Major SAAS Upgrades by a
Production DevOps Team

Ll
<
=
TP
B
>=
X< 2
L. LL

> |ntroduction

Calvin Domenico Jesse Campbell

Director Sr. Software Engineer, Lead of Development
Marie Hetrick Alastair Firth

Manager of Hosting Software Engineer

Elijah Aydnwylde Brandon Arsenault

Sr. Sysadmin, Lead of Operations Project Manager

Patrick McAndrew

Sr. Sysadmin, Lead of Infrastructure

Introduction | 2 of 26

> The “Before” Environment

e ~20 custom-developed services accessed by 2
10,000+ school districts nationwide

e Software not designed for SaaS

* Virtualized environment in Managed Hosting
datacenter limited visibility and prevented
admin access to infrastructure

> The “Before” Environment

Problem Scenario

m Customers reporting networking issues
= Troubleshooting isolates load balancer
= MSP says it can't be

Solution
= Bypass the load balancer

Cost
m [ost customers

» Man-weeks of troubleshooting and workarounds (attempts to work with
MSP almost doubled this)

The “Before” Environment | 4 of 26

OPERATORS
OPERATE
SEE

©

> The Project

 SOLVE the Managed Services problem without incurring the business
and man-hour costs of colocating

 DESIGN a datacenter for the purpose of serving this
specific software as SaaS

 PLAN up to b5x growth within 2 years, as well as upcoming changes to
the software (i.e. clustering)

* PROOF the new datacenter in a local virtualized environment so that as
much of it as possible can be "ported" directly to the new hardware

The Project | 6 of 26

The Challenge:

DON'T LAND
THE PLANE

g3

> The Challenge

* One week of total downtime for all operations

* Six months maximum limit for datacenter
design, code development & implementation “TT

* Design, Build, Code, Upgrade, and Migrate all
at once!

The Challenge | 8 0f 26

DEVELOPMENT

%

> The Development

Requirements

* What to build?

= Manage multiple layers
e Virtual Infrastructure
e Machine

* Application
 Data

 Why should we build it?

The Development: Requirements | 10 of 26

> The Development
What Did We Build?

* Automated Control engine for existing @
technologies

s NFS, Git, Puppet, VSphere, bash, perl
e Unified control front-end =
 Extensible framework *
* Notecoveny: destioyanciepliida t 0§ e 0

 Easyto pick up and create a
new complete stack

The Development: What Did We Build? | 11 of 26

> The Development

The Team =
* Methodology j;
° Menta“ty
* Motivation a
* Personality =k

 Ownership?
 Who writes the spec?

The Development: The Team | 12 of 26

> The Development L

The Dev Environment i

Manager/Liason

 Tight schedule
= Fast iterations
* Design, Develop, Deploy, Destroy
= Feature driven design
e Communication oevs
= Oversight / insight / \
e Single point of contact
= Open access for devs
Ops

= Appeasing stakeholders
e Legitimate concerns

Infra

The Development: The Dev Environment | 13 of 26

> Then and Now
Time to Create and Deploy a Site

3-5.24

DAYS : HOURS

Number of words required to get
a vVirtual Machine online

then 23523 words

now 5 words |

Then and Now: Time to Bring a Virtual Machine Online 16 of 26

> Then and Now

Time to Configure an Application Server

3.<5

DAYS | HOURS, AUTOMATED

> Then and Now

Time to Configure a Database Server

1i<5

WEEK i HOURS, AUTOMATED

> Then and Now
Time to Deploy a Patch (Hours)

4500 160 40 3

HOURS HOURS HOURS HOURS

18 Months Ago 12 Months Ago 6 Months Ago Today

__________ L 3 e e e

> Then and Now

Time to Re-balance Database Layer

1.5. 4/4

MONTHS OF OVERTIME DECISION-MAKING/4 HOURS REVIEW
2 People Automated

Then and Now: Time to Re-balance Database Layer | 20 of 26

> Then and Now

Time to Recover Our Entire Environment

5+ <24

WEEKS | HOURS

Then and Now: Time to Recover Our Entire Environment 21 of 26

how did it all

COME TOGETHER?

L Y ¢
D ¢

> How Did it All Come Together?

Abstracting Enterprise Components

* Abstracting System and Software
Components

= What are our Software Components?
* Application Agents
* Customer Databases

= What are our System Components?

* Application Servers
 Database Servers

How Did it All Come Together?: Abstracting Enterprise Components | 23 of 26

> How Did it All Come Together?

Abstracting Harder

 What are the relationships between these
components?

° HOW Can they be abStraCted'?
m Cluster

* A selection of Customers grouped ﬂﬂ
together and handled by a single Agent
= Node

* An instance of a cluster running on an Application Server

e What do these abstractions allow us _ﬁ_

to infer by relation?

How Did it All Come Together?: Abstracting Harder | 24 of 26

> How Did it All Come Together?

Agile Development
o @
 Adaptable to -

= Unknown Performance and Needs
= Changing Requirements
 High Visibility provides sl T
» Decreased Risk
= Jncreased Business Value
oo« Collaborative DeSiIgnpremoles: . = 0 e e e e
= Diverse Viewpoints

» Shared Experience "

How Did it All Come Together?: Agile Development 25 of 26

end

