Major SAAS Upgrades by a
Production DevOps Team
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> The “Before” Environment

e ~20 custom-developed services accessed by 2
10,000+ school districts nationwide

e Software not designed for SaaS

* Virtualized environment in Managed Hosting
datacenter limited visibility and prevented
admin access to infrastructure




> The “Before” Environment

Problem Scenario

m Customers reporting networking issues
= Troubleshooting isolates load balancer
= MSP says it can't be

Solution
= Bypass the load balancer

Cost
m [ost customers

» Man-weeks of troubleshooting and workarounds (attempts to work with
MSP almost doubled this)
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> The Project

 SOLVE the Managed Services problem without incurring the business
and man-hour costs of colocating

 DESIGN a datacenter for the purpose of serving this
specific software as SaaS

 PLAN up to b5x growth within 2 years, as well as upcoming changes to
the software (i.e. clustering)

* PROOF the new datacenter in a local virtualized environment so that as
much of it as possible can be "ported" directly to the new hardware
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The Challenge:

DON'T LAND
THE PLANE
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> The Challenge

* One week of total downtime for all operations

* Six months maximum limit for datacenter
design, code development & implementation “TT

* Design, Build, Code, Upgrade, and Migrate all
at once!
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> The Development

Requirements

* What to build?

= Manage multiple layers
e Virtual Infrastructure
e Machine

* Application
 Data

 Why should we build it?
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> The Development
What Did We Build?

* Automated Control engine for existing @
technologies

s NFS, Git, Puppet, VSphere, bash, perl
e Unified control front-end =
 Extensible framework *
* Notecoveny: destioyanciepliida t 0§ e 0

 Easyto pick up and create a
new complete stack
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> The Development

The Team =
* Methodology j;
° Menta“ty ........................
* Motivation a
* Personality =k

 Ownership?
 Who writes the spec?
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> The Development L

The Dev Environment i

Manager/Liason

 Tight schedule
= Fast iterations
* Design, Develop, Deploy, Destroy
= Feature driven design
e Communication oevs
= Oversight / insight / \
e Single point of contact
= Open access for devs
Ops

= Appeasing stakeholders
e Legitimate concerns

Infra
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> Then and Now
Time to Create and Deploy a Site

3-5.24

DAYS : HOURS




Number of words required to get
a vVirtual Machine online

then 23523 words

now 5 words |
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> Then and Now

Time to Configure an Application Server

3.<5

DAYS | HOURS, AUTOMATED




> Then and Now

Time to Configure a Database Server

1i<5

WEEK i HOURS, AUTOMATED




> Then and Now
Time to Deploy a Patch (Hours)

4500 160 40 3

HOURS HOURS HOURS HOURS

18 Months Ago 12 Months Ago 6 Months Ago Today

__________ L 3 e e e




> Then and Now

Time to Re-balance Database Layer

1.5. 4/4

MONTHS OF OVERTIME DECISION-MAKING/4 HOURS REVIEW
2 People Automated
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> Then and Now

Time to Recover Our Entire Environment

5+ <24

WEEKS | HOURS
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how did it all

COME TOGETHER?
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> How Did it All Come Together?

Abstracting Enterprise Components

* Abstracting System and Software
Components

= What are our Software Components?
* Application Agents
* Customer Databases

= What are our System Components?

* Application Servers
 Database Servers
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> How Did it All Come Together?

Abstracting Harder

 What are the relationships between these
components?

° HOW Can they be abStraCted'? ........................
m Cluster

* A selection of Customers grouped ﬂﬂ
together and handled by a single Agent
= Node

* An instance of a cluster running on an Application Server

e What do these abstractions allow us _ﬁ_

to infer by relation?
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> How Did it All Come Together?

Agile Development
o @
 Adaptable to -

= Unknown Performance and Needs
= Changing Requirements
 High Visibility provides sl T
» Decreased Risk
= Jncreased Business Value
oo« Collaborative DeSiIgnpremoles: . = 0 e e e e
= Diverse Viewpoints

» Shared Experience "
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