
USENIX Association

Proceedings of the
14th Systems Administration Conference

(LISA 2000)

New Orleans, Louisiana, USA
December 3– 8, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

NOOSE – Networked Object-
Oriented Security Examiner

Bruce Barnett – General Electric Corporate Research & Development

ABSTRACT

NOOSE (Networked Object-Oriented Security Examiner) is a distributed vulnerability
analysis system based on object modeling. It merges the functionality of host-based and network-
based scanners, storing the results into several object classes. The remote agents are implemented
as dynamically extended PERL agents. NOOSE is able to collect vulnerabilities from a variety of
sources, including outputs from other vulnerability analysis programs (e.g., Muffet’s CRACK),
collecting information from systems that may or may not have cooperative agents on them.
Communication is based on a secure, reliable datagram protocol implemented as a set of PERL
object classes. Unlike some vulnerability systems, NOOSE presents the vulnerability information
as an integrated database, showing how vulnerabilities may be combined into chains across
multiple accounts and systems. It understands unconditional vulnerabilities (i.e., stack-overflow,
password guessing) along with conditional (Trojan horse, rlogin, and NFS access). Conditional
vulnerabilities gain limited or privileges if conditions exist, such as access to specific accounts.
The information is presented as an object-oriented "spreadsheet" format, allowing the security
manager to explore vulnerabilities at whim. Once complete, the vulnerability analysis can move
both forwards and backwards interactively, showing both what a selected account can attack, as
well as showing who can attack a selected account. Besides vulnerability analysis, the system can
intelligently verify the installation of security patches, dynamically installing missing patches.
NOOSE is therefore a flexible prototype, able to provide a subset of the functionality of COPS,
SATAN and TRIPWIRE, yet because of the object model, be used for developing new paradigms,
such as reacting to intrusions, information warfare, and survivability management systems.

Problem Statement

This paper discusses limitations in Vulnerability
Analysis systems such as COPS, SATAN Tiger, RSS
and ISS. For convenience, these systems will be
referred to as VA systems. In this paper, a vulnerability
is a potential path to break into someone’s account to
elevate their privilege. This paper also discusses vul-
nerability chains, which is defined to be two or more
vulnerabilities, that can be executed in sequence. An
example of a chain is using NFS to insert a Trojan
horse into a directory, which can be executed by a sys-
tem administrator, to gain root access to a file server.
Once this key account has been breached, the group of
related clients become vulnerable because of the rela-
tionship between servers and clients. This collection
of systems will be called a workgroup. In a large facil-
ity, there may be dozens or hundreds of workgroups,
with separate administrators.

The goal of this paper is to find a way to identify
and eliminate these vulnerability chains among and
between workgroups. The author believes current VA
systems have difficulty in doing this because of the
following reasons:

• Some potential vulnerabilities are accepted as a
matter of policy, and the convenience value
overrides the potential risk. These are consid-
ered conditional vulnerabilities, because other
conditions determine how risky it is.

• Vulnerability chains composed of one or more
conditional vulnerabilities across multiple sys-
tems aren’t evaluated.

• The results of host-based scanning is not inte-
grated with the results of network-based scan-
ning.

• Some systems, such as name servers or file
servers, need stronger protection than clients.
Likewise, some accounts, such as system
administrators, are key elements in protecting
the overall security. However, vulnerability
analysis systems ignore these different threat
potentials.

• Many security systems characterize potential
failures with a simplistic red/yellow/green indi-
cator or a numbered scale with 5 values. This is
too coarse a measurement to be useful. The
simple statement ‘‘NFS is insecure’’ is often
ignored, while a report that identifies the pre-
cise directory that can be used to compromise
the root account is more likely to be fixed.

The author feels that many current VA systems
don’t properly analyze the consequences of an intruder
who breaches a firewall, or an insider attempting to
gain access. Systems have complex relationships
between clients and servers, and the compromise of a
single server can allow hundreds of clients to be com-
promised. Servers can also be clients of other servers,
and clients can be used to compromise other servers.

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 369

NOOSE Barnett

Likewise, accounts have complex inter-relationships,
and system administrator accounts require special pro-
tection.

The vulnerability chain that was mentioned ear-
lier, for instance, makes it trivial to break into an
account without detection. Using low-level NFS calls
(e.g., Leendert van Doorn NFSSHELL) typically
requires no special privileges and allows access to any
file on an NFS-exported file system not owned by
root, such as those owned by a system administrator.
If that account is not directly accessible, a Trojan
horse can often be used. Since these attack mecha-
nisms use ordinary file access mechanisms, they are
rarely detected. Therefore it is essential that the poten-
tial danger be reported and repaired. Identifying this
type of danger is one of the primary goals of NOOSE.

There have been attempts to integrate informa-
tion, but these have been limited to a common output
format [12], or a common user interface [11]. Kuang
[1] identified vulnerability chains, but was limited to a
single system. NetKuang [5] is one attempt to correct
this. NOOSE uses a second approach.

Background

This implementation was based on our experi-
ence with an earlier Expert Fault Manager system
[13], where the importance of relationships was
emphasized. The author decided to apply what was
learned while measuring security risks. However, sev-
eral custom agents were on each system, and they
needed to be upgraded manually. The communication
system suffered from deadlocks occasionally. The core
components were enhanced and applied to a vulnera-
bility analysis prototype [14]. The work was influ-
enced by the author’s program for analyzing Trojan
horses on UNIX systems, and various tools from Pur-
due [2, 3, 4]. This project was started in January of
1996, with funding was provided by Lockheed Martin
and L-3 Communications. This paper describes the
lessons learned from this prototype.

The author choose the name NOOSE because of
the concept of drawing a circle around a set of arbi-
trary systems, and identifying vulnerabilities within
this set, using OO techniques.

Description of System

The NOOSE system is written using PERL, cho-
sen because of the power of the language, string pars-
ing, and the ease of prototyping, as well as being able
to potentially migrate code from COPS and
SATAN/SAINT variants. NOOSE is implemented
with 26 PERL-based object classes. A PERL agent
exists on all systems cooperating with NOOSE. These
agents talk to NOOSE using a centralized dispatcher,
which in turn talks to an Information Warfare (IW)
module. A Graphic User Interface (GUI) is written in
PERL and TK, and provides a spreadsheet-like inter-
face to the information contained in the IW module.
The overall architecture can be seen in Figure 1.

Auxiliary files exist that contain information
about patches, operating systems, and PERL modules
to be uploaded to the agent.

HOSTA

HOSTB

HOSTC

D
ispatcher

IWG
U

I

PERL
Code

Patches

Objects

D
isk

Agent

Agent

Agent

PER
L

C
ode

PERL

Code

P
E

R
L

C
od

e

NOOSE

Figure 1: NOOSE architecture.

The agents just contains enough information to
listen for new commands. New subroutines can be
uploaded, and the revision tracked. If modules require
other modules that are undefined, this is reported as an
error. Therefore the agents are small, easy to install,
and never need to be updated manually, which reduces
maintenance costs. A simple dependency system was
put in place, to identify required modules. However,
the implementation used a single file for each operat-
ing system variant, and uploaded the entire file to the
agent on demand. Therefore the dependency feature
was rarely used.

The agent will run on a Windows NT box, but no
vulnerabilities are currently gathered.

Object Classes

The primary goal of object-oriented program-
ming is the ability to reuse object classes, lowering
cost of development. Therefore our goals was to
develop an object model that can support multiple
algorithms. A data structure that can be used with two
diverse algorithms has a better chance of being used
by future algorithms. Object modeling provides a con-
cise mechanism to document the data structures used
in a system, often on a single page.

Object Model

The implementation contains of the following
object classes:

• Communication (9 classes)
• System-related (1 Primary base class, 1 sec-

ondary base class, 13 sub-classes)
• GUI (2 classes)

370 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Barnett NOOSE

System-related object classes

FileState
UNIX

Resource

Host OS

File

UID

Account

Vulnerability

Directory Link Missing

PatchState

Patch

Signature

Many-to-One Association

One-to-Many Association

Many-to-Many Association

Object Class AA

A

B

B is a subclass of A

NOOSE Object Model (OMT Notation)

Contained In

Linked To

A
tta

ck
ee

A
ttacker

One-to-One Association

Figure 2: NOOSE object model.

The NOOSE system uses the following object
model, as shown in Figure 2. The 13 different object
classes maintain information about remote systems,
corresponding to their state:

• Patch
• Host
• Signature
• Operating System
• Account
• UID
• Vulnerability
• UNIX Resource (which has four sub classes)

• File
• Link
• Directory
• Missing

FileState
• PatchState

All system-related objects have a unique name.
NOOSE uses a simple ASCII string composed of the
following parts:

Object Class
Host responsible for object
Object-specific information

Examples are
account/pluto/smith
uid/pluto/214
host/pluto
dir/pluto//etc/mail/sendmail.cf

This provides a simple, extensible way to create
new object types, as well as a simple method of locat-
ing the authority of the object (in this case, the host
that must be queried to get information about that
object.) In our communication paradigm, instances of
objects resided on different hosts.

Relationship Superclass

All of the 13 system-related classes are derived
from a base class that provides object lookup, cre-
ation, deletion, as well as relationship creation, query-
ing, and navigation. This relationship or association is
critical to the implementation. It creates one-to-one,
one-to-many, and many-to-many relationships between

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 371

NOOSE Barnett

any two system-related classes. Creating a one-to-
many relationship between two instances (e.g., there
are several files related to a patch) merely requires
associating two object references with the method call:
$patchObject->one_to_many($fileObject);

No additional declarations are necessary. This simpli-
fied modifications of the object model. Other methods
are one_to_one, many_to_one and many_to_many. If
a one-to-one relationship is created,and a second rela-
tionship to the same class is added, an error is gener-
ated, suggesting a one-to-many relationship be used
instead. The base class also provides ways to obtain,
find, test, search and integrate related objects. It can
be used as a collector object, and simplifies algorithm
development significantly. The code fragment below
demonstrates the methods as it finds and tests all of
the required patched files corresponding to a revision
of an operating system; see Listing 1.

#Specify host to check
$os = Os->fetch($host->get_os_type); # Find the OS type and revision
foreach $patch ($os->get_many("Patch") { # get the patches for the OS

Get the files included in each patch cluster
foreach $file ($patch->get_many("File")) {

Files have more than one signature - depends on OS rev
foreach $signature ($file->get_many("Signature")) {
Only look at those that match the OS and revision

if ($signature->has($os)) { found a match
$signature->verify(

host=>$host,
file=>$file,
patch=>$patch);

}
} # Signatures

} # files
} # Patches

Listing 1: Testing patched files.

These system-related classes, besides used to
store information about the objects, allow algorithms
to be easily constructed based on the relationship (or
association) between objects. Often the relationship
between two classes need not have a specific name,
and the relationship is obvious from the context.
Some objects have very few attributes, as the primary
purpose is collection and navigation.

Two key classes are Accounts and Vulnerabili-
ties. An account object is a username/hostname pair.
The vulnerability object always has relationships to
two accounts (except when the account has been
removed, in which case it refers to the UID object
class, which corresponds to the user ID number. In our
system, a vulnerability is a potential mechanism to
allow someone to go from one account to a different
account.

The first relationship is to the account that can be
compromised (the attackee), while the second shows
the account that can compromise the first account (the

attacher). Vulnerability objects may have a optional
relationship to a file or directory, indicating the cause
of the vulnerability.

Wildcards in Account names

Accounts consisted of two pieces of information:
the username, and the hostname. NOOSE uses a ‘‘*’’
to indicate a wildcard, which may be in either the host,
username or both. Accounts with wildcards are used to
describe specific vulnerability classes. If an account
had no password, then anyone on any system could
access that account. This fictitious user is indicated by
the account ‘‘account/*/*.’’ If Joe Smith’s account has
a ‘‘+’’ in the ‘‘.rhosts’’ file, then the vulnerability can
be initiated from the account ‘‘account/*/smith’’. If
Smith’s account on host ‘‘pluto’’ has a ‘‘.’’ first in the
searchpath, then this account can be compromised by
the ‘‘account/pluto/*’’ account, which means anyone
on host pluto. This simple naming convention can be
used to describe the starting attack point of any vul-
nerability. In the case of vulnerabilities within a group
or netgroup privileges, multiple vulnerabilities are cre-
ated, with the attacking accounts expanded to the com-
plete list of individuals within this group.

Vulnerability Chains

A vulnerability chain occurs when multiple vul-
nerabilities can be used to achieve a particular goal (or
in this case, an account). Figure 3 shows such a chain.

In this case, assume a hacker can break into the
lpd account on host hosta because it was missing a
security patch. Next the attacker uses NFSSHELL to
access the home directory of account hostb/smith. This
account has write privileges in /usr/local/bin and a
Trojan horse is created. The backup account has this
directory in the searchpath, and executing the Trojan
horse compromises the account. Once done, the user
may gain access to the root account on a file server,
which allows access to all of the clients.

372 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Barnett NOOSE

Communication classes

my $client = udpsecclient->new(# act as a client to another server
port=>$port,
machine=>$machine,
security=>$level);

my $server = udpsecserver->new(# set up our own server
port=>$port,
security=>$level);

while (1) {
$server->wait($client); # Wait for activity on either socket
if ($server->pending) { # Our server gets data

$client->send($server->receive); # send to other server
}
if ($client->pending) { # Our client gets results from server

$server->send($client->receive); # send back to our client
}

}

Listing 2: Simple client/server model.

All network communication is comprised of
objects and methods, which are specified as ASCII
strings. The dispatcher looks at the object, determines
the host to send the message to, and sends the infor-
mation to the clients using a protocol layered on top of

/ HOSTA/lpd

HOSTA

HOSTA SERVER

?

HOSTB/smith

HOSTB/backup

SERVER/root

Stack
Overflow

NFS

Trojan
Horse

SSH

Clients

Figure 3: Vulnerability chain.

User Datagram Protocols. The original Expert Fault
Manager implementation limited communication to
small packets, and sent information as simple ASCII.
Packet loss and security wasn’t addressed. However,
as larger pieces of information was needed, and the
system suffered from deadlocks, a redesign was
needed. A decision was made to provide the old

function as a base class, and creating sub-classes that
add features.

The original system used UDP because of the
need for realtime predictable responses, and the desire
to extend the protocol to use multicast and broadcast
transports in the future. Three low-level UDP classes
are broken into UDP Client, UDP Server, and UDP
Common functions. All three are sub-classed to pro-
vide reliability and packet assembly and disassembly.
These are again sub-classed to provide secure commu-
nication, using symmetric keys for encryption. The
security used is weak, as keys are distributed manu-
ally, and reused for each session.

The communication object class provide a sim-
ple send and receive function. A system acting as a
relay or filter, which is both a client and server, while
avoiding deadlocks, merely needs the PERL fragment
in Listing 2.

The wait method always waits on the socket
associated with the object to the left of the arrow.
Additional objects, corresponding to sockets, may be
included. This single event loop, combined with time-
outs and the test for pending data, was important in
preventing deadlocks.

The communication classes contains options for
verifying the reliability of the communication. Errors
(i.e., dropped packets) can be purposely created by
dropping a percentage of the packets pseudo-ran-
domly. This was used to verify the reliability of the
communication subsystem. Other options specify
buffer sizes, timeouts, status, and counts of packets
sent and received. The higher level routines reassem-
ble packet fragments, and retransmit missing packets.
The methods used for the reliability and secure sub-
classes are the same as the base class as far as the
application is concerned. However, there were several
dozen private used in the implementation.

Several protocols were attempted to provide reli-
able communication. To validate the protocol, a

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 373

NOOSE Barnett

Design of Experiment (DoE) methodology was used,
varying buffer sizes, size of files, and number of
simultaneous connections. Developing the reliable
protocol was difficult. While the DoE did not clearly
indicate the optimum parameters, a reliable protocol
was selected that used a common (and symmetric)
send/receive method for clients and servers. The
sender breaks up the message into smaller pieces, and
sends them out sequentially. The receiver responds
with a positive acknowledgment, indicating all packets
were received, or a negative acknowledgment, which
requests the sender to re-transmit the missing packets.
Once a positive acknowledgment from the receiver
has been received, the sender transmits an acknowl-
edgment of the acknowledgment and changes states.
This same method is used by both sides to communi-
cate. Therefore the client requests informations from a
server, a minimum of 6 packets are transmitted, and
more if packets are lost. The primary difference
between the client and the server classes was the
states: a server is finished after sending information,
and the client is finished after receiving information.
Caching was easily added, with answers based on the
combination of the object and the method. The results
are saved if there were no errors.

Functionality

The system can potentially accept vulnerabilities
from any source, but a parser must be build to extract
the vulnerability type and account information. The
system, as currently implemented, performs the fol-
lowing vulnerability checks:

Trojan Horse
NFS
RLOGIN/SSH
Output of Alec Muffet’s CRACK program
Missing security-related patches

The first three operate on account objects (once
for each account), while the last two operate on a host
basis (once for each host).

The Trojan horse program, uploaded to the
agent, finds the shell of the user and examines the
appropriate start-up files. It parses the files, and keeps
track of files that are sources, as well as the value of
variables. When searchpaths are specified or modified,
the values of these variables are used to determine the
potential searchpath. If branches are taken, the pro-
gram assumes both paths are used, so the searchpath
examined by the program is the superset of the actual
searchpath. The program, for safety, doesn’t evaluate
commands within back-quotes. Instead, a predeter-
mined set of commands are evaluated once on each
host, as specified by the program, and if one of the
users has this string in their searchpath, the pre-deter-
mined value is inserted into the string. If it is not
known, it is ignored. Consider the following C shell
fragment:

if (-f /local $a)
localpath = (/local/‘arch‘/bin)

else
localpath = (/usr/‘arch‘/bin \

/usr/local/‘arch‘/bin)
endif
set path = ($localpath $path)

All three directories will be examined in addition
to the default value of the searchpath, assuming the
directories exist. The software also detects recursive
loops, and handles them to a depth of two, and aborts
if a loop is detected. Using this, it is possible to get a
searchpath for each account. This, in turn, is used to
measure the potential for Trojan Horse attacks on all
accounts. Currently the system only examines the per-
missions of the directories, as well as the permission
of the parent directories, and symbolic links. The per-
mission of the files inside the directory are not exam-
ined, unlike the author’s Trojan checking program.

The algorithm asks the agent to extract all of the
user and group information from the host, if necessary.
Then it creates a set of account objects matching each
found. Originally, each group and account was asked
individually, but a new dispatch method was created to
retrieve all of the account information in a single
query for efficiency.

When one account is selected for the vulnerabil-
ity check, the IW module asks the agent to get the
searchpath, which returns a list of directories by name.
The IW module creates instances of these objects as
needed in its own database, and asks the agent to list
who has write permission for each of the directories (if
this has not been asked before). Because each object
has a name that is unique, and also specifies the host
responsible for the information, instances of objects
are externalized, and the object name and method is
passed to the agent in plain text, and the results is also
in plain text, fragmented and encrypted according to
the communication object class. By examining each
directory for user-, group- and world-write permis-
sion, the agent can return a list of accounts that have
the ability to write to the directory specified. A special
type of object is needed to correspond to missing
directories. This checks for the potential of someone
being able to create a directory in the future.

When a Trojan Horse is found, one or more vul-
nerabilities are created that specifies the victim and
the potential attacker(s), as well as the file or directory
that caused the problem. In the case of a vulnerability
by group-write permission, multiple vulnerabilities are
created, listing everyone in the group as a unique
attacker. If a directory is world-writable, or the user
allows the current directory to be in the searchpath,
the attacker is the wildcard account on this machine.

UID’s are used when a directory is owned by an
account that no longer exists (i.e., has no name associ-
ated to it.)

374 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Barnett NOOSE

NFS

When an account is examined for NFS vulnera-
bility, the algorithm determines if the file is on a NFS
client or a NFS server. Examined on a client, the
‘‘attacker ’’ is the root account on the server where the
directory is exported, as well as the root account on
the client. However, on a server, the system examines
the export list, and the netgroup information, and
specifies all of the accounts that have the ability to
modify the files. In other words, when examining
‘‘smith’’ on ‘‘pluto’’, if ‘‘smith’’ on ‘‘neptune’’ has
write permission, then ‘‘root’’ on ‘‘neptune’’ does as
well. The system also examines the NFS server if the
client port numbers must be less than 1024, indicating
a privileged account. If not, then the attacking account
is the wildcard account ‘‘anyone’’ on ‘‘neptune’’. If the
directory is exported to the world, the attacker is iden-
tified as ‘‘anyone’’ on ‘‘anyhost,’’ indicating that any-
one on any machine that can access the system can
break into the account.

RLOGIN

The agent examines the system configuration for
/etc/hosts.equiv and $HOME/.rhosts as well as the
SSH equivalent files to determine which counts have
access to the selected account. NIS netgroups and ‘‘+’’
in the .rhosts file are understood, and appropriate vul-
nerabilities are created.

CRACK

The system parses a file generated by CRACK,
and looks for a matching hostname. When found, it
creates a vulnerability between the ‘‘anybody’’ on this
host to the account whose password was guessed.

Checking System Patches

The IW module first reads a series of files that
contain a one-line summary per file associated with a
patch. The OS type, revision, architecture, file path,
patch ID, size, and MD5 value of each file is speci-
fied. This file is created automatically for Solaris sys-
tems using a shell script that weekly retrieving the cur-
rent patch status. The IW module, while reading this
file, creates Patch, File, OS and Signature objects.
These must be separate objects because a file may
have multiple signatures depending on the OS, revi-
sion, and patch. Also created is a FileState and Patch-
State object which corresponds to the actual state of a
file and patch on a particular host, instead of the gen-
eralized information, valid for all systems of the same
revision. In other words, PatchState and FileState have
an association with a specific host.

The system gets the list of files for each patch
and examines the signature of each file if it has per-
mission. Five results are possible: (1) correct revision,
(2) wrong revision, (3) file does not exist, and (4)
insufficient privileges to read file and (5) system can-
not execute the external MD5 program to check

signature. The system can form a conclusion based on
partial information. If it cannot read one file of a
patch, and a second is the wrong revision, it concludes
the patch has not been applied. If it is uncertain
because it cannot read all of the files, but the rest are
correct, it indicates the patch might be applied. There-
fore determining if patches have been applied is accu-
rate even if someone replaced a file after a patch has
been applied, or modified any of the utilities (i.e.,
showrev). Missing patches create different vulnerabil-
ities, depending on permissions of the un-patched file.
This is simplistic, and uses the set-uid permissions and
owner information to identify the attacked account. If
the file is a library, the attacked account is considered
to be the root account. A future version should use an
internal MD5 checksum utility to prevent tampering
with the executable.

Using the GUI, it is possible for the security offi-
cer to see the state of the patch and associated files. If
desired, new patches can be uploaded to the system,
and applied.

User Interface

The GUI (Figure 4) presents the information in
three sections, General operations, host-specific opera-
tions, and account-specific operations. The general
commands are a series of buttons that print out sum-
maries, load the patch database, dump the database,
and interface to other applications for advanced analy-
sis.

The host specific operations include the follow-
ing actions:

• Uploading the PERL modules.
• Querying the revision of the current modules
• Fetching the user and group information
• Listing all of the UID’s on a host
• Listing all of the accounts on a host.
• Scanning the output of CRACK, merging new

vulnerabilities
• Scanning the system for missing patches
• Displaying the results of the patch analysis

Displaying the UID or accounts presents the
information in a scrolling list below, which can be
used for the account-specific operations. Typically
accounts are displayed in the scrolling list, and one or
more accounts can be selected, and the account-spe-
cific methods can be used. Operations iterate over
each item selected. If no account is selected, the
account in the Argument: location is used. Typically
the account that is of primary interest is copied and
pasted into this for convenience.

The account-specific methods include:
• Trojan – Perform a Trojan Horse scan on the

selected account
• NFS – Perform a NFS vulnerability check
• RLOGIN – Perform checks on

rlogin/rsh/rcp/ssh
• Attacker – shows everyone who can attack the

selected account

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 375

NOOSE Barnett

• Attackee – shows everyone the selected
account can attack

• Show Vulnerabilities – shows account-specific
vulnerabilities

Figure 4: NOOSE GUI.

Dispatcher and objects

The dispatch system was reused from an earlier
project, using a version of PERL that did not support
OO. The earlier project used ‘‘pseudo-object-oriented’’
techniques. That is, the dispatcher used strings to iden-
tify objects, methods and parameters. Based on its
table, it would select a protocol, host and port an com-
municate with the remote system using the communi-
cation object classes. This included methods for
query/response, uploading files and patches, and ask-
ing the remote agent to evaluate and execute PERL
code. There was a weak correlation between these
pseudo-objects and the object class used by the IW
module.

Problems Encountered

There were four significant problems with the
implementation:

• This prototype evolved from an earlier system,
and the object classes were weakly integrated
with the remote execution of commands.
Agents and their methods could have multiple
states. Methods could be undefined or out of
date. Queries could be pending, obsolete, or

never asked. Answers could be cached on the
agent, or in the dispatch, or integrated into the
database. Timeouts could occur anywhere. A
redesign with a unified view of the remote
information is needed.

• Secondly, retrieving the information was often
piecemeal. Sometimes objects were created
merely as collection objects and navigation
objects. Accounts were created when vulnera-
bilities were found, and attributes and associa-
tions about these objects would often be left
undefined. Therefore a large part of the code is
testing for the existence of information, and
performing queries to fill in missing informa-
tion if needed.

• Any distributed system is unreliable and asyn-
chronous. Therefore any remote query could
fail, and failures had to be handled. A better
design would have asynchronous gathering of
information, and well-defined algorithms
driven by an expert system, reporting on prob-
lems.

• The design of the GUI allowed gathering and
traversal of the information in any order
desired. There was no pre-determined order in
the information gathering process. This pro-
vided flexibility, but added to the complexity.

These problems caused the code to be bulky and
inelegant. Everything worked, but similar code had to
be inserted in multiple places.

376 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

Barnett NOOSE

The second biggest difficulty was the develop-
ment of the secure, reliable datagram-based protocol.
Developing distinct classes between the server and
client was essential, but finding the common methods
that supported three types of communication (raw,
reliable, secure) was difficult. A minor change in the
algorithm could easily cause a deadlock.

Conclusions

As in our earlier project [13], an important ele-
ment to these algorithms is the ability to traverse data
structures using associations between objects. This
allows algorithms to use the context surrounding
objects while making decisions about single objects.
This also stimulates new algorithm development,
while reusing existing code. In some cases, the objects
needed few attributes, as it was used primarily as a
navigation point in the data structure.

The system has reasonable performance. Large
servers with 2000 accounts could have each account
examined in about 30 minutes. A large proportion of
this time is believed to be associated with auto mount-
ing the directories found in users search paths.

Because much of the software required handling
missing data, and undefined values, a multi-threaded,
asynchronous programming model is needed, com-
bined with an object model that unifies the data struc-
tures of the agent and system.

The three-way handshake for reliable datagram
communication is important for deadlock protection
and obvious in hindsight. The symmetric nature
allowed code reuse, and therefore simplified the object
classes. Using this, it was possible to transmit patch
clusters of 70 megabytes. Occasionally timeouts
occurred where both sides were waiting, but the sys-
tem typically recovered. Creating communication
object classes designed for sub-classing allows future
extensions while retaining the same API.

Future Directions

The communication classes can be extended is
several ways. A better key distribution system can be
inserted, as well as alternate encryption algorithms.
Also, a subclass can be created that combines multiple
lightweight messages in a single authenti-
cated/encrypted packet. A mechanism for proxy
agents can be added, as well as a means to locate
agents by broadcast. Threaded asynchronous commu-
nication would simplify code development, as would
uniform methods for testing and retrieving remote
attributes.

Objects are currently stored in memory only, or
dumped to an external file for analysis. An ASCII rep-
resentation of the database is about 1 Megabyte in size
for 2000 vulnerabilities. A persistent database is
desirable, especially to a relational database.

Alternate mechanisms of viewing and analyzing
vulnerabilities is desired. Several simple algorithms
for categorizing vulnerabilities are suggested:

• Identify files with the largest number of associ-
ated vulnerabilities.

• Counting the number of paths between any two
accounts.

• Identify all of the accounts that can potentially
break into a selected account.

• Identify the worst case result of a single com-
promised account.

The author feels the concepts can be used for
advanced policy management systems, as security can
be measured more accurately, and relationships can be
constructed between files and services.

Summary

The author strongly feels that object modeling is
essential to writing next-generation security algo-
rithms, allowing a single database to be used for
diverse algorithms. This single database merges
together the base functionality of host-based scanners,
network-based scanners, file tampering and intelligent
patch management systems. The author hopes the
object model will be useful to others developing simi-
lar applications.

The author believes that this implementation
shows several unique traits. The implementation sim-
plifies prototyping new algorithms, and allows reusing
data for multiple applications. Adding the patch man-
agement software was simpler than the core communi-
cation classes. The agent structure simplifies support.
The object class for communication can be extended
in many ways. The use of the vulnerability and
account object class provides a simple and elegant, yet
powerful way to integrate information from multiple
sources, as we feel there is great Notential and flexi-
bility to this mechanism.

Author Information

Bruce Barnett graduated from RPI in 1973. He is
currently a Computer Scientist doing research at Gen-
eral Electric’s Corporate Research and Development
Center, PO Box 8, Schenectady, NY, 12309. His
research covers traffic analysis, expert systems, real-
time video multicast, and security systems. His elec-
tronic address is barnett@crd.ge.com.

References

[1] Robert W. Baldwin, Kuang: Rule-based security
checking, Documentation in ftp://ftp.cert.org/
pub/tools/cops/1.04/cops.tar .

[2] Dan Farmer & Eugene H. Spafford, ‘‘The Cops
Security Checker System,’’ USENIX, Summer
1990 .

[3] D. Farmer and W. Venema, ‘‘Security adminis-
trator ’s tool for analyzing networks,’’ http://www.
fish.com/zen/satan/satan.hmtl .

[4] Gene Kim and E. H. Spafford, The design of a
system integrity monitor: Tripwire, Technical
Report CSD-TR-93-071, Department of

2000 LISA XIV – December 3-8, 2000 – New Orleans, LA 377

NOOSE Barnett

Computer Sciences, Purdue University, West
Lafayette, Indiana, November 1993.

[5] Dan Zerkle and Karl Levitt, ‘‘NetKuang – A
Multi-Host Configuration Vulnerability Checker,’’
USENIX 1996.

[6] Bruce Barnett, ftp://coast.cs.purdue.edu/pub/tools/
unix/trojan/trojan.pl .

[7] Doug Schales, ‘‘Tiger,’’ ftp://coast.cs.purdue.edu/
pub/tools/unix/tiger .

[8] Internet Security Systems, Internet Scanner and
System scanner, http://www.iss.net/ .

[9] Diego Zamboni, SAINT: A Security Analysis
Integration Tool, ftp://coast.cs.purdue.edu/pub/
doc/tools/SAINT.ps.gz .

[10] Diego Zamboni, New COPS Analysis and
Report, ftp://coast.cs.purdue.edu/pub/tools/unix/
carp-ncarp .

[11] Merlin, http://ciac.llnl.gov/ciac/ToolsMerlin.html .
[12] SPI – Security Profile Inspector, http://ciac.

llnl.gov/cstc/spi/spiwnt/spiv20.html .
[13] Bruce Barnett, Andrew Crapo, ‘‘An Expert Fault

Manager using an Object Meta-Model’’, Pro-
ceedings 20th Conference on Local Computing
Networks, Minneapolis, MN, Oct 1995.

[14] Dai Nha Wu, Bruce Barnett, ‘‘Vulnerability
Assessment and Intrusion Detection with
Dynamic Software Agents,’’ Ninth Annual Soft-
ware Technology Conference, Salt Lake City,
Utah, May 1997.

378 2000 LISA XIV – December 3-8, 2000 – New Orleans, LA

