VOIt the NewSQL database you’ll never outgrow

OldSQL vs. NoSQL vs. NewSQL
on New OLTP

Michael Stonebraker, CTO
VoltDB, Inc.

Old OLTP

= Remember how we used to buy airplane tickets in the

1980s
+ By telephone

+ Through an intermediary (professional terminal operator)

= Commerce at the speed of the intermediary

" |n 1985, 1,000 transactions per second was considered
an incredible stretch goal!!!!
+ HPTS (1985)

VoltDB 2

How has OLTP Changed in 25 Years?

The internet

+ Client is no longer a professional terminal operator
+ Instead Aunt Martha is using the web herself

+ Sends volume through the roof

VoltDB

How has OLTP Changed in 25 Years?

PDAs and sensors

+ Your cell phone is a transaction originator

+ Everything is being geo-positioned by sensors (marathon
runners, your car,)

+ Sends volume through the roof

VoltDB

How has OLTP Changed in 25 Years?

The definitions

+ “Online” no longer exclusively means a human operator
— The oncoming data tsunami is often device and system-generated

+ “Transaction” now transcends the traditional business
transaction

— High-throughput ACID write operations are a new requirement

+ “HA” and “durability” are now core database requirements

VoltDB 5

Examples

Maintain the state of multi-player internet games
Real time ad placement
Fraud/intrusion detection

Risk management on Wall Street

New OLTP Challenges

New OLTP and You
You need to ingest the firehose in real | * :: ES s
time = ’M,,', -
You need to process, validate, enrich
and respond in real-time

You often need real-time analytics

VoltDB

Solution Choices

= OldSQL
+ Legacy RDBMS vendors

= NoSQL
+ Give up SQL and ACID for performance

= NewSQL
+ Preserve SQL and ACID

+ Get performance from a new architecture

VoltDB

OldSQL

Traditional SQL vendors (the “elephants”)

+ Code lines dating from the 1980’s
+ “bloatware”

+ Not very good at anything

— Can be beaten by at least an order of magnitude in every vertical
market | know of

+ Mediocre performance on New OLTP
— At low velocity it doesn’t matter

— Otherwise you get to tear your hair out

VoltDB

DBMS Landscape

Other apps

DBMS
apps

Data Warehouse

VoltDB

OLTP

10

DBMS Landscape — Performance Needs

Other apps
high /|

low

high high

Data Warehouse OLTP

VoltDB 11

One Size Does Not Fit All -- Pictorially

Elephants only get
“the crevices”

NoSQL

Array
DBMSs

Open
source

Column stores ' Low-overhead

Hadoop Main memory DBs

VoltDB 12

Reality Check

=" TPC-C CPU cycles
=" On the Shore DBMS prototype

= Elephants should be similar

Latching
24%

Useful
Work, 4%

VoltDB

13

The Elephants

" Are slow because they spend all of their time on
overhead!!!

= Would have to re-architect their legacy code to do
better

To Go a Lot Faster You Have to......

= Focus on overhead
+ Better B-trees affects only 4% of the path length

= Get rid of ALL major sources of overhead

+ Main memory deployment — gets rid of buffer pool
— Leaving other 75% of overhead intact

— i.e. winis 25%

VoltDB 15

Long Term Elephant Outlook

* Up against “The Innovators Dilemma”
+ Steam shovel example
+ Disk drive example

+ See the book by Clayton Christenson for more details

" Long term drift into the sunset
+ The most likely scenario

+ Unless they can solve the dilemma

VoltDB 16

NoSQL

= Give up SQL
= Give up ACID

Give Up SQL?

= Compiler translates SQL at compile time into a
sequence of low level operations

= Similar to what the NoSQL products make you
program in your application

= 30 years of RDBMS experience
+ Hard to beat the compiler
+ High level languages are good (data independence, less code, ...)

+ Stored procedures are good!

— One round trip from app to DBMS rather than one one round trip
per record

— Move the code to the data, not the other way around

VoltDB 18

Give Up ACID

" |f you need data accuracy, giving up
ACID is a decision to tear your hair
out by doing database “heavy
lifting” in user code

Xe ’ d - T
an you guarantee you won't nee NS | o |

ACID tomorrow?

ACID = goodness, in spite of what these guys say |

VoltDB 19

Who Needs ACID?

" Funds transfer
+ Or anybody moving something from Xto Y

= Anybody with integrity constraints
+ Back out if fails

+ Anybody for whom “usually ships in 24 hours” is not an
acceptable outcome

= Anybody with a multi-record state

+ E.g. move and shoot

VoltDB

20

Who needs ACID in replication

= Anybody with non-commutative updates
+ For example, + and * don’t commute

= Anybody with integrity constraints

+ Can’t sell the last item twice....

" Eventual consistency means “creates garbage”

VoltDB

21

NoSQL Summary

= Appropriate for non-transactional systems

= Appropriate for single record transactions that are
commutative

" Not a good fit for New OLTP
= Use the right tool for the job

Interesting ...
9
Two recently-proposed NoSQL I m confused.
language standards — CQL and No wait...
UnQL — are amazingly similar to Maybe I’rn not.

(you guessed it!) SQL

NewSQL

= 5QL
= ACID

= Performance and scalability through modern
innovative software architecture

NewSQL

=" Needs something other than traditional record level
locking (15 big source of overhead)
+ timestamp order
+ MVCC

+ Your good idea goes here

VoltDB

24

NewSQL

» Needs a solution to buffer pool overhead (2" big
source of overhead)
+ Main memory (at least for data that is not cold)

+ Some other way to reduce buffer pool cost

VoltDB

25

NewSQL

= Needs a solution to latching for shared data structures
(379 big source of overhead)
+ Some innovative use of B-trees
+ Single-threading

+ Your good idea goes here

VoltDB 26

NewSQL

= Needs a solution to write-ahead logging (4th big
source of overhead)
+ Obvious answer is built-in replication and failover

+ New OLTP views this as a requirement anyway

= Some details

+ On-line failover?

+ On-line failback?

+ LAN network partitioning?
+ WAN network partitioning?

VoltDB

27

A NewSQL Example — VoltDB

" Main-memory storage

= Single threaded, run Xacts to completion

+ No locking

+ No latching

= Built-in HA and durability

+ No log (in the traditional sense)

VoltDB

28

Yabut: What About Multicore?

" For A K-core CPU, divide memory into K (non

overlapping) buckets

= i.e. convert multi-core to K single cores

Where all the time goes... revisited

Before VoltDB

Locking

Latching
24%

5%

Useful
Work
4%

Useful Work
95%

VoltDB 30

Current VoltDB Status

" Runs a subset of SQL (which is getting larger)
=" On VoltDB clusters (in memory on commodity gear)

= No WAN support yet

= 50X a popular OldSQL DBMS on TPC-C
m 5-7X Cassandra on VoltDB K-V layer

= Scales to 384 cores (biggest iron we could get our
hands on)

= Clearly note this is an open source system!

Summary

Old OLTP New OLTP

>

= Too slow
= Does not scale

NoSQL for New OLTP | (§) [ocks consistency guarantees

= | ow-level interface

OIldSQL for New OLTP ®

) = Fast, scalable and consistent

NewSQL for New OLTP ¢y .0 ons sal

VoltDB

32

VOIt the NewSQL database you’ll never outgrow

Thank You

