
of 26

FIXING THE
FLYING PLANE

Major SAAS Upgrades by a
Production DevOps Team

of 26

Introduction
Calvin Domenico
Director

Marie Hetrick
Manager of Hosting

Elijah Aydnwylde
Sr. Sysadmin, Lead of Operations

Patrick McAndrew
Sr. Sysadmin, Lead of Infrastructure

2 Introduction

Jesse Campbell
Sr. Software Engineer, Lead of Development

Alastair Firth
Software Engineer

Brandon Arsenault
Project Manager

of 26

The “Before” Environment
•  ~20 custom-developed services accessed by

10,000+ school districts nationwide
•  Software not designed for SaaS
•  Virtualized environment in Managed Hosting

datacenter limited visibility and prevented
admin access to infrastructure

3 The “Before” Environment

of 26

The “Before” Environment
Problem Scenario

■  Customers reporting networking issues
■  Troubleshooting isolates load balancer
■  MSP says it can't be

Solution
■  Bypass the load balancer

Cost
■  Lost customers
■  Man-weeks of troubleshooting and workarounds (attempts to work with

MSP almost doubled this)

4 The “Before” Environment

of 26 5

OPERATORS
can’t

OPERATE
if they can’t

SEE

of 26

The Project
•  SOLVE the Managed Services problem without incurring the business

and man-hour costs of colocating

•  DESIGN a datacenter for the purpose of serving this
specific software as SaaS

•  PLAN up to 5x growth within 2 years, as well as upcoming changes to
the software (i.e. clustering)

•  PROOF the new datacenter in a local virtualized environment so that as
much of it as possible can be "ported" directly to the new hardware

6 The Project

of 26 7

The Challenge:

DON’T LAND
THE PLANE

of 26

The Challenge
•  One week of total downtime for all operations
•  Six months maximum limit for datacenter

design, code development & implementation
•  Design, Build, Code, Upgrade, and Migrate all

at once!

8 The Challenge

of 26 9

The

DEVELOPMENT

of 26

The Development

10 The Development: Requirements

Requirements

•  What to build?
■  Manage multiple layers

•  Virtual Infrastructure
•  Machine
•  Application
•  Data

•  Why should we build it?

of 26

The Development

11 The Development: What Did We Build?

What Did We Build?

•  Automated Control engine for existing
technologies
■  NFS, Git, Puppet, VSphere, bash, perl

•  Unified control front-end
•  Extensible framework
•  No recovery: destroy and rebuild
•  Easy to pick up and create a

new complete stack

of 26

The Development

12 The Development: The Team

The Team

•  Methodology
•  Mentality
•  Motivation
•  Personality

•  Ownership?
•  Who writes the spec?

of 26

The Development

13 The Development: The Dev Environment

The Dev Environment

•  Tight schedule
■  Fast iterations

•  Design, Develop, Deploy, Destroy
■  Feature driven design

•  Communication
■  Oversight / insight

•  Single point of contact
■  Open access for devs
■  Appeasing stakeholders

•  Legitimate concerns
Ops Infra

Devs

Manager/Liason

Outside
Stakeholders

of 26 14

THEN
and

NOW

of 26

Then and Now

15 Then and Now: Time to Create and Deploy a Site

Time to Create and Deploy a Site

3–5
DAYS

24
HOURS

Vs.

of 26

Then and Now

16 Then and Now: Time to Bring a Virtual Machine Online

Time to Bring a Virtual Machine Online

30–45
DAYS

1
HOUR

Vs.

$ Number of words required to get
 a Virtual Machine online

$ then 23523 words

$ now 5 words ▋

of 26

Then and Now

17 Then and Now: Time to Configure an Application Server

Time to Configure an Application Server

3
DAYS

<5
HOURS, AUTOMATED

Vs.

of 26

Then and Now

18 Then and Now: Time to Configure a Database Server

Time to Configure a Database Server

1
WEEK

<5
HOURS, AUTOMATED

Vs.

of 26

Then and Now

19 Then and Now: Time to Deploy a Patch (Hours)

Time to Deploy a Patch (Hours)

160
HOURS

12 Months Ago

40
HOURS

6 Months Ago

3
HOURS

Today

4,500
HOURS

18 Months Ago

of 26

Then and Now

20 Then and Now: Time to Re-balance Database Layer

Time to Re-balance Database Layer

1.5
MONTHS OF OVERTIME

2 People

4/4
DECISION-MAKING/4 HOURS REVIEW
Automated

Vs.

of 26

Then and Now

21 Then and Now: Time to Recover Our Entire Environment

Time to Recover Our Entire Environment

5+
WEEKS

<24
HOURS

Vs.

of 26 22

how did it all

COME TOGETHER?

of 26

How Did it All Come Together?

23 How Did it All Come Together?: Abstracting Enterprise Components

Abstracting Enterprise Components

•  Abstracting System and Software
Components
■ What are our Software Components?

•  Application Agents
•  Customer Databases

■ What are our System Components?
•  Application Servers
•  Database Servers

of 26

How Did it All Come Together?

24 How Did it All Come Together?: Abstracting Harder

Abstracting Harder

•  What are the relationships between these
components?

•  How can they be abstracted?
■  Cluster

•  A selection of Customers grouped
together and handled by a single Agent

■  Node
•  An instance of a cluster running on an Application Server

•  What do these abstractions allow us
to infer by relation?

of 26

How Did it All Come Together?

25 How Did it All Come Together?: Agile Development

Agile Development

•  Adaptable to
■  Unknown Performance and Needs
■  Changing Requirements

•  High Visibility provides
■  Decreased Risk
■  Increased Business Value

•  Collaborative Design promotes
■  Diverse Viewpoints
■  Shared Experience

of 26 26

end

