
attempts had to be made, and fail, before the correct
password would be given by the Windows client
machine. The result of this was that our server spent a
lot of time failing the same password, for the same
user, over and over again.

Our Kerberos passwords may only be changed
through a password changing mechanism that forces
the use of ‘‘good’’ passwords, and does dictionary and
pattern checks against any attempts. Very frequently
on our server, users would attempt to connect initially
with very bad, easy-to-guess passwords, and then only
after several failures, would try the correct password.
These initial passwords which the connection would
attempt and fail were the same as the users ‘‘Win-
dows’’ password (NT domain or otherwise) with
alarming regularity. So, by configuration or design,

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 39

Fokstraut and Samba – Dealing with Authentication and Performance . . . Beck & Holstead

many users’ Windows machines were determined to
tell us their local passwords before attempting to give
us the one we wanted to authenticate them with Ker-
beros. This has interesting security implications – it’s
easy for our clients to configure Windows to leak their
passwords to an SMB server. For the purposes of this
exercise, we were only concerned about the perfor-
mance implications.

In addition to the repeated attempts of an incor-
rect password, many of our users’ Windows machines
will attempt to use an all uppercase password. We
have little or no control over the client software ver-
sion, and so were not able to avoid this problem at the
client end. This means we have to support the pass-
word level [10] ‘‘crack’’ feature in Samba where the
server would repeatedly try different case combina-
tions. While we knew this was a possible cause of the
heavy load generated by authentication, the effect was
greatly magnified by the repeated attempts of incorrect
passwords – each incorrect password had to be
checked repeatedly in multiple cases.

Sep 28 07:23:41 samba smbd[76722]: trying password AUCTIONS for user luser
Sep 28 07:24:08 samba smbd[76722]: Bogus password, user luser, password AUCTIONS
Sep 28 07:24:11 samba smbd[76722]: trying password AUCTIONS for user luser
Sep 28 07:24:47 samba smbd[76722]: Bogus password, user luser, password AUCTIONS
Sep 28 07:24:49 samba smbd[76722]: trying password AUCTIONS for user luser
Sep 28 07:25:18 samba smbd[76722]: Bogus password, user luser, password AUCTIONS
Sep 28 07:25:20 samba smbd[76722]: trying password Ac94metoo for user luser
Sep 28 07:25:20 samba smbd[76722]: worked first time for user luser, password Ac94metoo

Figure 1: Example of our diagnostic log output. Note the times between success and failure: during this time this
smbd was busy using CPU attempting combinations of this password.

We were faced with a huge overhead on authenti-
cation which involved ‘‘cracking’’ passwords, and
doing it repeatedly on the same bad password. Short
of abandoning our Windows clients we had to find a
way to deal with this on our Samba service.

The NT Password Hash

Samba itself supports the Windows NT
encrypted password scheme. To use this, a UNIX
administrator creates an ‘‘smbpasswd’’ file [11] in
which the Windows NT hash of the user’s passwords
are stored. In this method, the client machine passes
the Windows NT style hash, and is not faced with the
problem of case insensitive password. One possibility
we examined was that of converting our service to
require this scheme. We could not do this for two rea-
sons:

1. We maintain our central ID’s in Kerberos, We
did not want the added administrative cost of
maintaining a 55,000 user flat file of SMB
passwords.

2. We access AFS file space from this server –
There would be no way for the server to get an
AFS token to access the user’s file with only
the NT password hash (and not the user’s Ker-
beros password or a ticket). This will be a

problem with any external service that can not
be authenticated against using the NT password
hash.

Our Solution: FOKSTRAUT

Having ruled out doing it the ‘‘correct’’ way for
Windows by using the NT password hash, we tried to
examine what would give us a solution for our envi-
ronment. First, we made a few observations:

1. The users that handed us passwords that failed
would usually try them twice before proceeding
to the next password (sometimes another bogus
one, and sometimes the right one). This was
what most of our CPU bound processes were
doing – busily cracking a bogus password.

2. If we knew the real password, and were given a
case-insensitive version of it, we could start by
checking the ‘‘correct’’ case and avoid the
expense of repeatedly trying to crack the pass-
word.

3. If we knew the real password we could also
compute the NT password hash.

Knowing this, we implemented FOKSTRAUT. FOK-
STRAUT is a password success and failure cache for
Samba. It uses a DBM database indexed by the user
name to store the most recent passwords that failed, as
well as the last password that worked for each user. It
stores the successful passwords both as the clear text
password, and as it’s Windows NT hash, enabling the
FOKSTRAUT cache to be used to authenticate Win-
dows clients passing a Windows NT password hash
for a user that has been seen before. Since it stores the
clear text password along with the NT password hash,
the server then knows the clear text password of a user
authenticated with the NT password hash and can use
this to authenticate the user for other services (AFS in
our case).

How FOKSTRAUT Works

When our Samba server starts up, it checks for
the FOKSTRAUT database, a DBM database indexed
by user name. This database is created if it does not
exist. The Samba server then stores and retrieves from
this database each time a user authenticates.

FOKSTRAUT keeps track of the following
information:

• The three most recent failed passwords, and a
count of how many times each password has

40 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Beck & Holstead Fokstraut and Samba – Dealing with Authentication and Performance . . .

been given and failed since the last successful
connection.

• The last successful password, stored as clear
text, NT Hash, and LanMan hash formats.

• An ‘‘smbpasswd’’ entry [11] for the user – this
is used so that we can take advantage of
Samba’s NT and LanMan password features if
we find a user in the database.

When a user connects to our FOKSTRAUT modified
Samba server, the server will look up and retrieve the
information about previous connection attempts in the
FOKSTRAUT database. It then compares the pass-
word the user is attempting to any previously cached
failed passwords. If that password is the same as a pre-
viously cached failure, the connection is immediately
failed without checking against the system, and the
failure count for that password is incremented in the
database, and saved for the next time. When the fail-
ure count for a failed password reaches three, this
password is removed from the database. This ensures
that a cached password failure can not continuously
fail without being re-checked against the system
authentication methods.

Assuming the password didn’t match one of the
cached failures, the password is then case insensitively
compared to the password recorded as being success-
ful previously. If the passwords match, the correct
case stored in the database is used, and authentication
proceeds against the system authentication methods. If
authentication is then successful, this connection suc-
ceeds. All previous failure counts are cleared back to
zero, and the resulting record is stored back into the
database for the next time.

If the password presented doesn’t match any-
thing FOKSTRAUT knows about we attempt to
authenticate in the usual manner. If the password suc-
ceeds, the correct case is recorded in the cache, the NT
and LanMan hashes are computed, and the entry is
saved as in the above case. If the new password fails,
it will be added to the cache of failed passwords,
replacing the least used (least failed against) of the
three saved entries.

If our modified Samba service receives an NT or
LanMan hashed password, it checks it against the
entry saved in the FOKSTRAUT database. If it is pre-
sent, an smbpasswd entry from the database is used
for the user, and authentication proceeds as it would in
the usual case of an smbpasswd based connection in
Samba [4]. If that authentication then succeeds, in our
case, the server then gets Kerberos Tickets and an
AFS token for the user based on the saved clear text
password from FOKSTRAUT. At this point if both the
NT hash authentication and the Kerberos/AFS authen-
tication are successful, the connection is deemed to be
successful. Otherwise, it is considered a failure. and
the cache entries (including the password hashes) are
cleared.

The choice we made of saving three different
cached failures was based on our own observations of

what we saw from our users. Three different bogus
passwords failing was the most we typically saw
before seeing the real password. The choice of failing
against a cached failure up to three times before we
checked again against he system was based both on
our observations of the typical number of tries we
would see, along with a desire to make sure we didn’t
hold up a user unduly in the (unlikely) case where
they make a connection attempt, the password fails,
and they then change their password to what they just
recently failed with.

Advantages

We have seen two primary results:
1. We have seen a huge performance improve-

ment, we can now easily deal with the several
hundred users we get every morning where we
could not before. Simple load average during
peak times has dropped from peaking at 30 to
peaking at 3, with a sustained average dropping
from over 10 to less than 2.

2. We now have a mechanism by which we can
support the non-cleartext password SMB con-
nections to our server, while still making use of
Samba as a gateway to AFS, Users are simply
told to connect once from a login server, or
with a Windows machine set to send cleartext
passwords on connection, and then after that
the non-cleartext SMB connection will work.

We are very happy with the increased level of perfor-
mance these modifications have given us.

Date runq-sz %runocc
Tue Feb 29 08:30:05 2000 3.700 80.000
Tue Feb 29 08:40:05 2000 8.900 100.000
Tue Feb 29 08:50:05 2000 10.800 100.000
Tue Feb 29 09:00:06 2000 12.600 98.000
Tue Feb 29 09:10:06 2000 17.500 100.000
Tue Feb 29 09:20:14 2000 21.400 97.000
Tue Feb 29 09:30:51 2000 4.500 97.000

Figure 2: Run queue size and utilization, 8:30 AM to
9:30 AM, week before implementation.

Date runq-sz %runocc
Tue Mar 7 08:30:06 2000 1.700 37.000
Tue Mar 7 08:40:06 2000 1.400 48.000
Tue Mar 7 08:50:06 2000 1.800 55.000
Tue Mar 7 09:00:06 2000 1.800 60.000
Tue Mar 7 09:10:06 2000 1.400 37.000
Tue Mar 7 09:20:06 2000 2.000 53.000
Tue Mar 7 09:30:06 2000 1.800 28.000

Figure 3: Run queue size and utilization, 8:30 AM to
9:30 AM, week after implementation.

Disadvantages

FOKSTRAUT has several disadvantages. The
first one that comes to first one that comes to mind is
security. If a Samba server is compromised and is run-
ning FOKSTRAUT, all the users’ passwords are avail-
able to the attacker through the database. This is a

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 41

Fokstraut and Samba – Dealing with Authentication and Performance . . . Beck & Holstead

serious concern to us, and we therefore ensure that
FOKSTRAUT is only run on a dedicated, secured
machine running no other services and that there is no
access by regular users to the machine. We judge this
risk as acceptable to us, given that even if the machine
were not running FOKSTRAUT, an attacker compro-
mising the Samba server could install a trojaned dae-
mon and collect the same passwords with very little
extra effort. The results of a compromise of the Samba
server would be bad for us with or without FOK-
STRAUT, considering that we must run Samba with
cleartext passwords enabled.

The other drawback from the point of view of the
Windows NT passwords is that the server does not
know the Windows NT hash until the client has suc-
cessfully authenticated to it once so that the server
knows the cleartext password. We get around this by
providing a simple script on a login server in which a
user can make an SMB connect and authenticate
themselves, making themselves ‘‘known’’ to the
Samba server. Alternatively, the users can make an
initial connection to the service from a Windows
machine set to send the clear text password, then
switch to using the NT password hash.

Conclusions

A password cache is a major performance win
when used with Samba service that must support clear
text passwords and can not rely exclusively on the NT
password hash protocol. In our case, with the ability to
use the NT password hash for authentication and still
have the server know the real password, it enables us
to use the NT password hash connection mechanism
while still supporting our external authentication
mechanism (AFS) which is incompatible with the NT
password hash. The performance wins we saw
changed our service from one that would collapse
under the load to one that now remains up for months
at a time, providing reliable file service. If you are in a
position where you have to offer large scale Samba
service, we think this is definitely something to con-
sider.

Availability

Our code is available as a patch for a current
Samba distribution. It has been tested and used on
OpenBSD [7] and AIX [8] (and should port very eas-
ily to anything else remotely Unix-like). It is made
available under BSD style license terms, and can be
obtained at ftp://sunsite.ualberta.ca/pub/Local/People/
beck/fokstraut/ .

Author Information

Bob Beck has a Masters degree in Computing
Science from the University of Alberta. He has
worked in a variety of systems administration and pro-
gramming positions at the University of Alberta since
1990. He also works as a consultant, instructor, and

programmer with Obtuse Systems Corporation. He is
currently the Secure Systems Specialist for the Uni-
versity of Alberta, as well as working on several free
software projects, especially OpenBSD. You can reach
him by postal mail at Computing and Network Ser-
vices; 352 General Services Building, University of
Alberta Campus, Edmonton, Alberta, Canada, T6G
2H1. You can reach him by e-mail to beck@bofh.
ucs.ualberta.ca or beck@obtuse.com .

Steve Holstead has been responsible for pro-
gramming and system administration duties working
at the University of Alberta since 1978. His experi-
ence has taken him from the centralized mainframe
systems support to a distributed client server environ-
ment in which he works today. He can be reached via
e-mail to Steve.Holstead@ualberta.ca .

References

[1] J. Steiner, C. Neuman, and J. Schiller, Kerberos:
An Authentication Service for Open Network
Systems, Usenix Association’s Conference Pro-
ceedings, Dallas, Texas, February, 1988, p.
191-202.

[2] J. Kohl, and C. Neuman, The Kerberos Network
Authentication Service (V5), September 1993.

[3] AFS filesystem information from Transarc Cor-
poration, http://www.transarc.com/Product/EFS/
AFS/index.html .

[4] The Samba project, http://www.samba.org/ .
[5] CIFS information, http://anu.samba.org/cifs/ .
[6] Sharpe Richard: Just What is SMB? (v 1.2),

http://anu.samba.org/cifs/docs/what-is-smb.html .
[7] The OpenBSD Project, http://www.openbsd.org/ .
[8] The IBM AIX Operating System, http://www.

ibm.com/servers/aix/ .
[9] Microsoft Windows, http://www.microsoft.com/ .

[10] ‘‘Password Level,’’ Samba Documentation, http://
us1.samba.org/samba/ftp/docs/htmldocs/smb.conf.
5.html .

[11] ‘‘smbpasswd,’’ Samba Documentation, http://
us1.samba.org/samba/ftp/docs/htmldocs/smbpasswd.
5.html .

42 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

