
Scaling on EC2 in a fast-paced environment
Practice and Experience Report

LISA 11

Nicolas Brousse, Lead Operations Engineer, TubeMogul, Inc.
Email: nicolas@TubeMogul.com

 Abstract — Managing a server infrastructure in a fast-
paced environment like a start-up is challenging. You have little
time for provisioning, testing and planning but still you need to
prepare for scaling when your product reaches the tipping
point. Amazon EC2 is one of the cloud providers that we
experimented with while growing our infrastructure from 20
servers to 500 servers. In this paper we will go over the pros
and cons of managing EC2 instances with a mix of Bind, LDAP,
SimpleDB and Python scripts; how we kept a smooth working
process by using NFS, auto-mount and shell-scripting; why we
switched from managing our instances based on tailor-made
AMI/Shell-scripting to the official Ubuntu AMI, Cloud-init and
puppet; and finally, we will go over some rules we had to follow
carefully to be able to handle billions of daily non-static http
request across multiple Amazon EC2 regions.

	

 Index Terms - Amazon EC2, scalability, fault-
tTubeMogulolerance, infrastructure, DevOps.

I. WHAT IS AMAZON EC2 AND HOW DOES IT WORK?

 Amazon AWS1 provide a wide range of web-services.
Amazon EC22 is part of AWS as a public cloud solution.
EC2 let you start servers, called instances3, on-demand. You
are billed per-hour of usage and can stop an instance at any
time. You can start your instance in a given geographic
Region and Availability Zone4.
 Because of the large adoption of EC2, Amazon added a

layer of indirection so that each AWS account’s Availability
Zones can map to different physical data center equivalents5.

When starting an instance, you will generally have to
provide at least four pieces of information: the AMI6 (server
image), the instance type7 (ram/CPU/arch), the Security
Group8 (firewall rules) and the Availability Zone. You can
start an instance by using the Amazon EC2 API or the web
console. By default an Amazon instance is started with some
defined ephemeral storage space. Any data on it will be lost
if you stop the instance. To use permanent storage you need
to use solution like EBS. When stopping a server you lose
the attached public and private IP. A new instance will have
different IPs. The only way to keep a public static IP is to
use Amazon EIP9.

 In September 2010, Amazon introduced some important
features: Tagging, Filtering, Import Key Pair, and
Idempotency. By adding customized tags (like hostname or
profile name) you can easily filter your instances or EBS10
volumes based on the given tags. In short, tagging and
filtering lets you manage your own meta-information for
each Amazon cloud resources.

II. KEEP SOME ORDER IN YOUR CLOUD

 There are many client bindings built for the Amazon
EC2 API which make it quite easy to use and implement. We
started to use EC2 in 2008 by taking advantage of the
computing ability that Amazon provide. We start a few
dozen of servers for a few hours a day to fetch and aggregate
data from different partners. The aggregated data are pushed
into our shared MySQL cluster at our Colo center.

 In Figure 2, you can see how we interact with EC2 to
crawl our partners API and store data in our database. 1) our

1/9

Fig 1. Amazon EC2 : Region and Availability Zone
Fig 2. EC2 and Colo center

mailto:nicolas@tubemogul.com
mailto:nicolas@tubemogul.com

application server calls the Amazon API at defined interval
to start Amazon instances. 2) Amazon launch the instances
we requested. 3) we push our code to the EC2 instances and
start our program. 4) our application open an SSH tunnel to
our databases. 5) we crawl our partner’s API and aggregate
the data as we want. 6) we write the results to our databases.
7) EC2 instances kill them-selves when they are done
crawling.
 This design works great and requires really low
maintenance. Though, when you work in a startup
environment, product evolve quickly. We needed to quickly
develop our new video analytic product with a large number
of servers to handle the analytics for billions of video stream
per month. We chose to build this new product entirely on
EC2. This let us to change the application quickly while the
product grew without worrying about adding servers, rack,
wiring, etc. Because of the nature of our product, we needed
permanent storage, that’s why we started to use EBS
volumes.
 To be able to add or remove nodes easily with different
instance profiles it’s important to be able to quickly identify
what a server is doing and identify what its role is (Web
server, Database, Hadoop namenode/datanode, etc.). To keep
some order in our cloud we used clear security group, human
readable hostnames (no ip-XXX.compute.internal or domU-
XXX.compute.internal), NFS home directories and a strong
and flexible monitoring.

A. Controlling access to the servers

 1) Amazon EC2 Security Groups can get a bit
cumbersome to manage especially when you want to access
servers from anywhere without updating your rules while
keeping a strong security policy. It’s easy to forget to update
or remove an old ip, etc. This is why we chose to manage
our servers by setting up OpenVPN11 servers on two of our
Amazon instance using static IP, aka EIP. The ingress rules
for our Security Groups stay simple by allowing SSH only
from those VPN servers and by opening only the required

public port if any. The VPN (using OpenVPN with auth-
ldap12 plugin) add another layer of security ensuring that
only people with a valid username and password and a valid
unique certificate can get access.
 2) In addition to firewalls, we needed to give restricted
access to some DBA, developers or contractor. Some needed
root access. Our rule of thumb: “You only get the permission
you really need”. No need to give root access to every server
to your boss if he don’t even know what to do with it. To
manage those permissions and user accounts we used
OpenLDAP13. All our instances are configured with
pam_ldap. We extensively use pam_filters to grant access
based on hostname, host group and Availability Zone.

At any time we can grant or revoke access to any users for a
server or multiple servers in one or multiple regions.

B. Identify running instances

 Having obscure hostnames doesn’t make your life easy
when you start to deal with multiple instance profiles and
multiple products with an extra-small sysop team (one or
two people). When a product is in its early days with
frequent changes, developers often needed access to the
servers to be able to troubleshoot issues and find out why
their last release wasn’t working as expected. To help
identify our hosts we used one of our EC2 instances as a
management server configured with a DNS service (Bind14)
patched for the ldap backend15 and a LDAP service
(OpenLDAP 2.4) using some of our own LDAP schema. For
each host we stored in LDAP the private IP (10.0.0.0/8) and
the public IP (it can be an EIP). Each host that we started
used an AMI configured with the given private IP of the
name server. Our resolv.conf would look like this:

When starting an instance we also used the user-data to
update the /etc/hostname. The user-data is an optional
parameter you can use when starting an EC2 instance. This
can support up to 16KB data. On the server you can fetch
those user data at boot through an init script doing a curl
command:

 curl -s http://169.254.169.254/latest/user-data

From there, a lot become possible. In our case, we initially
used the user-data just to pass our server hostname, example:
“hostname=dev-mysql01”. Note that, in the same way you
can have access to many meta-data of your running instance:

 curl -s http://169.254.169.254/latest/meta-data/

pam_filter |(host=dev-mysql01.us-east-1b)(host=dev-mysql01.us-
east-1)(host=dev-mysql01.*)(host=dev-mysql*.us-east-1b)
(host=dev-mysql*.us-east-1)(host=dev-mysql*.*)(host=*.us-
east-1b)(host=*.us-east-1)(host=*)

domain <product>.private
search <product>.private <product>.public
nameserver 10.X.X.X

2/9

Fig 3. EC2 and our private network

http://169.254.169.254/latest/meta-data/
http://169.254.169.254/latest/meta-data/

The pam ldap was configured to use the DNS entry to get
the LDAP server IP.

uri ldaps://ldap.<product>.private

We started instances using a Java command line tool, called
ec2ldap. We wrote it using Typica16 (Java Binding for
Amazon API), SQLite17 and LDAP. We kept tracking of all
our instances name and profiles in a SQLite database and
used a script called Cerveza wrote in Tcl/Tk to access our
hosts easily and do large maintenance with some one-liners:

./cerveza remote mysql[1-40] service mysql restart

 With the SQLite database and Cerveza, it was easy for
us to run over all our EC2 instances and update the
resolv.conf if our management box went down and got a new
IP. This worked well for a while but there were some
important single point of failures18 (SPOF) that finally bit us.

C. The benefit of NFS auto-mounted home directory

 As stated earlier, developers needed easy access to the
servers. To make their life easier we did setup an NFS export
on our management box and used Autofs to mount the home
directories on all our EC2 instances.

This setup makes it easy to run a script across multiple
instances without copying the instance to each host. It has
been a great help in our dev environment but also when
troubleshooting many servers in production. It’s convenient,
because you get your bash aliases or user script everywhere
you login, etc. Unfortunately there is a downside, your
access files can get slow, home dir can get stuck or
permanently mounted if a service write to the home
directory or keep a file descriptor open, etc.
 In many cases we ended up using those auto-mounted
home directories to run shared scripts on the first boot of an
instance to deploy code, build our Raid devices with
multiple EBS or reassemble them using mdadm or LVM.

D. Instance monitoring with Ganglia19 and Nagios20

 We choose to monitor our infrastructure with Nagios
and Ganglia. It was a no-brainer for Nagios as we already
used it to monitor our Colo servers and were quite used to its
configuration. Ganglia was new for us as we used to graph
our servers with Munin21. In our case, the decision between
Munin and Ganglia was made on poll versus push model.
Munin server poll each client, this requiring many resources
on the main server especially when building each graphs.
Ganglia uses a push model, each client report to the main

/etc/auto.master:
 /home /etc/auto.home intr,soft

/etc/auto.home:
 * fstype=nolock,noatime,soft,intr nfs.<zone>.private:/
home/&

process (gmond). Ganglia allow much more flexibility in
graphing grids and clusters although we couldn’t use the
multicast support. For security purposes, Amazon EC2
doesn’t let you to do multicast (or broadcast) on their
network.

 We configured multiple gmond processes on our
management box to listen on different ports and collect data
in different cluster group (one per Amazon Security Group)
then just one gmetad process to collect all the data from each
local gmond. This helped us to organize our graphs. Our
EC2 instance were getting configured at first boot by
running a ganglia configuration script that ensures the
instance reports to the correct gmond process (if instance in
SG dev, reports to port 8630, if SG mysql, report to 8631,
etc.). Ganglia is a powerful solution so we were able to use
the Python module to graph22 our Java process using JMX23
with JPype24 . All those data are grouped in different
dashboard and give us a quick way to spot issues.

 For our Monitoring we use Nagios 3.2 with NSCA25 and
regex (in nagios.cfg: use_regexp_matching=1). We defined
some generic service definitions for each cluster of servers.
Some of our checks were directly looking at our RRD26 data
generated by Ganglia. Because of the quickly growing
numbers of servers and services monitored we started to
have too much I/O (read/write RRD files). We started to use
rrdcached27 which solved most of the problem but we still
had many Nagios active checks which occasionally lead to
swapping or slowness during checks. To fix the problem we
simply split our ganglia load between two different
management boxes, both servers use rrdcached to reduce
IOs.

III. LEARNING THE HARD WAY
(or how to lock yourself out of your servers...)

 While we were building our infrastructure and
upgrading our network configuration, we were aware of few
SPOF being introduced but they had a low impact or no
impact on our production environment. However, what was
initially designed for convenience and laziness became
critical. The way we started to depend on those services
make them even more critical. We didn’t see it coming
initially. This is the story of a three days nightmare starting
with a VPN outage, then NFS/LDAP outage locking us out
of all our EC2 instances.

A.The outage

1) For some reason, our file system storing our Nagios and
Ganglia files were corrupted (EBS or Raid problem). This
lead to many process getting stuck trying to access the
faulty device. Too many resources were being used so the
OOM Killer started killing processes, including our VPN
process. After many reboots of the management server,
nothing came back up. The console output showed a
prompt for fsck check due to the faulty device. We had to
kill the instance and start a new one.

3/9

2) The new instance failed to start. It prompted us again for
fsck on our EBS volumes (used for NFS home dir). In
fact, the mount point was defined in the fstab in the AMI,
so it kept trying to mount the failing EBS with no way for
us to fix it. There is no KVM with EC2, so we didn’t have
any way to try to recover from this situation. We ended up
starting a new instance with an old AMI from which we
removed the fstab so we could start the instance and finish
it manually by running fsck, etc.

3) After reboot, our instance got a new Private IP allocated.
This meant a new IP for our DNS, LDAP Producer and
NFS. After recovering our instance we reimported our last
ldif backup to LDAP. As the DNS server IP was
hardcoded in our instance, we had to “manually” login on
each server using a local account with the ssh keypair
then update the resolv.conf, dnsmasq.conf, dhclient.conf,
restart autofs and dhclient.

4) Unfortunately, as we used an old AMI for our
management box, we lost many configuration settings
breaking our Nagios and Ganglia services but also our
command line tool (Cerveza) used to query our SQLite
DB and easily access any hosts. This slowed our ability to
recover a basic setup to be able to see what was wrong
and fix it.

5) The ssh backdoor didn’t always worked. We had to restart
many instances manually. At boot they couldn’t load our
boot scripts from NFS. We had to login and finish the
boot process manually by fixing Autofs then run the boot
scripts. We also had to reconfigure many ssh tunnels, fix
mysql replication, and recover missing or outdated
configuration files, etc.

6) Some of the servers were using private IP in the EC2
Security Group, rebooting those server make the outage
more complex as we needed to review all our security
rules.

Luckily, this outage didn’t affect our production services but
it did lock us out of our servers for a long time. Needles to
say, we took some time to revisit what went wrong and how
we can fix it.

B. What we quickly fixed

1) One of the biggest pains during this outage, was our pam
ldap and ssh configuration. Long timeout was preventing
us from login into many servers (the cumul of timeout
were higher than our ssh LoginGraceTime timeout, set to
2 min.), so the first thing was to reduce the autofs and
ldap timeout and change nsswitch to look at the local
account before ldap so even if our dns and ldap goes
down, we still have an ssh backdoor to login and do local
fix or maintenance.

2) We fixed our resolv.conf to handle better failover using:
options attempts:1 timeout:1

3) We set up a better service and dns caching on each host
using nscd instead of dnsmasq. We enabled caching for
group, passwd, hosts and services.

4) We configured a secondary VPN service on our second
management server and configured the OpenVPN clients
to use “remote-random” option.

5) We stopped saving our fstab in the AMI so we could boot
our instance even when a fsck is required.

6) We stopped using private IPs in our EC2 security group
7) We use a Haproxy28 loadbalancer for DNS and LDAP

service via Public IP using EIP.
8) Better version control of our boot scripts and AMI. We

now manage almost everything with our configuration
management tool.

IV. GOING WORLWIDE

 While our business evolved, we had a need to have a
presence in different part of the world. This is easy to do
with Amazon multiple region, though we have response time
constraint with many partners. Our ninety-ninth percentile
response time must be under 120 ms, including network
round trip. Our partners are within 60 ms of our Amazon
servers so it doesn’t leave us much room especially if you
consider the network variation inside Amazon’s network or a
noisy neighbor.

/etc/auto.master :
 /home /etc/auto.home timeout=5,retry=0,rw,intr,soft

/etc/nsswitch.conf:
 passwd: files ldap
 shadow: files ldap
 group: files ldap

/etc/ldap.conf:
 timelimit 15
 bind_timelimit 5

4/9

Fig 4. Network Flow between Clusters and Grid

 While building our international clusters, we tried to
keep two goals in mind. First, how to reuse our existing tools
and automate as much as we can. Second, do not create new
SPOF failures in one region that would impact the others.

A. Simplify the instance boot process

 With over 500 EC2 instances spread in multiple regions,
we had to make our life easier. We got rid of our tool
“ec2ldap” in Java and rewrote Cerveza in Python using
Boto29 (Amazon API binding for Python). We rewrote
Cerveza to handle full instance start/stop/reboot with profile
management. We chose Python over Java because of the
scripting nature of Python. We didn’t want to slow ourselves
down in a compile/release process for this simple tool. A
scripting language lets us add features quickly and do quick
bug fixing.

 Our previous outage led us to stop using SQLite. We
wanted a solution where we do not have to rely on a local
database or to be forced to start/stop instances from a
management server. We replaced SQLite for Amazon
SimpleDB30 to store only profile information. For the rest
we leverage the Tagging feature of the Amazon API. All our
hosts or EBS volumes are tagged with hostname, device
name, etc. This gives us much more flexibility as we can run
Cerveza from our own laptop. We are not depending on the
location of our SQLite database, we can start, stop, reboot
instances from anywhere for any kind of server we want to
start. The other major thing we got rid is the home made
AMI. It takes lot of time to build and maintain an AMI, so
it’s not practical to deploy changes, etc. We chose to move to
the official Ubuntu EC2 AMI and use cloud-init31. This is
powerful. Cloud-init allow us to kick off our instance with
different profiles by passing advanced user-data or scripts.

When starting a host with Cerveza for the first time we need
to specify the instance profile we want to start (Hadoop
node, MySQL, Java server, etc):

 cerveza -m noc -- --zone ap-southeast-1a --start demo01
--profile UbuntuGeneric32Bit

To stop the host:

 cerveza -m noc -- --zone ap-southeast-1a --stop demo01

To start the host a second time, we don’t need to define the
profile again, cerveza know it by querying SimpleDB :

 cerveza -m noc -- --zone ap-southeast-1a --start demo01

 Besides using LDAP for DNS data and SimpleDB for
profiles information of existing hosts, Cerveza also uses
Yaml32 to define our instances profiles and volume profiles.

Our Ubuntu Generic 32 Bit instance is generally used for
development purpose. In this profile we just define some
basic information (instance type, key pair, default SG, AMI,
etc.) but also important user-data. By passing a list of files,
Cerveza will automatically concat all the given file to
generate a compressed mime-multipart data file and pass it
in the user-data when launching the instance. Cloud-init will
read it and execute each script when the server boot. Cloud-
init allow advanced configuration and many possibilities. In
our case, the user-data script cloud-config-puppet.txt let us
configure Puppet33, our configuration management tool, at
boot time.

B. Use a configuration management tool

 We were thinking about using a configuration
management tool for a long time, but hesitated until LISA
10. As we changed our AMI and started to use cloud-init, we
took the opportunity to deploy puppet on all our hosts and
start using it. We briefly looked at Cfengine34 and Chef35
too, but finally decided to go with Puppet as it seemed a
little more documented and already fully integrated to
Cloud-init.

 Configuring and deploying puppet is fast and easy but
using it properly is not that obvious. We had to deal with a
couple of annoying problems like huge CPU spikes on each
client, obscure errors for non-initiate people, process not
running because of a lock file after reboot, etc. We addressed
most of those issues. We found out that abusing of Augeas36
is not necessarily good. We were able to speed up our puppet
run from over 400 seconds to less than 15 seconds by
replacing Augeas by puppet templates (mostly on long sysctl
configuration). We use some ruby environment variables37 to
optimize each puppet client run, though we are still
experimenting those. We stopped running puppet as a
daemon as “fileserver” used too much resources. We had
cases were puppet was using over 1GB of ram leading OOM
Killer to kill some other process like our Membase38 server.
We now setup our puppet in a crontab running every half an

--- !InstanceProfile
name: UbuntuGeneric32Bit
desc: Ubuntu Generic instance profile without EBS
Volumes
aws: !InstanceAws
 ami: { us-east-1: ami-a6f504cf, us-west-1:
ami-957e2ed0, ap-southeast-1: ami-7c423c2e, ap-
northeast-1: ami-3a0fa43b, eu-west-1: ami-339ca947 }
 security_group: devzone
 key_pair: tm-devzone
 type: c1.medium
 elastic_ip: false
volumes: []
startup_scripts: []
shutdown_scripts: [shutdown]
user_data: [cloud-config-base.txt, setup-hostname.sh,
root-login.sh, cloud-config-puppet.txt]
check_ec2_kernel: 2.6.35-28-virtual

5/9

hour. To avoid a peak of requests on our puppet master we
run the cron at random minutes on each client.

 In the end, Puppet makes our life easier to manage and
change configuration on multiple servers in four different
data centers. Our puppet masters are located in our Colo
center on US east coast. They are setup with Apache 2 +
Phusion Passenger39 with one master and one failover server.
The failover server also handles the puppet reports using
Puppet Dashboard40. We patched the puppet clients to report
their FQDN as hostname instead of using there certificate
name.

 We currently don’t have a clear dev environment for our
puppet configuration, though our dev servers are setup to use
a different environment so we can test our modules changes
in dev before pushing to production. We are looking at better
ways to manage this.

 # schedule puppet to run via cron
 $minute1 = generate('/usr/bin/env', 'sh', '-c', 'printf $((RANDOM
%29+0))')
 cron {
 "puppet_run":
 ensure => present,
 command => "/usr/sbin/puppetd --onetime --no-daemonize --
logdest syslog > /dev/null 2>&1",
 environment => ['RUBY_HEAP_MIN_SLOTS=500000',
 'RUBY_HEAP_SLOTS_INCREMENT=250000',
 'RUBY_HEAP_SLOTS_GROWTH_FACTOR=1',
 'RUBY_GC_MALLOC_LIMIT=500000'
],
 user => "root",
 minute => $minute1,
 hour => "*";
 }

in puppet.pp:

class puppet inherits puppet::init {
 if $hostname =~ /^dev-*$/ or $ec2_security_groups ==
"devzone" {
 augeas {
 "puppet_env":
 context => "/files/etc/puppet/puppet.conf/main",
 onlyif => "get environment != 'development'",
 changes => "set environment 'development'",
 notify => Exec["puppet"];
 }
 }
}

in puppet.conf:

[development]
 manifestdir = $confdir/dev/manifests
 manifest = $manifestdir/site.pp
 modulepath = $confdir/dev/modules:$confdir/modules

C. Mirroring DNS, LDAP, NFS

 Because of the multi-region and our response time
constraint, we had to get DNS servers on each region. We
use some “gateway” servers whose role is to serve as local
DNS server, LDAP and NFS. As our DNS depend on LDAP,
we initially setup LDAP Proxy with query caching which
was working great except when running a non-cached query.
We were getting some latency spike of up to four seconds
for a DNS response. This was affecting our production
response time in some cases increasing our percentage of
timed out requests. We changed this configuration to use
LDAP syncrepl41. Each LDAP server on each region is a
master replicating one of our master server on US EAST.
This solved our DNS response time and pam ldap response
time. Though, since we use Autofs for our home directories
we had to address the problem for our NFS server. On each
region we use a NFSv4 mount with FS-Cache
(cachefilesd42), this aimed to improve read speed on each
region. The key thing we did was to remove the NFS mount
point from the updatedb configuration because it would
generally kill the server performance.

 We are still not fully satisfied of our current solution and
may stop using NFS for our home directory as it introduces a
possible snowball effect in case our NFS fails on US east.
Auto-mounted home directory doesn’t give us any more
added value as the product matures and our server

Fig 5. Network Flow between multiple AWS regions

/etc/updatedb.conf:

PRUNE_BIND_MOUNTS="yes"
PRUNEPATHS="/tmp /var/spool /media /opt/openldap/var /
EBS /home"
PRUNEFS="NFS nfs nfs4 rpc_pipefs afs binfmt_misc proc
smbfs autofs iso9660 ncpfs coda devpts ftpfs devfs mfs shfs sysfs
cifs lustre_lite tmpfs usbfs udf fuse.glusterfs fuse.sshfs ecryptfs
fusesmb devtmpfs bindfs"

6/9

infrastructure grows. Also, we are having more clients using
the NFS doing multiple mount/unmount leading to frequent
home directories being stuck with a “Stale NFS file
handle”43.

D. What else?

 To speed up our application deployment in multiple
regions we started to use Amazon S344 with localized
buckets. Instead of pushing our files from our Colo to each
server, we push the files once to each of the localized S3
buckets then fetch the files to release on S3 from each server
and deploy them locally.

 Overall, with this infrastructure, we still have room for
many improvement:

1) One clear blocker is NFS, we definitely plan to entirely
remove NFS with auto-mounted home directory and get
back to a more standard way to manage our servers. We
are introducing more security checks and rules limiting
production access so there shouldn’t be any more need of
user home directory being synchronized this way on all
our servers.

2) We currently have two different sets of VPN and LDAP
servers, one in our Colo and one in EC2. We want to
centralize them to simplify our user and ACLs
management.

3) We still have some “Gateway” servers, doing bridge
between our regions. They are not based on the Ubuntu
EC2 AMI. For lower maintenance on our side, we want to
migrate everything onto the official Ubuntu EC2 AMI and
fully use Cloud-init possibilities. We also want to get to a
more standardized approach of managing our setup by
using our internal Debian repository when required.

4) We are looking at Amazon VPC45 to be able to better
manage our private IPs and clusters. It can help to have
better security policies in place preventing your backend
from being accessed int the public internet, etc.

5) We plan to look again at Amazon ELB46 to manage our
different load balancing. One of the biggest drawbacks we
had with ELB was the lake of visibility. No access logs
and no clear error reporting make things hard to
troubleshoot especially when you start having 500 errors
returned by ELB during traffic spike.

V. LESSON LEARNED

 Evolution of your infrastructure must stay fault-tolerant
in any case. What was simple and working at first can get
complex in a multi-region / high latency environments.

 In a small team with limited resources you will have
little time to get everything right. You will miss important
point leading to outages. Make sure to have a valid backup
strategy and have a recovery procedure.

 Never build a SPOF, even if it’s for a “non-critical” use.
As you start to rely more on this services (and you generally

don’t see it coming), your SPOF can have more impact than
you would anticipate.

 Infrastructure legacy can become a pain to maintain.
Don’t be afraid to revisit what you did and change it. What
was true at one point of your design may not be true
anymore.

 Scaling your infrastructure in a fast paced environment
require a lot of automation. which is why using a
configuration management tool early would prevent you
many headaches later on.

ACKNOWLEDGMENTS

 I would like to thank the LISA Chair and my shepherd,
Marc Staveley, for the opportunity of this paper. It’s an
insightful experience that I would not hesitate to recommend
to anyone.
 I also want to thanks my close friends and family who
continuously support me in my career choices.
 This paper wouldn’t have been possible without the
opportunity I got by moving to the USA and joining
TubeMogul in 2008 after just few Skype interviews. Hence,
I express all my respect and consideration to John Hughes
and Brett Wilson, TubeMogul’s Founders.

REFERENCES

7/9

1 Amazon Web Service (AWS)
Amazon Web Services (AWS) delivers a set of services that together form a
reliable, scalable, and inexpensive computing platform “in the cloud”.
Website: http://aws.amazon.com

2 Amazon Elastic Cloud (EC2)
Amazon Elastic Compute Cloud (Amazon EC2) is a web service that
provides resizable compute capacity in the cloud. It is designed to make
web-scale computing easier for developers.
Website: http://aws.amazon.com/ec2

3 Amazon Instance
An Amazon Instance is the AWS version of a server. It’s known to be a Xen
DomU Virtual Machine. Instances come in a variety of configurations and
are designed to provide predictable and dedicated computing power on
demand.

4 Availability Zone (AZ) and Regions
Amazon EC2 provides the ability to place instances in multiple locations.
Amazon EC2 locations are composed of Availability Zones and Regions.
Regions are dispersed and located in separate geographic areas (US, EU,
etc.). Availability Zones are distinct locations within a Region that are
engineered to be isolated from failures in other Availability Zones and
provide inexpensive, low latency network connectivity to other Availability
Zones in the same Region.

5 Matching EC2 Availability Zone Across AWS Account
By Eric Hammond on July 28, 2009
“Summary: EC2 availability zone names in different accounts do not match
to the same underlying physical infrastructure. This article explains a trick
which can be used to figure out how to match availability zone names
between different accounts.”
Blog post: http://alestic.com/2009/07/ec2-availability-zones

6 Amazon Machine Image (AMI)
An Amazon Machine Image (AMI) is an encrypted machine image stored in
Amazon S3. It contains all the information necessary to boot instances of
your software.

http://aws.amazon.com
http://aws.amazon.com
http://aws.amazon.com/ec2
http://aws.amazon.com/ec2
http://alestic.com/2009/07/ec2-availability-zones
http://alestic.com/2009/07/ec2-availability-zones

8/9

7 Amazon Instance Type
A specification that defines the memory, CPU, storage capacity, and hourly
cost for an instance. Some instance types are designed for standard
applications while others are designed for CPU-intensive applications.
Link: http://aws.amazon.com/ec2/instance-types

8 Amazon Security Group (SG)
A security group is a named collection of access rules. These access rules
specify which ingress (i.e., incoming) network traffic should be delivered to
your instance. All other ingress traffic will be discarded.

9 Amazon Elastic IP (EIP)
Elastic IP addresses are static IP addresses designed for dynamic cloud
computing. An Elastic IP address is associated with your AWS account not a
particular instance, and you control that address until you choose to
explicitly release it. Unlike traditional static IP addresses, however, Elastic
IP addresses allow you to mask instance or Availability Zone failures by
programmatically remapping your public IP addresses to any instance in
your account.

10 Amazon Elastic Block Store (EBS)
Amazon Elastic Block Store (EBS) provides block level storage volumes
for use with Amazon EC2 instances. Amazon EBS volumes are off-instance
storage that persists independently from the life of an instance. Amazon
Elastic Block Store provides highly available, highly reliable storage
volumes that can be attached to a running Amazon EC2 instance and
exposed as a device within the instance.
Website: http://aws.amazon.com/ebs

11 OpenVPN “is a free and open source software application that
implements virtual private network (VPN) techniques for creating secure
point-to-point or site-to-site connections in routed or bridged configurations
and remote access facilities. It uses SSL/TLS security for encryption and is
capable of traversing network address translators (NATs) and firewalls.” in
Wikipedia: The Free Encyclopedia.
Website: http://openvpn.net

12 Auth-LDAP plugin for OpenVPN
Website: http://code.google.com/p/openvpn-auth-ldap

13 OpenLDAP is an open source implementation of the Lightweight
Directory Access Protocol.
Website: http://www.openldap.org

14 BIND is by far the most widely used DNS software on the Internet. It
provides a robust and stable platform on top of which organizations can
build distributed computing systems with the knowledge that those systems
are fully compliant with published DNS standards.
Website: http://www.isc.org/software/bind

15 Our Bind 9 install is patched with bind9-ldap + internal patch to support
our LDAP schemas and specifics EC2 needs.
Website: http://bind9-ldap.bayour.com

16 Typica is Java client library for a variety of Amazon Web Services.
Website: http://code.google.com/p/typica

17 SQLite is a software library that implements a self-contained, serverless,
zero-configuration, transactional SQL database engine. SQLite is the most
widely deployed SQL database engine in the world. The source code for
SQLite is in the public domain.
Website: http://www.sqlite.org

18 Single Point Of Failure (SPOF)
“A single point of failure (SPOF) is a part of a system that, if it fails, will
stop the entire system from working.[1] They are undesirable in any system
with a goal of high availability, be it a network, software application or
other industrial system. Systems are made robust by adding redundancy in
all potential SPOF and is generally achieved in computing through high-
availability clusters. Redundancy can be achieved at the internal component
level, at the system level (multiple machines), or site level (replication).” in
Wikipedia: The Free Encyclopedia.

19 Ganglia “is a scalable distributed system monitor tool for high-
performance computing systems such as clusters and grids. It allows the
user to remotely view live or historical statistics (such as CPU load
averages or network utilization) for all machines that are being monitored.”
in Wikipedia: The Free Encyclopedia.
Website: http://ganglia.info

20 Nagios “is a popular open source computer system and network
monitoring software application. It watches hosts and services, alerting
users when things go wrong and again when they get better.” in Wikipedia:
The Free Encyclopedia.
Website: http://www.nagios.org

21 Munin is a networked resource monitoring tool that can help analyze
resource trends and "what just happened to kill our performance?"
problems. It is designed to be very plug and play. A default installation
provides a lot of graphs with almost no work.
Website: http://munin-monitoring.org

22 Graphing Java JMX Object values with Ganglia and Python using
JPype
Blog post: http://goo.gl/LL7X3

23 Java Management Extensions (JMX)
Set of specifications for application and network management in the J2EE
development and application environment

24 JPype is an effort to allow python programs full access to java class
libraries. This is achieved not through re-implementing Python, as Jython/
JPython has done, but rather through interfacing at the native level in both
Virtual Machines.
Website: http://jpype.sourceforge.net

25 Nagios Service Check Acceptor (NSCA)
NSCA allows you to integrate passive alerts and checks from remote
machines and applications with Nagios. Useful for processing security
alerts, as well as deploying redundant and distributed Nagios setups.
Website: http://goo.gl/ikagM

26 RRDtool is the OpenSource industry standard, high performance data
logging and graphing system for time series data. RRDtool can be easily
integrated in shell scripts, perl, python, ruby, lua or tcl applications.
Website: http://oss.oetiker.ch/rrdtool

27 rrdcached is a daemon that receives updates to existing RRD files,
accumulates them and, if enough have been received or a defined time has
passed, writes the updates to the RRD file.
Website: http://oss.oetiker.ch/rrdtool/doc/rrdcached.en.html

28 Haproxy is a “Reliable, High Performance TCP/HTTP Load Balancer”
Website: http://haproxy.1wt.eu

29 Boto is a Python interface to Amazon Web Services
Website: http://code.google.com/p/boto

30 Amazon SimpleDB (SDB)
Amazon SimpleDB is a highly available, flexible, and scalable non-
relational data store that offloads the work of database administration.
Developers simply store and query data items via web services requests,
and Amazon SimpleDB does the rest.
Website: http://aws.amazon.com/simpledb

31 Cloud-init is the Ubuntu package that handles early initialization of a
cloud instance. It is installed in the UEC Images and also in the official
Ubuntu images available on EC2.
Website: https://help.ubuntu.com/community/CloudInit

32 YAML is a human friendly data serialization standard for all
programming languages.
Website: http://yaml.org

http://aws.amazon.com/ec2/instance-types
http://aws.amazon.com/ec2/instance-types
http://aws.amazon.com/ebs
http://aws.amazon.com/ebs
http://openvpn.net
http://openvpn.net
http://code.google.com/p/openvpn-auth-ldap
http://code.google.com/p/openvpn-auth-ldap
http://www.openldap.org
http://www.openldap.org
http://www.isc.org/software/bind
http://www.isc.org/software/bind
http://bind9-ldap.bayour.com
http://bind9-ldap.bayour.com
http://code.google.com/p/typica
http://code.google.com/p/typica
http://www.sqlite.org
http://www.sqlite.org
http://ganglia.info
http://ganglia.info
http://livepage.apple.com/
http://livepage.apple.com/
http://munin-monitoring.org
http://munin-monitoring.org
http://goo.gl/LL7X3
http://goo.gl/LL7X3
http://jpype.sourceforge.net
http://jpype.sourceforge.net
http://goo.gl/ikagM
http://goo.gl/ikagM
http://oss.oetiker.ch/rrdtool
http://oss.oetiker.ch/rrdtool
http://oss.oetiker.ch/rrdtool/doc/rrdcached.en.html
http://oss.oetiker.ch/rrdtool/doc/rrdcached.en.html
http://haproxy.1wt.eu
http://haproxy.1wt.eu
http://code.google.com/p/boto
http://code.google.com/p/boto
http://aws.amazon.com/simpledb
http://aws.amazon.com/simpledb
https://help.ubuntu.com/community/CloudInit
https://help.ubuntu.com/community/CloudInit
http://yaml.org
http://yaml.org

9/9

33 Puppet is an open source configuration management tool.
Website: http://puppetlabs.com

34 CFEngine automates IT processes and ensures the availability and
consistency of applications and services.
Website: http://cfengine.com

35 Chef is an open-source systems integration framework built specifically
for automating the cloud. No matter how complex the realities of your
business, Chef makes it easy to deploy servers and scale applications
throughout your entire infrastructure. Because it combines the fundamental
elements of configuration management and service oriented architectures
with the full power of Ruby, Chef makes it easy to create an elegant, fully
automated infrastructure.
Website: http://www.opscode.com/chef

36 Augeas is a configuration editing tool. It parses configuration files in
their native formats and transforms them into a tree. Configuration changes
are made by manipulating this tree and saving it back into native config
files.
Website: http://augeas.net

37 Fine tuning your garbage collector By Chris Heald on June 13, 2009
Blog post: http://goo.gl/5GYBL

38 Membase Server is the lowest latency, highest throughput NoSQL
database technology on the market. When your application needs data, right
now, it will get it, right now. A distributed key-value data store, Membase
Server is designed and optimized for the data management needs of
interactive web applications, so it allows the data layer to scale out just like
the web application logic tier – simply by adding more commodity servers.
Website: http://www.couchbase.org/membase

39 Phusion Passenger, aka mod_rails or mod_rack, allow easy and robust
deployment of Ruby on Rails application on Apache and Nginx Webservers.
Website: http://www.modrails.com

40 Puppet Dashboard is a web interface and reporting tool for your Puppet
installation. Dashboard facilitates management and configuration tasks,
provides a quick visual snapshot of important system information, and
delivers valuable reports. In the future, it will also serve to integrate with
other IT tools commonly used alongside Puppet.
Website: http://puppetlabs.com/puppet/related-projects/dashboard

41 The LDAP Sync Replication engine, syncrepl for short, is a consumer-
side replication engine that enables the consumer LDAP server to maintain
a shadow copy of a DIT fragment. A syncrepl engine resides at the
consumer and executes as one of the slapd(8) threads. It creates and
maintains a consumer replica by connecting to the replication provider to
perform the initial DIT content load followed either by periodic content
polling or by timely updates upon content changes.
Documentation: http://www.openldap.org/doc/admin24/replication.html

42 The cachefilesd daemon manages the cache data store that is used by
network filesystems such a AFS and NFS to cache data locally on disk.
Man page: http://linux.die.net/man/8/cachefilesd

43 Stale NFS file handle
Note: http://sysunconfig.net/unixtips/stale_nfs.txt

44 Amazon Simple Storage Service (S3)
Amazon S3 provides a simple web services interface that can be used to
store and retrieve any amount of data, at any time, from anywhere on the
web. It gives any developer access to the same highly scalable, reliable,
secure, fast, inexpensive infrastructure that Amazon uses to run its own
global network of web sites. The service aims to maximize benefits of scale
and to pass those benefits on to developers.
Website: http://aws.amazon.com/s3

45 Amazon Virtual Private Cloud (VPC)
Amazon Virtual Private Cloud (Amazon VPC) lets you provision a private,
isolated section of the Amazon Web Services (AWS) Cloud where you can
launch AWS resources in a virtual network that you define. With Amazon
VPC, you can define a virtual network topology that closely resembles a
traditional network that you might operate in your own datacenter. You have
complete control over your virtual networking environment, including
selection of your own IP address range, creation of subnets, and
configuration of route tables and network gateways.
Website: http://aws.amazon.com/vpc

46 Amazon Elastic Load Balancing (ELB)
Elastic Load Balancing automatically distributes incoming application
traffic across multiple Amazon EC2 instances. It enables you to achieve
even greater fault tolerance in your applications, seamlessly providing the
amount of load balancing capacity needed in response to incoming
application traffic. Elastic Load Balancing detects unhealthy instances
within a pool and automatically reroutes traffic to healthy instances until the
unhealthy instances have been restored. You can enable Elastic Load
Balancing within a single Availability Zone or across multiple zones for
even more consistent application performance.
Website: http://aws.amazon.com/elasticloadbalancing

http://puppetlabs.com
http://puppetlabs.com
http://cfengine.com
http://cfengine.com
http://www.opscode.com/chef
http://www.opscode.com/chef
http://augeas.net
http://augeas.net
http://goo.gl/5GYBL
http://goo.gl/5GYBL
http://www.couchbase.org/membase
http://www.couchbase.org/membase
http://www.modrails.com
http://www.modrails.com
http://puppetlabs.com/puppet/related-projects/dashboard
http://puppetlabs.com/puppet/related-projects/dashboard
http://www.openldap.org/doc/admin24/replication.html
http://www.openldap.org/doc/admin24/replication.html
http://linux.die.net/man/8/cachefilesd
http://linux.die.net/man/8/cachefilesd
http://sysunconfig.net/unixtips/stale_nfs.txt
http://sysunconfig.net/unixtips/stale_nfs.txt
http://aws.amazon.com/s3
http://aws.amazon.com/s3
http://aws.amazon.com/vpc
http://aws.amazon.com/vpc
http://aws.amazon.com/elasticloadbalancing
http://aws.amazon.com/elasticloadbalancing

