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Abstract

In troubleshooting a complex system, hidden depen-
dencies manifest in unexpected ways. We present
a methodology for uncovering dependencies between
behavior and configuration by exploiting what we call
“weak transitive relationships” in the architecture of
a system. The user specifies known architectural re-
lationships between components, plus a set of infer-
ence rules for discovering new ones. A software sys-
tem uses these to infer new relationships and suggest
culprits that might cause a specific behavior. This
serves both as a memory aid and to quickly enu-
merate potential causes of symptoms. Architectural
descriptions, including selected data from Configura-
tion Management Databases (CMDB) contain most
of the information needed to perform this analysis.
Thus the user can obtain valuable information from
such a database with little effort.

1 Introduction

Troubleshooting is about linking symptoms with
causes. The speed of troubleshooting depends upon
how quickly one can do that, as well as how complete
the list of potential causes can be made. It can fur-
ther be enhanced so that more frequent causes are
checked first. In a very complex system, it can be
laborious to make a list all of the potential causes of
a behavior.

In this paper, we present a method for deriving a
description of causal relationships from a description
of system knowledge. This method maps symptoms
to possible causes via a methodology that we call
“weak transitivity”. Architectural facts and logical

inference rules describe relationships between archi-
tecture and causation in a knowledge network. So,
while architecture might vary, inference rules, de-
limiting meanings of relationships, are invariant and
reusable. One can use these rules to efficiently reason
about potential causes and to eliminate options incre-
mentally as troubleshooting progresses. The system’s
logic and reasoning are straightforward, simple to un-
derstand, and scalable to arbitrarily large networks.

The key contributions of this work include:

1. An exterior (“black box”) model of the mean-
ing of relationships between architectural com-
ponents, that permits logical inference based on
incomplete or partial information.

2. The ability to exploit existing knowledge – e.g in
Configuration Management Databases – to aid
in the troubleshooting process.

3. The ability to generate a human-readable expla-
nation of the possibly subtle relationships be-
tween components.

4. A set of useful, reusable classes and relationships
along with rules that define their meanings.

2 Background

Our work arose from ideas for and against the use of
logical reasoning in system administration[4, 9], but
we approach the problem of applying logic to system
administration from a new angle based on knowledge
representation, specifically Topic Maps[23, 24]. In
using topic maps to index documentation, we found
that a particular way of thinking about the map led



to more efficient use of documentation. If we view
the map as a set of links between topics, it is easy
to get lost in the map, while if we view a map as a
set of chains of reasoning, the relationships become
clearer and the map becomes more useful[7]. The
same kind of reasoning that can be used to under-
stand documentation can be utilized to understand
complex systems. This paper applies our approach
to the specific task of troubleshooting, which is – at
its core – a problem of understanding and coping with
what is known and unknown.

There are plenty of other approaches to
troubleshooting[25]. Snitch[17] applies a maximum-
entropy approach to creating dynamic decision trees
for troubleshooting support, using a probabilistic
model inferred from practice. Snitch is related to
“revealed causal modeling”[18, 19], which also at-
tempts to measure causality as a set of probabilities
of relationships. Troubleshooting has an intimate
relationship with cost of operations[12], which
justifies use of decision trees and other probabilistic
tools to minimize cost and maximize value. The
Maelstrom approach[8] exploits self-organization in
troubleshooting to re-organize the process based
upon hidden precedences. STRIDER[26] employs
knowledge of behavior of similar hosts and Windows
registries to infer possible trouble points. Outside
the system administration domain, SASCO[15]
guides troubleshooting by heuristics, using what it
calls a “greedy approach” to pick most likely paths
to a solution.

There are several differences between our work and
these prior approaches to troubleshooting. We base
our troubleshooting upon an incomplete description
of the architecture of the system under test, rather
than statistical information about likelihood. We use
architectural reasoning to infer the nature of depen-
dencies in the system, and use those inferences to
guide troubleshooting. This leads to a synergy be-
tween the accuracy of the description and effective-
ness of troubleshooting, which leads in turn to in-
creasing accuracy of the architectural information as
it is revised to reflect observations. The net result
is that we show how to apply something we already
need to have – a global map of the architecture – to
the troubleshooting process.

2.1 Formal reasoning

While it is certainly a kind of formal reasoning, this
work is difficult to place in the context of other ap-
proaches to formal reasoning. It is a form of logi-
cal abduction[13, 16, 20] that explains connections
between entities. Very complex systems have been
built to reason using abduction, but none of these is
guaranteed to output an easily understandable se-
quence of logical dependencies. Our method has
its roots in using logic programming for configura-
tion management[9], but also takes inspiration from
methods used to manipulate topic maps in library
science[23, 24], and is closely related to ontological
reasoning in the semantic web. Unlike ontological
reasoning, which attempts to match concepts based
upon their interaction with others, we concentrate
on inferring relationships between individual entities,
based upon facts and rules that describe an architec-
ture.

Our methods are somewhat removed from tradi-
tional approaches to logical inference and computer
logic. First, we sidestep the difficult problem of rea-
soning with modal logic, by encoding modality into
our relationships. A “modal logic” includes the abil-
ity to distinguish modal facts in English, e.g., “X
might affect Y” from non-modal facts, e.g., “X af-
fects Y.” Instead of modeling modality, we incorpo-
rate all modality into our relationships, which makes
our rules for relationships somewhat more complex,
but also reusable and perhaps easier to compute.

2.2 Information modeling

Our work includes a limited form of information mod-
eling as proposed by Parsons[21]. However, our no-
tation escapes what Parsons calls the “tyranny of
classification”[22] in which an instance must be a
member of some class. We escape that tyranny
by only partially defining such classifications, and
leaving what is unknown out of the data specifica-
tion. Likewise, our data are much simpler in struc-
ture from that in the Shared Information and Data
model(SID)[14], mostly due to lack of structure (or
even the need for structure) in our approach.
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2.3 Knowledge management

Our problem is a sub-problem of the larger issue
of knowledge management for complex networks.
Knowledge management is a key challenge of the
coming decade. The technologies and tools for system
administration and configuration management have
all progressed to the point where the main difficulty
lies in the knowledge required to integrate them to
produce a seamless IT infrastructure. With many of
the basic problems of system administration essen-
tially solved, a major system administration concern
of the next decade will be loss of business continuity,
due to inability to maintain and utilize appropriate
systems knowledge. For example, when system ad-
ministrators are fired or leave, the business can suffer
from lack of knowledge of what they did, resulting
in increased downtime, risk, and cost. It costs real
money for a new system administrator to learn what
his or her predecessors did. Knowledge and under-
standing of system complexity are also major limita-
tions to system growth (scalability).

Cfengine was recently redesigned with knowledge
in mind, using a model of “promises”[1, 4, 5, 6] that
separates the intentions of system components from
the mechanism by which they achieve those inten-
tions. Promises combine clearly defined goals with
self-documenting statements that have an associa-
tive structure. From there, it is a small step to
create an associative meta-model (semantic web) of
promises, which can be integrated with any other
kind of semantically annotated documentation. Such
a knowledge model can be used not only for searching
for relevant information, but also for reasoning and
for encoding expertise. Expert systems have been
discussed many times before, but they are usually
data-intensive and expensive to maintain. Here, we
present a mechanism that is both cheaper and is de-
signed to work for humans rather than to replace
them. Most important, it arises naturally from the
act of managing systems with Cfengine and requires
no separate data collection.

2.4 Configuration Management
Databases (CMDB)

Configuration Management Databases (CMDB), as
defined by the IT Infrastructure Library (ITIL),
gather system data, usually in a brute-force taxo-
nomic form. Common data models in use include the
Common Information Model (CIM) and the Shared
Information and Data Model (SID). These concen-
trate on configuration data of specific hosts, while
their meanings and inter-relationships are assumed
to be entirely implicit in the taxonomy. The problem
with this (and all hierarchical classifications) is that
new information can only be introduced by expand-
ing the model itself.

Our technology was developed specifically for
Cfengine and its cf-know utility (where the required
architectural model is available), though we describe
the techniques we use more generally here. The les-
son from Cfengine is that meta-models with weak
constraints avoid many of the pitfalls of ‘Object Ori-
ented’ hierarchical classification. The techniques can
be used with any kind of configuration management
database, provided that one can mine appropriate
kinds of relationships from it.

3 A motivating example

Using architectural knowledge for troubleshooting
might be a counter-intuitive idea, so here is a sim-
ple example. Suppose we have a very simple network
with a fileserver ‘host01’, a DNS server ‘host02’, and
a client workstation ‘host03’. We might code the re-
lationships between these hosts as a set of abstract
“sentences”, like:

host01 | is an instance of | file server
file server | provides | file service
host02 | is an instance of | dns server
dns server | provides | dns service
host03 | is an instance of | client workstation
client workstation | requires | file service
client workstation | requires | dns service

Each sentence has a subject, a verb, and an object
separated by vertical bars (|). Sentences are pre-
parsed into subject, verb, and object by the user; no
natural language parsing is employed. We call each
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such sentence a fact1.
From the base facts above, we can intuit several

other facts, including:

host01 | provides | file service
host02 | provides | dns service
host03 | requires | file service
host03 | requires | dns service
host03 | might depend upon | host01
host03 | might depend upon | host02

The last two are subtle: the fact that a host pro-
vides something does not mean that it provides it to
everyone who requires it.

Suppose that something goes wrong with this net-
work, e.g., host03 stops responding. The main prob-
lem in troubleshooting is to enumerate the entities
that can cause the symptoms, rule out causes, and
thus determine where to look for problems. Obvi-
ously, one symptom is that host03 is broken, which
according to the above can be due to a problem
with host03, a problem with host01, a problem with
host02, or a problem with the network connecting
the hosts. If we know more, e.g., that the network
is functional but that host03 DNS service is bro-
ken, then this rules out host01 and points to either
host02 or host03 as potentially problematic. If we
know as well that DNS is functional and host03’s
configuration for DNS is correct, this points toward
host02. In other words, the more we know, the more
we can eliminate and the narrower the sieve of op-
tions becomes.

What our system does is to suggest possibilities
in order of approximate likelihood, based upon a de-
scription of architecture. For example, in the above it
would first report the dependencies upon host01 and
host02, which are the “closest” possible causes ac-
cording to a notion of distance based upon the num-
ber of logical inferences required to connect two enti-
ties. Then, for each possibility, it can “explain” the
relationship between a probable cause and the symp-
tom, all from a description of architecture.

In this trivial case, one can easily do this by hand.
With systems of thousands of components, however,

1Functionally, these are just like facts in the logic
programming language Prolog, where our fact ‘client
workstation | requires | file service’ becomes the Prolog
fact requires(client workstation, file service).

the problem becomes more complex. In this pa-
per, we describe a mechanism whereby one can rea-
son about very complex architectures and obtain ex-
planations of complex dependencies between subsys-
tems. We verify our thinking via a simple prototype
that serves as a proof of concept. In describing our
ideas, we utilize the notation of the prototype, to en-
courage system administrators to try it out with their
data and see what it can do for them.

4 Entities and relationships

The key to our solution is a description (cached as a
database) describing the architecture of the underly-
ing system. The role of this description is to serve as
a model of locations and interactions. For this, we
appeal to a very old idea: entity-relationship model-
ing2. We describe the network as a graph of named
entities and relationships, either manually or by min-
ing the configuration.

Entities in the network are named by strings and
can be named at any level, including subnet, host,
component, or even software package. Kinds of enti-
ties include:

1. physical machines, e.g., ‘host01’.

2. software, e.g., ‘RHEL5’, ‘Linux’.

3. services, e.g., ‘LDAP’, ‘SMTP’, ‘HTTP’.

4. classes of physical items, e.g., ‘webserver’,
‘mailserver’.

An entity is a noun whose meaning does not change
over time. Nouns can represent classes of things, e.g.
‘client workstation’.

Relationships can be anything, including:

1. Dependencies, including ‘requires’ and
‘provides’.

2. Containment, including ‘is a part of’, ‘is an
instance of’.

2We refer specifically to the ER-diagrams utilized in Soft-
ware Engineering, as opposed to those utilized in database the-
ory. The former describe interactions, while the latter describe
functional dependencies.
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3. Causality, including ‘determines’,
‘influences’.

4. Connectivity, including ‘connected to’.

5. Intent, including ‘promises’, ‘uses’.

While entities are nouns, relationships are (usu-
ally) verbs. Any invariant relationship can be docu-
mented. Verbs can also represent classes of relation-
ships, e.g., ‘determines’, which allows many different
kinds of determination.

Most relationships are directional, i.e., if ‘A | is
a part of | B’ one cannot conclude that ‘B | is a
part of | A’, any more than “A is a part of B” would
imply that “B is a part of A” in English. However,
every relationship corresponds to a unique inverse
relationship that is simply another predefined formal
symbol. If ‘A | is a part of | B’, then ‘B | has
part | A’. The formal symbol ‘has part’ is defined
as the “inverse” of the formal symbol ‘is a part
of’.

5 Relationship to topic maps

One can also think of entities as “topics” and rela-
tionships as “associations” between topics in a topic
map[24, 23]. This is a kind of generalized ER-model
utilized usually in library science3. Unlike our sim-
plified ER-model, a topic map describes relationships
between three kinds of entities[23]:

1. Topics (entities) are analogous to entries in an
index of a book.

2. Associations (relationships) are analogous to
“See also” in a book index.

3. Occurrences are are analogous to page numbers
in an index, and specify “where” a topic is men-
tioned.

3In this paper, we will concentrate on a simple application
of the idea, and not a broader view. While what we do here
can be utilized with a variety of kinds of data, we concentrate
specifically on troubleshooting data and avoid more general
problem statements for clarity.

While this work was inspired by initial work in topic
maps, the results presented here are more broadly
applicable to any ER-model.

The most important thing we draw from topic
maps is the semantics of our representations. Our
ER-diagrams, like topic maps, are intended to define
entities through their relationships with other enti-
ties. Throughout this paper, we will make design
decisions that preserve “definition-like” qualities for
both entities and relationships. Notably:

1. Entities are static and do not change over time
(from the point of view of the reasoning system,
inside the formal model).

2. Relationships are static and do not change over
time.

3. Definitions are additive and define facets of a
thing. The total definition of a thing is the union
of partial definitions (just as in a dictionary).

Our definition of inverses as verb phrases is con-
sistent with the Cfengine-3 notion of inverse rela-
tionships, but differs from the more refined notion
of inverses in topic maps. In a topic map, a rela-
tionship is a noun phrase, and the meanings of sides
of the relationship are clarified via what are called
“roles”. For example, our statement ‘cat food’ ‘is
manufactured by’ ‘pet food companies’ would be
written in a topic map as “cat food” in role of “prod-
uct” has relationship “manufacture” to “pet food
companies” in role of “manufacturer”. We do not
need this extra complexity, so we sidestep it. What
we lose from this is that our prototype is only compat-
ible with “subject-verb-object” (SVO) natural lan-
guages (e.g., like English, French, etc.), as opposed
to “subject-object-verb” (SOV) languages (e.g., Ara-
bic, Japanese, etc.). The topic map mechanism han-
dles both SVO and SOV languages, by translating
relationships into foreign languages after processing.

6 Facts

The first step in utilizing our system is to create (or
transform) an appropriate database of suitable facts.
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Each fact is a subject-verb-object triple, where sub-
ject and object are system entities (or classes), and
the verb indicates some kind of relationship between
the two entities. Common kinds of facts include class
membership, e.g.,

couch1 | is an instance of | client workstation

class descriptions, e.g.,

client workstation | requires | file service

and ownership, e.g.,

couch1 | is owned by | Alva L. Couch

There is no checking as to whether facts make sense
in English. The system trusts the user to use rela-
tionships that are transitive verbs, and subject and
object that are nouns. There is no natural language
processing at all in the system. Subject, verb, and
object in the fact are syntactic tokens, and nothing
more.

6.1 Coding and avoiding hierarchy

Note that the way we specify facts looks very simi-
lar to object-oriented modeling, but there is an im-
portant difference. Our encoding method is non-
hierarchical, in the sense that there is no need to
place each host into a hierarchy of relationships. One
can do this when convenient, but it is not necessary
to the reasoning method. Thus one need not become
subject to the “tyranny of classification”, in which hi-
erarchy impedes information encoding[22]. Instead,
one can freely classify objects into several convenient
hierarchies, without contradiction. A machine can be
a kind of server, a member of an ownership hierarchy,
and a kind of client, with no confusion.

Hierarchy is not absent from our system; it is sim-
ply not essential. Complex entities with many parts
are easily modeled via part and subclass relation-
ships, e.g.,

dns server | has part | dns local zone information
dns server | has part | dns configuration file
dns server | is an instance of | server

with the obvious meanings. Users and privilege can
be modeled straightforwardly by thinking of the user
as a primary key:

Alva | refers to person | Alva L. Couch
Alva | uses shell | /bin/bash
Alva | administers | couch1
Alva | administers | couch2

to describe an entity ‘Alva’ who administers two ma-
chines ‘couch1’ and ‘couch2’.

As in the preceding example, one describes multi-
ple relationships by listing instances:

Mark | administers | couch1
Alva | administers | couch1

means that both administer ‘couch1’. Sets of facts
are treated as if all are true, i.e., listing two facts
implicitly connects them with logical ‘and’.

There is no equivalent to logical ‘or’ in the calculus,
nor is there any equivalent to negation. To express
that something is one thing or another, one can con-
struct a (synthetic) class ‘admin1’ with more than
one instance:

Mark | is an instance of | admin1
Alva | is an instance of | admin1
admin1 | administers | couch1

to denote that some instance of the class ‘admin1’
administers ‘couch1’.

Note that when a class is used in a fact, an instance
is implied; no class can “administer” anything. How-
ever, this form of disjunction is not exclusive and
thus does not preclude that both ‘Mark’ and ‘Alva’
administer ‘couch1’.

6.2 Modal facts

In our reasoning system, there are very precise mean-
ings of modal expressions in English such as ‘X |
can serve | Y’ or ‘X | might serve | Y’. The qual-
ifier ‘can’ implies capability but not intent: ‘X | can
serve | Y’ means that X is capable of serving Y but
not that X is actually serving Y. The qualifier ‘might’
means that there is some (as yet unknown) possibil-
ity of a thing. If we say ‘X | might serve | Y’, this
means that in some worlds, X serves Y and in others, X
is not known to serve Y. These are strength indicators
for one’s confidence that something is true: ‘might’
is stronger than ‘can’. Neither of these is a tempo-
ral distinction; if something might serve something
else, it still does or does not serve it, i.e., either ‘X |
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serves | Y’ is a fact, or not. The modal fact encodes
the possibility that the non-modal fact is present.
Later we will see that modal constructions have a
complex interaction with class membership (‘is an
instance of’) and structural (‘is a part of’) re-
lationships.

6.3 Pitfalls in declaring facts

The main trap in representing a fact is to represent
“too much”, so that the implications of a fact far
exceed what is intended. Representing “too much”
costs the administrator time in sifting through im-
possible alternatives, while representing “too little”
does not depict valid alternatives. Thus, the best
practical advice is “when in doubt, specify too lit-
tle.”.

Another way to say this is that one should adopt a
“maximum entropy principle” that what is not known
for sure is not considered to be known at all.

For example, suppose you do not really know that
a client workstation utilizes a specific file server. It
would be bad to declare that it uses something that
it might not, but fairly harmless to declare that it
uses some file server, identity unknown. The former
will misdirect the reasoning system, while the latter
will point out to the reasoning system that this par-
ticular facet of configuration is unknown, leading to
possibility rather than hard fact. This is what hap-
pened in the inferences in the first example, where
the relationship ‘might depend upon’ indicates that
uncertainty.

Another pitfall of encoding facts might best be
called the “tyranny of naming”. A system entity is
often best described by its attributes rather than its
name. The name of an object is – at best – nothing
more than a (hopefully) unique key. Obviously, it is
very bad to use the same name for two distinct things.
It might be best, therefore, to use automatically gen-
erated unique names for entities, e.g., ‘id29394510’,
and let attributes of the objects define their physical
identities, e.g.,

id29394510 | has hostname | couch1
id29394510 | has manufacturer | dell
id29394510 | has serial | 000-123-4567
id29394510 | is owned by | Alva

The unique key ‘id29394510’ need not be central to a
query; one can ask the system what entities influence
the (human) ‘Alva’, and it can respond with, e.g.,
hostnames.

A third pitfall of encoding facts is that – because
of the simplicity of our representation – relationships
often imply the types of their arguments. For exam-
ple, if one has the fact:

host01 | provides | dns service

then it is implicit in the relationship ‘provides’ that
‘host01’ is either a machine or a class of machines.
Saying, e.g., that:

Alva L. Couch | provides | dns service

is thus made somewhat nonsensical – a person can’t
be a machine or instance of a machine.

In topic maps, this ambiguity is resolved via the
concept of roles, which determine the types of the
subject and object of a relationship. Thus, notating
roles as subscripts, one might write:

host01 | machineprovidesservice | dns service

to encode the fact that ‘host01’ is an instance of
the generic class ‘machine’ and ‘dns service’ is an
instance of the generic class ‘service’. In this case,
the relationship between ‘host01’ and ‘dns service’
is the ternary symbol machineprovidesservice,
where roles are listed on the side to which they apply.
In the interest of simplicity, for this paper, roles will
remain implicit, but in general, roles can be useful
to disambiguate between relationships that are, in
fact, different: e.g., machineprovidesservice ver-
sus personprovidesservice.

7 Rules

We reason about troubleshooting using a simple cal-
culus of facts and rules that is inspired by – but
somewhat different from – ontological reasoning in
the semantic web. During ontological reasoning, one
connects two entities by looking at how they inter-
act with other entities. Two entities are “similar” if
they interact with nearly the same other entities. By
contrast, our rules do not concern similarity between
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entities, but instead derive relationships from rela-
tionships, without considering how entities are sim-
ilar or dissimilar. Rules suggest new facts in sev-
eral ways, including canonicalization, inverse rela-
tionships, transitive relationships, and implications.

7.1 Canonicalization

The purpose of canonicalization is to both save typ-
ing and ensure that representations of facts are suf-
ficiently precise to be useful. The relationship ‘is a’
is ambiguous; X | is a | Y could mean that X is an
instance of Y, or that X is a kind of Y. The canoni-
calization:

is a => is an instance of

disambiguates between these two alternatives (and
more). Canonicalizations are always denoted by
“=>”, and allow one to utilize a shorthand when
writing rules that is expanded later. In the prototype
implementation, we employ the following canonical-
izations:

is a superclass of => has subclass
has superclass => is a subclass of

to ensure that we only talk about subclass relation-
ships rather than the equivalent superclass relation-
ships. This is so all class relationships will be com-
parable.

7.2 Inverses

Inverses allow one to reverse a relationship so that
the object switches positions with the subject. The
inverse rule

is an instance of <> has instance

means that for every X and Y, if ‘X | is
an instance of | Y’, then ‘Y | has instance | X’
(and vice-versa). The inverse for a relationship is the
English phrase that – in English – represents the re-
versed relationship. Inverses are syntactic, and not
semantic. They are always defined, and never in-
ferred.

A few relationships are self-inverse, i.e., ‘is
a peer of <> is a peer of’, because ‘A | is a
peer of | B’ exactly when ‘B | is a peer of | A’.

Most inverses are simply other ways of stating
the same relationship, such as ‘is an instance of
<> has instance’, which means that ‘A | is an
instance of | B’ exactly when ‘B | has instance
| A’.

The meaning of an inverse in English is inciden-
tal to its use. E.g., if you define ‘foo <> bar’, then
these relationships are inverses, regardless of what
they might mean in English; this rule means that if
‘Alva | foo | Mark’, then ‘Mark | bar | Alva’.

7.3 Weak transitive rules

Weak transitive rules make connections between pre-
viously unconnected objects.

In mathematics, a transitive relation is a set of
ordered pairs R where for any A, B, and C, if
(A, B) ∈ R and (B, C) ∈ R, then (A, C) ∈ R. In
our context, a transitive relation is represented by a
verb phrase R where for any nouns A, B, C, if A | R|
B and B | R | C, then A | R | C. For example, ‘is a
part of’ is transitive: if A is a part of B, and B is a
part of C, then A is always a part of C. Examples of
some transitive relations are shown in Table 1.

Each of these relations corresponds to a transitive
rule in our reasoning system. The relations in the
table correspond to the rules

is larger than ˆ is larger than ˆ is larger than
is caused by ˆ is caused by ˆ is caused by
is the same as ˆ is the same as ˆ is the same as
depends upon ˆ depends upon ˆ depends upon
is a part of ˆ is a part of ˆ is a part of
is the same as ˆ is the same as ˆ is the same as

where “ˆ” delimits relationships.
However, in our system, there are rules that look

somewhat like the former, but whose antecedent and
consequent relationships differ from one another. We
call these weak transitive rules, because they look
somewhat like transitive rules but are not. For ex-
ample, if A is an instance of B and B provides C,
then A provides C, meaning that if something is a
member of a class that does something, the instance
does it too. Some examples of weak transitive rules
are listed in Table 2. We notate weak transitive rules
in the same way as transitive rules; the rules in the
table are notated as
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Fact 1 Fact 2 Implies...
A is larger than B B is larger than C A is larger than C
A is caused by B B is caused by C A is caused by C
A is the same as B B is the same as C A is the same as C
A depends upon B B depends upon C A depends upon C
A is a part of B B is a part of C A is a part of C
A is the same as B B is the same as C A is the same as C

Table 1: Transitive relationships correspond to transitive rules.

Fact 1 Fact 2 Implies...
A is an instance of B B provides C A provides C
A is an instance of B B requires C A requires C
A is larger than B B might be larger than C A might be larger than C
A might be larger than B B is larger than C A might be larger than C
A depends upon B B might be influenced by C A might be influenced by C

Table 2: Weak transitive rules look like transitive rules except that antecedents and consequent differ in
some way.
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Figure 1: One useful depiction of architecture is a graph in which nodes are entities and arrows represent
relationships. Base facts are depicted as solid lines, while two inferred facts are depicted as dashed lines.
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is an instance of ˆ provides ˆ provides
is an instance of ˆ requires ˆ requires
is larger than ˆ might be larger than ˆ might be

larger than
might be larger than ˆ is larger than ˆ might be

larger than
depends upon ˆ might be influenced by ˆ might be

influenced by

The point of weak transitive rules is to allow us to
codify all ways in which two entities can be connected
to one another. Each rule provides one form of con-
nection, and these are the only rules in our system
that make new connections.

While transitive rules often result in strong con-
nections (e.g., ‘determines’), weak transitive rules
often result in weaker connections (e.g., ‘might
influence’) that say less about the relationship be-
tween the two entities. The point of weak connec-
tions is that, even when strong connections do not
exist, weaker relationships can guide humans in find-
ing problems. Weak transitivity, as we define it here,
offers a simple and measured approach for enumerat-
ing possibilities.

7.4 Implications

Implication rules allow one to change the level of ab-
straction at which reasoning occurs. The implication
rule

provides -> determines

means that for every pair of entities ‘X’ and ‘Y’, if ‘X |
provides | Y’ then ‘X | determines | Y’. The pur-
pose of implication in our system is to allow one to
raise the level of abstraction to a level at which rea-
soning can occur. If ‘Z -> W’, then Z is more specific
than W, and W is more abstract (generic) than Z.
Specific facts may have no obvious inter-relationship,
while their generic equivalents may be obviously re-
lated.

For example, consider the facts:
host01 | is a file server for | host02
host02 | provides | print service

On the surface, these do not have any relationship to
each other. But if we translate to a higher level of
abstraction via the implications:

is a file server for -> influences
provides -> influences

then we get the higher-level facts
host01 | influences | host02
host02 | influences | print service

Then, by the transitive rule:
influences ˆ influences ˆ influences

we obtain the new fact
host01 | influences | print service

which might be quite important to know. In this
example – and many others – raising the level of ab-
straction exposes relationships that are not apparent
at lower levels.

7.5 An example of reasoning

Consider the example in Figure 1. A user is unable
to log on to a given host, so a diagnostician points
the prototype at the entity ‘User login’. The proto-
type invokes our algorithm to enumerate possibilities.
These possibilities are relationships between entities,
and not obviously anything that can be logically con-
nected with faults. The human user must evaluate
the possibilities.

For instance, if ‘User login’ is enabled by the
file ‘/etc/passwd’, then it ‘is influenced by’ it.
If ‘/etc/passwd’ can be changed by an opera-
tor, then it ‘can be influenced by’ the operator.
If ‘/etc/passwd’ is stored on the ‘disk’, then it
‘is influenced by’ the disk. If ‘/etc/passwd’ is
a kind of ‘database’ and databases are managed
by ‘Mark’, then ‘/etc/passwd | can be influenced
by | Mark’.

But often, more subtle and hidden connections are
the real cause of the problem. Here is a problem
we have experienced in real practice. A possible but
less than obvious cause of a missing user entry in
‘/etc/passwd’ is that the file is being managed by
an agent (like Cfengine), whose policy applies only
to a certain operating system type. That operating
system type is only detected in the prescribed man-
ner if the package ‘Linux Standard Base’ (LSB) is
installed. This in turn depends on the default set-
tings for the package manager in use. In other words,
the default settings of the package manager influence
user login.
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What we see in this example is the power of lat-
eral thinking. The system generates alternatives and
the administrator rules out each one in turn. The
system does not perform logical elimination to find
the cause of a fault, but rather the opposite: it enu-
merates possibilities the administrator may not have
considered.

7.6 Rules as shorthands

One purpose of rules in our system is to shorten nota-
tion and to allow automatic inference of related facts.
We could– in principle – simply enumerate all facts,
but this would be a laborious process. One rule suf-
fices as a substitute for writing down many facts.

For example, suppose that there are entities ‘LDAP’,
‘login privileges’, and ‘shell access’, where

LDAP ˆ can determine ˆ login privileges
login privileges ˆ can determine ˆ shell access

Note that these relationships describe potential for
interaction, rather than assurance of interaction.

Implications allow us to avoid writing down obvi-
ous outcomes. The rather obvious rule

can determine -> might determine

denotes that the capability to do a thing is necessary
in order for the possibility to do a thing. This rule
means that we do not have to write down the facts:

LDAP | might determine | login privileges
login privileges | might determine | shell access

because these are implied by the facts above and the
implication.

Likewise, if there is a transitive rule

can determine ˆ can determine ˆ can determine

then we do not have to write down the fact

LDAP | can determine | shell access

because the latter is a result of that rule and the base
facts above.

Rules can also interact with each other to produce
new rules. The implication

can determine -> might determine

and the transitive rule

can determine ˆ can determine ˆ can determine

together imply the rule

can determine ˆ can determine ˆ might determine

because possibility is weaker than capability. The rule
still applies if the consequent of the rule is weakened.

Moreover, if we have the obvious implication and
transitive laws

determines -> can determine
can determine ˆ can determine ˆ can determine

then we also can infer the rules

determines ˆ determines ˆ can determine
can determine ˆ determines ˆ can determine
determines ˆ can determine ˆ can determine

because the rule still applies if either of the an-
tecedents are strengthened, and ‘determines’ is
stronger than ‘can determine’. Also, from

determines -> can determine
determines ˆ determines ˆ determines

we can infer that

determines ˆ determines ˆ can determine

In general, any rule remains valid if we strengthen
the antecedents and/or weaken the consequent. This
is how the prototype actually works internally, and is
part of the reason it is efficient.

7.7 Rules as meaning

Another unique aspect of our system is how mean-
ing is imparted to symbols. In most logical sys-
tems there is some external model that defines what
symbols mean. In our system, the meaning is the
rules. The interactions between the relationship
‘influences’ and other relationships comprise its
meaning, and two different tokens (e.g., ‘influences’
and ‘coerces’) are identical whenever their interac-
tions with the other tokens are the same. In other
words, ontological equivalence between relationships
implies that the relationships have the exact same
meaning (with respect to all other relationships con-
sidered in the rules).

To understand this (rather subtle) idea, consider
the rules

11



determines -> influences
determines -> can determine
can determine -> might determine
influences -> can influence
can influence -> might influence
influences ˆ is a part of ˆ influences
is a part of ˆ influences ˆ influences
determines ˆ is a part of ˆ influences
is a part of ˆ determines ˆ determines
influences ˆ is an instance of ˆ might influence
is an instance of ˆ influences ˆ influences
determines ˆ is an instance of ˆ might determine
is an instance of ˆ determines ˆ determines

These rules – in a nutshell – encode the princi-
pal semantic differences between ‘influences’ and
‘determines’ with respect to ‘is a part of’ and ‘is
an instance of’. Note that if one influences an in-
stance of a thing, then one might influence all in-
stances (the containing class), or not. If one deter-
mines a thing, then one determines its part, but if one
determines a thing that is a part of another, one only
influences the larger thing. We consider this interac-
tion to be part of the definition of the relationships
‘determines’ and ‘influences’.

7.8 Classes and structures

The rules for classes and structures deserve special
comment. As in object-oriented modeling, a class of
things shares some common attributes and has in-
stances that have those attributes. Likewise, a struc-
ture has parts.

For classes, note that
is an instance of ˆ has attribute ˆ has attribute

is almost the definition of a class. But, perhaps
counter-intuitively

has attribute ˆ is an instance of ˆ might have
attribute

because the existence of an attribute in an instance
does not mean that it is present in all instances (and
thus the class). An instance might be also an instance
of a subclass.

Causal relationships have some subtleties.
Straightforwardly,

is an instance of ˆ is determined by ˆ is
determined by

because determining all of a class determines its in-
stances. But

is determined by ˆ is an instance of ˆ might be
determined by

because the fact that an instance determines some-
thing does not mean that every instance determines
it.

For structures, note that

determines ˆ has part ˆ determines

because if one determines a thing, one determines all
parts. But rather obviously,

has part ˆ determines ˆ influences

because determining a part does not implicitly deter-
mine the whole thing. Again, some subtleties arise:

influences ˆ has part ˆ might influence
has part ˆ influences ˆ might influence

because if something is a part of something larger,
and we influence the whole thing, we might or might
not touch a specific part. These rules might be con-
sidered the definition of ‘has part’.

8 Philosophical concerns

In using our system, several strongly held philosoph-
ical decisions become immediately obvious. We de-
signed the system around an open model of knowl-
edge, in the sense that no model is considered to
be complete. We also designed the inference sys-
tem so that knowledge is convergent, in the sense
that multiple rounds of inference converge to a fixed-
point knowledge base in a finite number of iterations.
These decisions give the reasoning system both speed
and scalability, but also match the fundamental phi-
losophy of Cfengine upon which the system is based.

8.1 Open knowledge

There are two ways of conceptualizing a knowledge
model. A closed-world model attempts to describe ev-
erything about a system, so that facts that are absent
are assumed to be false. In an open-world model[10],
facts describe only what is known, and leave other
facets to be described later. When a fact is absent,
this does not mean that it is false, but simply that it
is not known to be true (yet). It might become known
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to be true in the future, or not. In other words, open
world models are ambiguous about whether the lack
of a fact implies that it is false.

Like Cfengine, we adhere to an open-world philos-
ophy. We never assume that our knowledge model
is complete (or ‘closed’), and err on the side of try-
ing not to claim anything that is false. This makes
it extremely easy to add information later, once it is
known, while leveraging what is known in the mean-
time. Incompleteness of the architectural model does
not hamper its use if we remember that it is incom-
plete.

8.2 Convergent inference

Another concept we borrow from Cfengine is the no-
tion of convergence[2, 11, 9]. We think of the in-
ference system as creating new facts from old facts,
and new rules from old rules. An inference system is
convergent if – by some finite number of applications
of rules – it achieves a fixed point state in which no
further operations add new facts or rules[3, 6].

The reason for this philosophical stance is compu-
tational. This will allow us (in the future) to code
the inferences on a cloud at massive scale, because
we can compute resultant facts in advance and then
use Map/Reduce to find them[7]. This allows us to
turn a logic problem into a database search problem,
greatly simplifying implementation.

9 Queries

In the process of troubleshooting, the reasoning sys-
tem provides guidance as to possibilities by answering
several kinds of questions. These questions include
what entities are potentially related to a subsystem,
and precisely how two given entities are related to
one another.

9.1 What are nearby entities?

In a complex system, on average, the most closely re-
lated entities to a symptom are most likely to contain
the problem. Given an entity or set of entities with
symptoms, the system can list those entities with

some connection to the set, either via facts or rules.
The ‘closest’ entities are those with some direct con-
nection via a fact or implied fact, while more ‘distant’
entities are connected via weak transitive laws. The
distance between two entities (with respect to some
target relationship) is the number of weak transitive
laws applied to connect them, plus 1. Entities di-
rectly connected by a fact are distance 1 apart, and
every application of a weak transitive law adds 1.

Our concept of distance depends upon adopting
some target relationship as a goal. Typically, the re-
lationship of interest is ‘might influence’, for some
very subtle reasons. First, the reasoning system be-
comes more powerful as the level of abstraction in-
creases. The relationship ‘might influence’ is the
most abstract relationship that is useful in trou-
bleshooting. While we might actually be more in-
terested in ‘determines’, few strong lines of deter-
minism arise in a realistic set of facts. The relation-
ship ‘might influence’ has several more concrete
versions, specified via the implications

determines -> influences
determines -> can determine
can determine -> might determine
influences -> can influence
can influence -> might influence

where ‘can’ implies ‘might’ because capability pre-
cedes possibility. Thus ‘might influence’ is a “more
abstract” relationship than any of ‘determines’, ‘can
determine’, ‘might determine’, ‘influences’, and
‘can influence’, simply because it is more general
and applies to more pairs of entities.

Implications are not counted as distance, because
all they do is to restate a fact in a different and less
specific language, and do not change the nature of the
fact. By contrast, weak transitive rules add new facts
and connections that were never explicit before.

9.2 What is the connection?

The second kind of query explains the connection be-
tween two entities. This gives guidance to the trou-
bleshooter trying to debug that connection.

A story is a human-readable explanation of why
some relationship exists. One can think of it as a
“mathematical proof” of the soundness of reasoning.
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One key attribute of our system is its ability to gen-
erate easily readable stories.

As a really simple example, suppose we want to
know the relationship between ‘host01’ and ‘host03’
in the initial example. The system utilizes the facts:

host01 | is an instance of | file server
file server | provides | file service
host03 | is an instance of | client workstation
client workstation | requires | file service

and the weak transitive rules:
is an instance of ˆ requires ˆ requires
is provided by ˆ has instance ˆ is provided by
requires ˆ is provided by ˆ might depend upon

to infer that:
host03 | might depend upon | host01

The difference between our system and other forms of
logical reasoning is that we have crafted the system
so that this inference, once discovered, can be ex-
plained. An explanation of a relationship is a linear
chain of entities and relationships whose combination
via rules results in the relationship in question, e.g.,

host03 | is an instance of
| client workstation | requires
| file service | provided by
| file server | has instance
| host01

We call such an explanation a story of the relationship
between ‘host03’ and ‘host01’. Due to the nature of
our rules, every high-level inference corresponds to at
least one story (with perhaps many alternatives).

In the previous example, we have avoided depicting
one thing, which is the specific set of rule applications
that led to the story. In the example, one cannot sim-
ply apply rules from top to bottom. The series of rule
applications can be depicted in a chord diagram (Fig-
ure 2), in which the entities are depicted in a circle
and the base facts (before reasoning) are depicted as
solid lines. The dashed lines (which are all chords of
the circle) indicate inferred relationships.

9.3 Lifting and grounding

The preceding example was one of the simplest forms
of reasoning of which the system is capable. Often,
more trouble must be taken to make reasoning pos-
sible and understandable. Architectural descriptions
are often incomplete and specified at different levels
of abstraction. To cope with this, our system utilizes
implication to “lift” facts to a common level of ab-
straction or generality at which reasoning can occur,
and then “grounds” that reasoning by expressing the
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high-level abstract facts in terms of the low-level facts
that were their basis.

Consider, e.g., the following quandary:

host02 | is an instance of | file server
host03 | is an instance of | client workstation
client workstation | requires | file server

What is the real relationship or dependency between
‘host02’ and ‘host03’?

To answer this question, we must proceed to a
higher level of abstraction:

requires -> is influenced by

after which the facts available also include:

client workstation | is influenced by | file server

and, using the rules

is an instance of ˆ is influenced by ˆ is
influenced by

is influenced by ˆ has instance ˆ might be
influenced by

we infer that

host03 | might be influenced by | host02

from which we infer the story that:

host02 | is an instance of
| client workstation | is influenced by
| file server | has instance
| host03

but this is not good enough. To complete the pic-
ture, we “ground” the lifted relationships by replac-
ing them with the concrete relationships that are
their subclasses:

host02 | is an instance of
| client workstation | requires
| file server | has instance
| host03

which “explains” the abstract reasoning in more con-
crete terms.

10 A prototype

We implemented a prototype reasoning system as a
web-based troubleshooting aid. In a troubleshooting
situation, a user inputs locations at which symptoms
have occurred, and the reasoning system responds

with a likely list of other locations that might be the
source of the problem. Options are listed in order of
inference distance within the reasoning system, i.e.,
how many transitive rules had to be applied; we have
found that this roughly corresponds to the strength of
coupling between entities. Clicking upon a candidate
source “explains” its relationship with the symptoms
as a linear chain of dependences. The prototype is
written in Perl, and the facts and rules are specified
in a text file, using the notation in our examples.
The current prototype does everything online. No
pre-computed state is kept between queries. Thus
the prototype is limited to relatively small examples,
e.g., at most a few hundred entities. By contrast, the
algorithm itself can be run on clouds, and can scale
to arbitrary input sizes.

There are several ways this technology can be used
to solve common troubleshooting problems. It can
be used to remember details that might be otherwise
forgotten, to learn about a new system with which
one is unfamiliar, or even to debug one’s architectural
description of a system. The system does not replace
human thought, but rather, assures that known facts
are not forgotten.

10.1 Remembering details

First, the system aids a troubleshooter in remem-
bering details or dependencies that might be missed.
If one selects a trouble source, the system can re-
spond with those hosts, services, or other entities that
might be interfering with that source. For example,
inputting ‘DNS’ to the system (with relationship ‘can
influence’) gives a list of things that might affect
DNS, in order of distance from DNS.

10.2 Exploring legacy systems

Another typical use case is to learn about legacy
systems. System administrators change jobs more
frequently than we would like to admit. If a prior
administrator has documented the architecture, the
new administrator faced with a new system can uti-
lize the data to learn what dependencies are, and to
get a feel for how things are connected. For example,
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one can input two hosts and look for the dependen-
cies between them, or one host and look for the hosts
upon which it depends.

10.3 Debugging architectural descrip-
tions

A final and not-so-typical use of the system is to de-
bug architectural descriptions by examining the con-
sequences of those descriptions. This occurs natu-
rally as a result of using the system. When a rela-
tionship is explained, the chain of reasoning is pre-
sented in terms of the input facts. If an inference
is incorrect, the cause must be an invalid input fact,
and these are shown for every inference.

11 Critique

This method is not a panacea. It requires careful
coding of relationships in order to avoid erroneous
conclusions and wasted time. The “inference dis-
tance” metric used to determine “most likely” causes
could use some refinement. Clearly, there are many
shades of ‘influences’, from ‘greatly influences’
to ‘slightly influences’. The current calculus
does not account for shades of meaning.

11.1 Sensitivity to definitions

On a related note, the core causal relationships must
be rather rigorously defined in order for the system
to work well. Our system “defines” relationships via
their interactions with others. Our rules in some
sense embody the definitions of our relationships.
One must understand the core calculus of meaning
in detail in order to properly write new rules.

This means – in turn – that the topics one utilizes
to describe the network must be sufficiently under-
stood by the describer to avoid confusion.

11.2 Lack of contradictions

One specific limitation – due to the need to scale
to large data sizes – is that contradictions cannot be
expressed in the logical system. There is no provision

for any equivalent to the statement that “X is not
like Y”. One can assert similarity, but not difference.
Since the associations are purely syntactic, there is
no reason – within the system – that data cannot
become contradictory by, e.g., asserting two mutually
exclusive relationships for an entity.

11.3 Opportunities for further work

Several key questions remain:

1. Is inference distance the best metric of how re-
lated two entities are? Are there other better
metrics? Is there a concept of relationship that
could aid in measuring distance.

2. How should we handle ternary and n-ary rela-
tionships?

3. How can we automatically translate common
CMDBs (other than Cfknowledge) into a useful
form?

4. How can we relate this work to probabilistic
methods for discovering connections?

The search will continue for answers to these ques-
tions.

12 Lessons learned

Perhaps the most important lesson learned in this
work is that naive approaches to making connections
between components do not work properly. This pa-
per describes the 14th prototype. Prototypes 1-13
suffered from a variety of serious problems.

First, tracing connections without considering
their meaning gives many false positives where the
discovered connection is not useful or relevant. For
example, one might naively infer from

ubuntu | has part | kernel
ubuntu | has part | contributed software

that somehow the kernel is related to the contributed
software, but that is not particularly useful in trou-
bleshooting.
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Second, anything short of real computer logic re-
sults in false negatives. We tried, e.g., to build con-
nections from known connected components to new
ones, breadth-first. This resulted in lost relation-
ships, because some causal relationships are inferred
from non-causal ones. For example, consider

client workstation | contains | compiler
compiler | has instance | gcc compiler
gcc compiler | requires | linker

Because containment is not guaranteed to be causal,
starting a walk at ‘client workstation’ and looking
for causal relationships will never get to ‘linker’,
even though the inference is that

client workstation | can require | linker

just because of the choice of starting point for the
walk and the fact that there are two non-causal links
in the sequence. If we start at ‘linker’ instead, then
the link will be made, but then other connections
may be lost. We were unable to “simplify” the logic
without losing connections in this manner.

Third, it is extremely important to keep that logic
as simple as possible, so that a human can under-
stand it. The simplest representation seems to be a
linear chain of components, with their low-level re-
lationships, where the logic is not represented in the
chain. In the uses we have developed so far, it is the
connections themselves – and not the logic by which
they are proven to be connected – that is useful to
the end-user.

Fourth, the least specific and most abstract
forms of causation are the most useful to rea-
son about. The reason for this is somewhat sub-
tle. In the prototype, one specifies a “pivot” rela-
tionship, e.g., ‘determines’ or ‘can determine’ or
‘might determine’, and requests the identities of all
components having that relationship to the compo-
nents that exhibit symptoms. This reasoning works
best when that pivot is least specific (e.g., ‘might
determine’), because our prototypical architecture
specification is always incomplete (just like real ar-
chitectural specifications).

Our prototype and strategy are not “the solution”
to troubleshooting, but rather, utilizes a part of avail-
able information that was previously ignored. It
is not a replacement for discovering causal links or

remembering relationships, but makes relationships
more difficult to forget.

It is our hope that this demonstration of the utility
of this kind of information will encourage people to
collect more of it, and in turn encourage all system
administrators to utilize configuration management
systems (either Cfengine or any other) to define con-
figuration in terms of similar high-level architectural
models. The ability of system administrators to think
in terms of architectural models – and not this work
in particular – is what will actually advance the state
of the art.

13 Availability

The prototype is freely available from
http://www.cs.tufts.edu/∼couch/topics .
We encourage you to try it with your configuration
data and share your experiences with us. Your
feedback is important and will help to shape the
next generation of these tools and approaches.
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