
Linux Systems Capacity
Planning
Rodrigo Campos
camposr@gmail.com - @xinu
USENIX LISA ’11 - Boston, MA

mailto:camposr@gmail.com
mailto:camposr@gmail.com

Agenda

Where, what, why?

Performance monitoring

Capacity Planning

Putting it all together

Where, what, why ?

75 million internet users

1,419.6% growth (2000-2011)

29% increase in unique IPv4 addresses (2010-2011)

37% population penetration

Sources:
Internet World Stats - http://www.internetworldstats.com/stats15.htm
Akamai’s State of the Internet 2nd Quarter 2011 report - http://www.akamai.com/stateoftheinternet/

http://www.internetworldstats.com/stats15.htm
http://www.internetworldstats.com/stats15.htm
http://www.internetworldstats.com/stats15.htm
http://www.internetworldstats.com/stats15.htm

Where, what, why ?

High taxes

Shrinking budgets

High Infrastructure costs

Complicated (immature?) procurement processes

Lack of economically feasible hardware options

Lack of technically qualified professionals

Where, what, why ?

Do more with the same infrastructure

Move away from tactical fire fighting

While at it, handle:

Unpredicted traffic spikes

High demand events

Organic growth

Performance Monitoring

Typical system performance metrics

CPU usage

IO rates

Memory usage

Network traffic

Performance Monitoring

Commonly used tools:

Sysstat package - iostat, mpstat et al

Bundled command line utilities - ps, top, uptime

Time series charts (orcallator’s offspring)

Many are based on RRD (cacti, torrus, ganglia,
collectd)

Performance Monitoring

Time series performance data is useful for:

Troubleshooting

Simplistic forecasting

Find trends and seasonal behavior

Performance Monitoring

Performance Monitoring

"Correlation does not imply causation"

Time series methods won’t help you much for:

Create what-if scenarios

Fully understand application behavior

Identify non obvious bottlenecks

Monitoring vs. Modeling
“The difference between performance
modeling and performance monitoring is
like the difference between weather
prediction and simply watching a weather-
vane twist in the wind”

Source: http://www,perfdynamics,com/Manifesto/gcaprules,html

http://www.perfdynamics.com/Manifesto/gcaprules.html#tth_sEc2.2
http://www.perfdynamics.com/Manifesto/gcaprules.html#tth_sEc2.2

Capacity Planning

Not exactly something new...

Can we apply the very same techniques to modern,
distributed systems ?

Should we ?

What’s in a queue ?

Agner Krarup Erlang

Invented the fields of traffic engineering and
queuing theory

1909 - Published “The theory of Probabilities
and Telephone Conversations”

What’s in a queue ?

Allan Scherr (1967) used the
machine repairman problem to
represent a timesharing system
with n terminals

What’s in a queue ?

Dr. Leonard Kleinrock

“Queueing Systems” (1975) - ISBN 0471491101

Created the basic principles of packet switching while
at MIT

What’s in a queue ?

S

Open/Closed
Network

(A) λ

W
R

X

A Arrival Count

λ Arrival Rate (A/T)

W Time spent in Queue

R Residence Time (W+S)

S Service Time

X System Throughput (C/T)

C Completed tasks count

(C)

Service Time

Time spent in processing (S)

Web server response time

Total Query time

Time spent in IO operation

System Throughput

Arrival rate (λ) and system throughput (X) are the same
in a steady queue system (i.e. stable queue size)

Hits per second

Queries per second

IOPS

Utilization
Utilization (ρ) is the amount of time that a queuing node
(e.g. a server) is busy (B) during the measurement
period (T)

Pretty simple, but helps us to get processor share of an
application using getrusage() output

Important when you have multicore systems

ρ = B/T

Utilization

CPU bound HPC application running in a two core
virtualized system

Every 10 seconds it prints resource utilization data to a
log file

Utilization
(void)getrusage(RUSAGE_SELF, &ru);
(void)printRusage(&ru);
...
static void printRusage(struct rusage *ru)
{
 fprintf(stderr, "user time = %lf\n",
 (double)ru->ru_utime.tv_sec + (double)ru->ru_utime.tv_usec / 1000000);
 fprintf(stderr, "system time = %lf\n",
 (double)ru->ru_stime.tv_sec + (double)ru->ru_stime.tv_usec / 1000000);
} // end of printRusage

10 seconds wallclock time
377,632 jobs done
user time = 7.028439
system time = 0.008000

Utilization

ρ = B/T
ρ = (7.028+0.008) / 10
ρ = 70.36%

We have 2 cores so we
can run 3 application

instances in each server
(200/70.36) = 2.84

Little’s Law

Named after MIT professor John Dutton Conant Little

The long-term average number of customers in a
stable system L is equal to the long-term average
effective arrival rate, λ, multiplied by the average time a
customer spends in the system, W; or expressed
algebraically: L = λW

You can use this to calculate the minimum
amount of spare workers in any application

Little’s Law

L = λW

λ = 120 hits/s

W = Round-trip delay + service time

W = 0.01594 + 0.07834 = 0.09428

L = 120 * 0.09428 = 11,31

tcpdump -vttttt

Utilization and Little’s Law

By substitution, we can get the utilization by multiplying
the arrival rate and the mean service time

ρ = λS

Putting it all together

Applications write in a log file the service time and
throughput for most operations

For Apache:

%D in mod_log_config (microseconds)

“ExtendedStatus On” whenever it’s possible

For nginx:

$request_time in HttpLogModule (milliseconds)

Putting it all together

Putting it all together

Generated with HPA: https://github.com/camposr/HTTP-Performance-Analyzer

https://github.com/camposr/HTTP-Performance-Analyzer
https://github.com/camposr/HTTP-Performance-Analyzer

Putting it all together

A simple tag collection data store

For each data operation:

A 64 bit counter for the number of calls

An average counter for the service time

Putting it all together
Method Call Count Service Time (ms)

dbConnect 1,876 11.2

fetchDatum 19,987,182 12.4

postDatum 1,285,765 98.4

deleteDatum 312,873 31.1

fetchKeys 27,334,983 278.3

fetchCollection 34,873,194 211.9

createCollection 118,853 219.4

Putting it all together
Call Count x Service Time

Se
rv

ic
e

T
im

e
(m

s)

Call Count

fetchKeys

fetchCollection

dbConnect fetchDatum
postDatum

deleteDatum

createCollection

Modeling

An abstraction of a complex system

Allows us to observe phenomena that can not be easily
replicated

“Models come from God, data comes from the devil” -
Neil Gunther, PhD.

Modeling
Clients

Web Server Application Database

Requests Replies

Modeling
Clients

Web Server Application Database

Requests Replies

Cache

Modeling

We’re using PDQ in order to model queue circuits

Freely available at:

http://www.perfdynamics.com/Tools/PDQ.html

Pretty Damn Quick (PDQ) analytically solves queueing
network models of computer and manufacturing
systems, data networks, etc., written in conventional
programming languages.

http://www.perfdynamics.com/Tools/PDQ.html
http://www.perfdynamics.com/Tools/PDQ.html

Modeling

CreateNode() Define a queuing center

CreateOpen() Define a traffic stream of an
open circuit

CreateClosed() Define a traffic stream of a
closed circuit

SetDemand() Define the service demand for
each of the queuing centers

Modeling
$httpServiceTime = 0.00019;
$appServiceTime = 0.0012;
$dbServiceTime = 0.00099;
$arrivalRate = 18.762;

pdq::Init("Tag Service");

$pdq::nodes = pdq::CreateNode('HTTP Server',
$pdq::CEN, $pdq::FCFS);
$pdq::nodes = pdq::CreateNode('Application Server',
$pdq::CEN, $pdq::FCFS);
$pdq::nodes = pdq::CreateNode('Database Server',
$pdq::CEN, $pdq::FCFS);

Modeling
 =======================================
 ****** PDQ Model OUTPUTS *******
 =======================================

Solution Method: CANON

 ****** SYSTEM Performance *******

Metric Value Unit
------ ----- ----
Workload: "Application"
Number in system 1.3379 Requests
Mean throughput 18.7620 Requests/Seconds
Response time 0.0713 Seconds
Stretch factor 1.5970

Bounds Analysis:
Max throughput 44.4160 Requests/Seconds
Min response 0.0447 Seconds

Modeling

0"

10"

20"

30"

40"

50"

60"

0.
00
09
8"

0.
00
10
3"

0.
00
10
8"

0.
00
11
3"

0.
00
11
8"

0.
00
12
3"

0.
00
12
8"

0.
00
13
3"

0.
00
13
8"

0.
00
14
3"

0.
00
14
8"

0.
00
15
3"

0.
00
15
8"

0.
00
16
3"

0.
00
16
8"

0.
00
17
3"

0.
00
17
8"

0.
00
18
3"

0.
00
18
8"

0.
00
19
3"

0.
00
19
8"

0.
00
20
3"

0.
00
20
8"

0.
00
21
3"

0.
00
21
8"

0.
00
22
3"

0.
00
22
8"

0.
00
23
3"

0.
00
23
8"

0.
00
24
3"

0.
00
24
8"

0.
00
25
3"

Sy
st
em

w
id
e*
Re

qu
es
ts
*/
*se

co
nd

*

Database*Service*7me*(seconds)*

System*Throughput*based*on*Database*Service*Time*

Modeling

Complete makeover of a web collaborative portal

Moving from a commercial-of-the-shelf platform to a
fully customized in-house solution

How high it will fly?

Modeling

Customer Behavior Model Graph (CBMG)

Analyze user behavior using session logs

Understand user activity and optimize hotspots

Optimize application cache algorithms

Modeling

Initial
Page

Active
Topics

Control
Panel

Unanswer
ed Topics

Create
New Topic

Read
Topic

Answer
Topic

User
Login

User
Logout

Private
Messages

0.73

0.6

0.1

0.3

0.2

0.08

0.8

Modeling

Now we can mimic the user behavior in the newly
developed system

The application was instrumented so we know the
service time for every method

Each node in the CBMG is mapped to the application
methods it is related

References
Using a Queuing Model to Analyze the Performance of
Web Servers - Khaled M. ELLEITHY and Anantha
KOMARALINGAM

A capacity planning / queueing theory primer - Ethan
D. Bolker

Analyzing Computer System Performance with
Perl::PDQ - N. J. Gunther

Computer Measurement Group Public Proceedings

http://capacitricks.posterous.com/using-a-queuing-model-to-analyze-the-performa
http://capacitricks.posterous.com/using-a-queuing-model-to-analyze-the-performa
http://capacitricks.posterous.com/using-a-queuing-model-to-analyze-the-performa
http://capacitricks.posterous.com/using-a-queuing-model-to-analyze-the-performa
http://capacitricks.posterous.com/a-capacity-planning-queueing-theory-primer
http://capacitricks.posterous.com/a-capacity-planning-queueing-theory-primer
http://www.perfdynamics.com/iBook/ppa_new.html
http://www.perfdynamics.com/iBook/ppa_new.html
http://www.perfdynamics.com/iBook/ppa_new.html
http://www.perfdynamics.com/iBook/ppa_new.html
http://www.cmg.org/proceedings/
http://www.cmg.org/proceedings/

Questions answered here

Thanks for attending !
Rodrigo Campos

camposr@gmail.com

http://twitter.com/xinu

http://capacitricks.posterous.com

mailto:camposr@gmail.com
mailto:camposr@gmail.com
http://twitter.com/xinu
http://twitter.com/xinu
http://capacitricks.posterous.com
http://capacitricks.posterous.com

