
The following paper was originally published in the
Proceedings of the Twelfth Systems Administration Conference (LISA ’98)

Boston, Massachusetts, December 6-11, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Mailman:
The GNU Mailing List Manager

John Viega, Reliable Software Technologies
Barry Warsaw and Ken Manheimer, Corporation for National Research Initiatives



Mailman: The GNU
Mailing List Manager

John Viega – Reliable Software Technologies
Barry Warsaw and Ken Manheimer – Corporation for National Research Initiatives

ABSTRACT

Electronic mailing lists are ubiquitous community-forging tools that serve the important
needs of Internet users, both experienced and novice. The most popular mailing list managers
generally use textual mail-based interfaces for all list operations, from subscription management
to list administration. Unfortunately, anecdotal evidence suggests that most mailing list users,
and many list administrators and moderators are novice to intermediate computer users; textual
interfaces are often difficult to use effectively.

This paper describes Mailman, the GNU mailing list manager, which offers a dramatic step
forward in usability and integration over other mailing list management systems. Mailman
brings to list management an integrated Web interface for nearly all aspects of mailing list
interaction, including subscription requests and option settings by members, list configuration
and Web page editing by list administrators, and post approvals by list moderators. Mailman
offers a mix of robustness, functionality and ease of installation and use that is unsurpassed by
other freely available mailing list managers. Thus, it offers great benefits to site administrators,
list administrators and end users alike. Mailman is primarily implemented in Python, a free,
object-oriented scripting language; there are a few C wrapper programs for security.

Mailman’s architecture is based on a centralized list-oriented database that contains
configuration options for each list. This allows for several unique and flexible administrative
mechanisms. In addition to Web access, traditional email-command based control and
interactive manipulation via the Python interpreter are supported. Mailman also contains
extensive bounce and anti-spam devices.

While many of the features discussed in this paper are generally improvements over other
mailing list packages, we will focus our comparisons on Majordomo, which is almost certainly
the most widely used freely available mailing list manager at present.

Introduction

Electronic mailing lists often have humble begin-
nings: someone collects a list of email addresses of
like-minded people, and these people begin sending
email to each other using an explicit distribution list.
This type of simple list is fairly easy for a novice to
start, and in fact many end-user mail applications let
people easily set up such distribution lists.

Often however, such mailing lists will grow and
evolve, gaining and losing members while existing
members’ addresses change over time. As they do,
explicit lists of addresses become extremely unwieldy.
List administrators quickly tire of adding and remov-
ing subscribers manually, and answering email per-
taining to the list. As a result, administrators generally
turn to mailing list management software to automate
the process.

The first generation of mailing list managers
automated tedious administrative functions such as
subscribing and unsubscribing from mailing lists, as
well as many of the other common requests, such as
getting background information on a list, and getting a
list of subscribed members. They also allowed for lists

to be administered via an email interface, so that list
administrators would not need to have direct access to
the machine on which the list software ran.

However, this generation of mailing list manage-
ment software has traditionally been quite complex;
users are often unable to figure out how to get on or
off a list, leading to many messages along the lines of
‘‘please unsubscribe me.’’ List administrators often
find it time consuming and difficult to perform admin-
istrative tasks by email, especially when editing spe-
cial message headers is required, as is the case with
approving held messages in Majordomo. In fact, many
of the most popular mail user agents (MUAs) of today
(including the Netscape mail reader) make it fairly dif-
ficult for the user to edit arbitrary headers. System
administrators frequently have a difficult time setting
up such software, especially when many commonly
desired features such as list archiving are only avail-
able as third-party add-ons, if at all.

Mailman is helping to pioneer the second genera-
tion of free mailing list managers. While even three
years ago email messages were the only reasonable
user interface that would make mailing lists accessible

1998 LISA XII – December 6-11, 1998 – Boston, MA 309



Mailman: The GNU Mailing List Manager Viega, Warsaw, and Manheimer

to every Internet user, today the World Wide Web is
generally considered ubiquitous. In fact, the Web
offers a high level of familiarity and usability for mail-
ing list users, who are typically at least as experienced,
if not more so, at browsing the Web. Considering the
frequency with which most users interact with the
administrative interface of a mailing list, using a Web
form that presents all the options is much less of a bur-
den than having to learn or relearn an arcane syntax
for mail commands. Ironically enough, instructions for
interacting with mailing lists are commonly found on
Web pages.

Functionality Overview

Mailman’s primary distinction from other mail-
ing list managers is its Web interface, which is dis-
cussed in the following section. However, in addition
to having all of the features people expect from a list
management system, such as digests and moderators,
Mailman integrates a rich set of general-purpose fea-
tures.

One such feature is automatic bounce handling.
Much like the SmartList mailing list manager
[Sma98], Mailman looks at all delivery errors, and
uses pattern matching to figure out which email
addresses are bouncing. By default, once the number
of bounces from an address reaches a configurable
threshold, the address becomes disabled, but not
removed. The administrator is then sent a message
and can decide whether the address should be re-
enabled or removed. However the administrator could
set the list to be more aggressive, automatically
removing addresses after a certain number of bounces.

We have examined several thousands of bounce
messages received while administrating Majordomo-
based lists, from which we determined the current set
of patterns.1 Applying these patterns to bounces has a
two-fold benefit: we do not need to answer ‘‘-request’’
mail, and we rarely need to handle bounce disposition
manually. On large lists, this automation can be impor-
tant, as bounced email can easily produce 10 to 100
times as much email as actual list submissions
[Lev97].

Mailman also contains several anti-spam devices
that significantly reduce the amount of spam that
reaches end users. First, member addresses are not
presented in a form that traditional spammer-launched
webcrawlers will recognize. For example mail-
man__at__list.org would be used in href links,
while in displayed text, spaces would replace the
__at__.

Second, Mailman’s delivery scripts apply a num-
ber of configurable and extensible filters to the incom-
ing message, such as requiring the list address to be

1Bounce patterns are based on regular expressions, and are
not currently extensible without editing the Mailman source
code.

named in the To: or Cc: fields, or rejecting messages
from known spam sites. These, as well as other mea-
sures, have proven to be very effective in preventing
most spam from reaching the list, while still allowing
valid messages to propagate.

Mailman also offers integrated support for many
things that have traditionally been provided in add-on
packages, or have required hacking with other list
management software. Mailman is distributed with
such features as archiving of messages sent to a list,
fast bulk mailing by multiplexing SMTP connections,
multi-homing for virtual domains and gating mail to
and from NNTP news groups. Mailman also uses the
GNU autoconf tool to make the setup process easy; in
contrast, the Majordomo maintainers admit that
Majordomo is difficult to install [Bar98].

Thus, Mailman is able to provide a system
administrator with a mailing list manager that is not
only easy to install, but also is easy to use at every
level, and includes the major pieces of functionality a
list administrator might want without requiring addi-
tional searches and downloads.

Web Interfaces to Mailing Lists

While Mailman does provide Majordomo-like
mail-based commands for compatibility, we downplay
this, as we feel that a good Web-based user interface is
much more desirable to the majority of users. Our
Web-based interface allows for full access to all of
Mailman’s features, including subscription and option
requests, browsing lists on the same (potentially vir-
tual) host, viewing Web-based Hypermail-like
archives, etc.

There are many third-party Web front-ends to
Majordomo [Bar98]. However, most of them are little
more than simplistic interfaces to subscribing and
unsubscribing. The most notable exception is Major-
Cool [Hou96], which additionally provides end users
with a way of browsing all mailing lists on a machine,
as well as a full-featured interface to the list configura-
tion. However, MajorCool suffers from several usabil-
ity problems, all of which are addressed by Mailman.

First, MajorCool has the problem that malicious
users can subscribe and unsubscribe other people from
mailing lists over the Web. Mailman, on the other
hand, requires confirmation emails for subscriptions.
For unsubscribing, users must enter a password into a
CGI field, which can be generated by Mailman, and
delivered to the subscribed email address on request.

Second, MajorCool requires that it and an HTTP
server must be co-located on the machine running
Majordomo and Sendmail [Hou98]. In contrast, Mail-
man has been tested with a mail transport and Web
server running on separate machines in an NFS envi-
ronment, and has been tested with the transport, Web
server, and Mailman all running on separate machines,
where Mailman scripts are run via rsh or ssh.

310 1998 LISA XII – December 6-11, 1998 – Boston, MA



Viega, Warsaw, and Manheimer Mailman: The GNU Mailing List Manager

Third, MajorCool’s interaction with end users is
limited. Its goal with respect to end users is to give
them a way to browse all the lists on a machine, not to
provide a nice Web-based mechanism for interacting
with the mailing list. Mailman provides full support
for editing options such as the digest mode on both a
per-list and per-user basis and whether posts to a list
should be sent back to the user. List member email
addresses can also be kept completely private by sup-
pressing their visibility on the subscriber list Web
page.

Figure 1: Web subscription and general list information page.

Finally, MajorCool’s administrative interface is
mainly geared towards interfacing to the traditional
Majordomo configuration. In contrast, many of Mail-
man’s administrative options allow for customization

of the list’s Web interface. In fact, Mailman also
allows the list administrator to provide a ‘‘real’’ Web
page for his mailing list, and he can edit HTML tem-
plates for this page via a password protected Web-
based interface. MajorCool essentially lacks the
notion of each list having its own home page.

Example
Figure 1 shows a screen shot of part of the Web

subscription and general list information page for a
Mailman mailing list.2 All of the presented

2This and other screenshots in this paper were generated by
Mailman 1.0b4. Some of the details may have changed
since the time of writing.

1998 LISA XII – December 6-11, 1998 – Boston, MA 311



Mailman: The GNU Mailing List Manager Viega, Warsaw, and Manheimer

components are configurable by the list owner, includ-
ing the list description shown in the title banner, as
well as the HTML displayed in the ‘‘About’’ section.
While these are easily changed by setting options on
the list administration page, in fact the list owner can
actually edit the full HTML template from which this
page is generated. Thus the list owner can rearrange
sections, and even omit standard boilerplate text, such
as might be necessary if a list was configured not to
provide archives, or if postings were completely dis-
abled.

Note that when subscribing, a user must pick a
password. This password is used by members when
they change their subscription options. Password
reminders are periodically mailed to members.

Subscribing users also have the option of receiv-
ing messages as they are delivered to the list, or
batched in digest form. The list owner can enable or
disable digests on a per-list basis, and set other digest
parameters. Of course, users can easily switch from
receiving individual postings to receiving digests via
their personal options Web page. This is useful for
when a user goes on vacation and wants to continue to
receive mailing list traffic, but wants the impact on
their mailbox to be minimized.

The general information page also contains but-
tons to view the list of subscribers (for public lists;
individual members can still opt to remain unpubli-
cized), and to edit an existing member’s list options.

Architecture

Mailman is written almost completely in Python
[Pyt98], a freely available, object-oriented scripting
language. There are a few C wrapper programs for
security purposes. Mailman currently requires at least
Python 1.5, which is freely available in both source
and (for many platforms) binary form at
http://www.python.org/.

System Architecture

The Mailman system architecture is illustrated in
Figure 2. In the center of the system are the core Mail-
man classes and modules, organized as a Python pack-
age [Ros97]. The architecture of these classes is
described in the next section. There are two sub-pack-
ages in the core package, one that contains classes for
logging, and another that contains modules that sup-
port the CGI interface.

The Mailman package mediates access to various
disk files used during its operation. For example, the
logging classes write update messages to file when
subscriptions or unsubscriptions are requested or ful-
filled, or when various types of error conditions occur.
Lock files are created and consulted by package mod-
ules for synchronization between processes. Also, as
described in more detail below, every active list is
associated with some persistent state, contained in list
database files.

For increased security, subscription requests that
originate via the Web interface are held for confirma-
tion by the subscribing email address. These pending
confirmations are also contained in files on disk, as
are other pending actions, such as postings that are
being held for approval. When a user subscribes via
the Web, he is emailed a confirmation message con-
taining a random number. The user need only reply to
the original message in order to be subscribed. This
feature eliminates the possibility that users will be
subscribed to mailing lists against their will, while
imposing minimal burden on the user. The list owner
has control over the confirmation mechanism used as
well.

Templates are used for most of the textual mes-
sages that are generated by Mailman and sent to list
members via email. This has one immediate and one
future benefit. First, by removing most of the textual
messages from the source code, it is easier to maintain
and modify the messages, with systematic approaches
for including placeholders in the template. Second,
this arrangement provides the framework for future
localization efforts. Although not currently imple-
mented, this framework would allow us to arrange the
templates in language specific subdirectories, for
access on a per-list or possibly per-user basis.

The various front-end mechanisms used to
access Mailman functionality are shown at the top of
the figure. On the left is shown access through the
incoming mail system; Mailman supports several mail
transport agents (MTAs), including sendmail and
qmail. In a sendmail installation for example, aliases
are installed in the system’s /etc/aliases3 file. Typi-
cally, five aliases are installed for each active mailing
list. Three of these point to a C wrapper program,
which in turn executes Python code to perform various
email-based commands such as posting a message to
the list, evaluating Majordomo-style list commands
sent to the ‘‘-request’’ address, or forwarding a mes-
sage to the list owner.

The most common access method is through the
Web interface, as shown on the top right of the figure.
Here, the user or list administrator views one of the
various Mailman Web forms in their browser, entering
information in the text entry fields and/or clicking but-
tons presented on the form. When the form is submit-
ted, the browser posts it to the Web server, which can
be any standard Web server configured to run CGI
scripts. The CGI script is another C wrapper program
that in turn calls a central Python ‘‘driver ’’ script. The
driver then imports the appropriate module from the
CGI support package and executes it for the selected
functionality.

3This file may in fact reside in other locations, depending
on the system. For example, on many Solaris machines this
file is located in /etc/mail/aliases.

312 1998 LISA XII – December 6-11, 1998 – Boston, MA



Viega, Warsaw, and Manheimer Mailman: The GNU Mailing List Manager

The driver script’s primary function is to catch
and usefully report any error in the Mailman system.
Normally such errors would generate Python excep-
tions, which if left uncaught, would percolate up to the
top of the script’s execution stack, and cause the CGI
script to exit with an error code. This in turn would
force the HTTP server to display a less than useful
error message to the end user. The driver script is
designed to catch all errors and to report the most use-
ful error message possible. When such an error occurs,
the end user is presented with a Web page informing
them of the error, including a Python traceback and a
dump of the CGI environment variables. This infor-
mation is also written to a Mailman log file on the list
management site. In this way, such errors can be
quickly identified, and end users are given more infor-
mation than just a generic Web server failure message.

Mailman Core Package

Logging

CGI
Support

logs
temp-

lates
list db locks

pending

confirms

driver

bin scripts cron scriptsemail cmds

mail wrapper

sendmail
(or other MTA)

cron Web

CGI wrapper

Figure 2: System Architecture.

Another mechanism shown in Figure 2 is access
via cron jobs. Mailman contains a number of cron
scripts which are used, among other things, to mail the
periodic password reminders. These cron scripts use
the same core Mailman classes as other subsystems
previously described.

Mailman also contains a number of scripts
intended to be run by the system administrator via a
shell command line. These scripts use the core pack-
age to provide higher level functionality. For example,
to create a new mailing list, the system administrator
would execute the newlist command, providing the
name of the new mailing list, the list administrative

password, and the email address of the list owner. This
is all that is necessary to create the list; all other list
configurations are performed through the Web admin-
istrative interface. Other command line scripts are pro-
vided to set the site password, remove lists, subscribe
members en masse, etc.

One of the more unique features of Mailman is
that the core classes can be accessed interactively via
the Python interpreter. This allows the system admin-
istrator to simply fire up an interactive Python session,
import the appropriate Mailman module from the
package, instantiate instances of various classes, call
methods on those instances, and even inspect the vari-
ous objects involved.

This is an extremely powerful ability, because it
means that the system administrator is not limited to
those functions which are provided by the various
Mailman scripts. In fact, the administrator proficient
in Python can easily code their own routines using the
core classes, prototyping and developing them by
using an interactive Python interpreter session. The
administrator is even able to perform one time proce-
dures directly inside the interpreter.

It is even conceivable that other access mecha-
nisms and front-ends could be created. For example,
more specialized non-Web based GUIs could be
developed, or perhaps a set of CORBA interfaces to
the Mailman system could be specified. This might be
useful, for example, to a user that is a member of a
dozen or so mailing lists running on many systems

1998 LISA XII – December 6-11, 1998 – Boston, MA 313



Mailman: The GNU Mailing List Manager Viega, Warsaw, and Manheimer

throughout the Internet. Having a CORBA interface to
Mailman would allow such a user to write a single
script (in his language of choice) which could switch
his subscription to digest mode when he goes on vaca-
tion, and then back to his preferred distribution mode
upon his return.

Software Architecture

The central component of the Mailman core
package is the MailList class, instances of which
are used to represent every active mailing list.
Instance variables (‘‘attributes’’ in Python parlance)
contain all the information pertinent to the mailing list,
including member addresses and option settings. This
information is stored in a persistent database via
Python’s built-in object serialization mechanism.

Thus, for example, when a user accesses a partic-
ular mailing list via the Web, the invoked CGI script
instantiates the MailList class, passing to the con-
structor the name of the mailing list. When created,
the instance variables for this object are restored from
the persistent database. Mailman uses Python’s mar-
shal module [Pyt98A] to save and restore persistent
attributes. marshal is a low-level built-in module
providing object serialization. The higher level
pickle module is not used since the data structures
involved are relatively simple, and marshal thus
provides better performance.

The MailList class is multiply derived from
several task-oriented mix-in classes. These mix-in
classes provide the basic mailing list-centric function-
ality described in the previous sections, such as the
ability to handle Majordomo-style email commands,
generate HTML content for Web presentation, per-
form digesting, archiving, and delivery, and handle
bounce disposition, etc.

The use of task-oriented mix-in classes has
advantages and disadvantages. One important benefit
is that new tasks can often be integrated as easily as
creating a new mix-in class, and extending the list of
base classes for the MailList class. The most
recent example of this ease of extensibility was when
the Usenet gateway feature was added. This was
implemented by creating a new base class called
GatewayManager, which contains all the code for
posting email messages to NNTP servers. Another
important benefit of the mix-in approach is seen in
conjunction with the persistency mechanism described
above. Persistent attributes are designated by using a
naming convention; specifically, if the attribute name
starts with an underscore it is not persistent. Python’s
introspection capabilities allow Mailman to inspect all
the attributes of an instance, ignoring those with
names beginning with an underscore. The remaining
attributes are stored in a Python dictionary, and that
dictionary is then saved to disk with marshal.

When a new mix-in base class is added, and that
class adds new attributes to the state of the list

instance, those attributes are automatically made per-
sistent due to this introspection property. Of course,
there are versioning issues to deal with, but simply by
adhering to the naming convention described above,
new state supporting new functionality can easily be
added.

One disadvantage of the mix-in architecture is
that it can complicate the interactions between the
tasks. Primarily, experience has shown that simply ini-
tializing each base class’s attributes can be tricky.

Many persistent attributes are tied to options pre-
sented on a Web page. Figure 3 shows one of the list
administration pages for a Mailman list. Shown here
are some of the list specific privacy options available,
including whether the list is advertised and what style
of subscription confirmation is to be used. Each of
these options is coupled to an attribute on the Mail-
List instance for the specified list. When the option
is changed on the posted Web form, the instance
attribute is modified, and the state is saved on disk.

Performance

While Mailman is too new to have much hard
data in the way of performance metrics, we do know
that, given a well designed mailing list management
system, the performance of the mail transport agent
(MTA) will have a much more significant impact. We
have found that even a low-end configuration can han-
dle large amounts of traffic. For example, one mailing
list managed by Mailman has had up to 3000 sub-
scribers, and often receives 100 messages in a day
(i.e., hundreds of thousands of daily deliveries). The
list runs on a low-end Pentium with 48MB of RAM.
The machine runs sendmail on GNU/Linux. The
machine also hosts an NNTP news feed for a small
ISP, and is able to handle the load, although sendmail
sometimes needs to queue messages. As Mailman pro-
ceeds through beta test, we plan to gather more detail
performance data.

Future Directions

Mailman development is ongoing and highly
active. Major projects to be undertaken in the near
future include:

• Integrating searching with list archives.
• Manually configurable and automatically used

relays for distributing server and network load
(along the lines of RFC 1429 [Tho93]).

• An optional threaded persistent server, as
opposed to the current ‘‘start-by-request’’
model shared with Majordomo.

• A separation of the roles of list administrator
and list moderator.

• PGP integration.

Availability and Compatibility

Mailman 1.0 is currently in beta release, but is
already being used at a number of sites. More

314 1998 LISA XII – December 6-11, 1998 – Boston, MA



Viega, Warsaw, and Manheimer Mailman: The GNU Mailing List Manager

information on Mailman can be had at
http://www.list.org. Various mailing lists are currently
being run for Mailman discussions (managed by Mail-
man of course!):

Figure 3: List administration page.

• URL http://www.python.org/mailman/listinfo/
mailman-users is for system administrators who
are using Mailman to manage their mailing
lists.

• URL http://www.python.org/mailman/listinfo/
mailman-developers is for those who would
like to help future development of Mailman.

Bleeding edge snapshots of the Mailman devel-
opment code is also available via anonymous CVS.
See the developers URL above for details.

Mailman should work out of the box on any
Unix-based platform on which Python runs. It is
known to work on SunOS, Solaris, all major distribu-
tions of Linux, FreeBSD, Irix and NextStep. Mailman
will work with any MTA, since it communicates via
the SMTP port instead of through a command. How-
ever, Mailman currently generates sendmail-style
aliases only. Therefore, aliases for MTAs such as
qmail must be modified and installed by hand. Python
itself has been ported to a large number of systems,
including most known Unix-like systems, various
Windows platforms (NT and Windows 95), and
MacOS. Python source code is freely available, as are
pre-built binaries for many platforms.

1998 LISA XII – December 6-11, 1998 – Boston, MA 315



Mailman: The GNU Mailing List Manager Viega, Warsaw, and Manheimer

Mailman should work with any HTTP daemon
that allows for CGI directories. It is known to work
with Apache, NCSA, and Java Web Server.

For current Majordomo users, the transition to
Mailman is straightforward; there is a command-line
script in the distribution that imports a Majordomo
distribution list into Mailman.

Acknowledgements

Mailman was originally written by John Viega. It
has since been extended, and is currently being devel-
oped and maintained by John Viega, Ken Manheimer,
and Barry Warsaw. The mailman-developers mailing
list and the Python community have provided invalu-
able feedback on this software, including Guido van
Rossum, Scott Cotton, Janne Sinkkonen, Michael
McLay and Hal Schechner. We would like to thank
these people and all others on the Mailman users and
developers lists.

Mailman uses free software by Timothy O’Mal-
ley for dealing with HTTP cookies. It also integrates
Pipermail, free software by Andrew Kuchling that
handles message archiving. The archiving code also
uses free software by Aaron Watters.

We would like to give special thanks to the
Python Software Activity (PSA), and the Corporation
for National Research Initiatives (CNRI) for hosting
the PSA. We would also like to thank Guido van
Rossum for inventing Python.

We would also like to give special thanks to
Richard Stallman and the Free Software Foundation
for their support and guidance.

Author Information

John Viega is a Research Associate at Reliable
Software Technologies. He holds an M.S. in Com-
puter Science from the University of Virginia. His
research interests include software assurance, pro-
gramming languages, and object-oriented systems.
Contact him at viega@rstcorp.com .

Barry Warsaw is a systems engineer at CNRI.
He is member of the team developing advanced Inter-
net technologies such as the Knowbot Operating Envi-
ronment mobile code system, the Application Gate-
way System high-availability server farm, and the
Grail Internet Browser. He is a member of the Python
Software Activity and contributes to the development
of Python. He has been involved with various open
source projects for many years. Contact him at
bwarsaw@cnri.reston.va.us .

Ken Manheimer is a member of the technical
staff at CNRI, developing and researching application
of mobile agent systems, server farms, and other
advanced network technologies. His former life
involved managing a large installation of Unix sys-
tems at NIST, where he devised, with Barry Warsaw,
the Depot for sharing installed software across sites –

which he presented many LISA’s ago (LISA IV,
1990). Currently Ken manages only a few systems,
including the python.org server system, on which he
manages the Python Software Activity. Contact Ken
Manheimer at klm@cnri.reston.va.us .

References

[Bar98] D. Barr. The Majordomo FAQ. http://www.
greatcircle.com/majordomo/majordomo-faq.html .

[Cha92] D. Chapman. ‘‘Majordomo: How I Manage
17 Mailing Lists Without Answering ‘-request’
Mail.’’ Proc. Usenix LISA VI, Oct. 1992.

[Hou96] B. Houle. ‘‘MajorCool: A Web Interface To
Majordomo.’’ Proc. Usenix LISA X, Oct. 1996.

[Hou98] B. Houle. MajorCool Introduction. http://
ncrinfo.ncr.com/pub/contrib/unix/MajorCool/Docs .

[Lev97] J. Levitt. Ten Questions For Majordomo (An
Interview With D. Brent Chapman). http://
techweb.cmp.com/iw/author/internet8.htm .

[Ros97] G. van Rossum. Built-in Package Support in
Python 1.5. http://www.python.org/doc/essays/
packages.html .

[Pyt98] The Python Language Website. http://www.
python.org/ .

[Pyt98A] Built-in Module marshal. http://www.python.
org/doc/lib/module-marshal.html .

[Sma98] The SmartList FAQ. April 1998 revision.
http://www.mindwell.com/smartlist/ .

[Tho93] E. Thomas. RFC1429: Listserv Distribute
Protocol. Feb. 1993. http://www.faqs.org/rfcs/
rfc1429.html .

316 1998 LISA XII – December 6-11, 1998 – Boston, MA


