An Analysis of Network Configuration Artifacts LISA '09, November 5, 2009

David Plonka & Andres Jaan Tack {plonka,tack}@cs.wisc.edu

Motivation and Goals

- Like software quality, network reliability is evolving:
 - Expectation of high availability, increasing reliance
 - Increasing numbers of skilled practitioners
 - Increasing level of automation

Motivation and Goals

- Like software quality, network reliability is evolving:
 - Expectation of high availability, increasing reliance
 - Increasing numbers of skilled practitioners
 - Increasing level of automation
- However, the management of networks and the Internet has not received similar attention to the development of software.

Motivation and Goals

- Like software quality, network reliability is evolving:
 - Expectation of high availability, increasing reliance
 - Increasing numbers of skilled practitioners
 - Increasing level of automation
- However, the management of networks and the Internet has not received similar attention to the development of software.
- We propose an *analogy-based analysis*, and that these elements are akin to each other:
 - Networks : Software Systems
 - Network Engineering : Software Engineering
 - Network Operators : Programmers

Campus Network

Network Artifacts

- artifact an object created by humans, especially one remaining from a particular period
- Network Performance Measurements
- Network Management Systems' Topology
- Trouble Tickets
- Network Device Configurations
 - Routers, switches, firewalls
 - Network practitioners use Source Code Management (SCM) of device configurations for:
 - Configuration backups
 - Communicating changes

Network Configuration Repositories

Networks Studied

Network	Period in Years	Operators (super-	Devices / Configuration	Revisions	Lines of Code
Campus	5+	<i>users)</i> 343 (64)	Files 3,839	128,394	2,898,362
Service Provider	10+	31 (31)	519	41,787	163,882

Mining SCM Repositories - Why?

- While successful in the PL community, this hasn't been leveraged in the context of network configuration and management.
- To visualize and elucidate network operation with the goal of understanding and improving the practice.

Mining SCM Repositories - How?

- Convert existing custom network version control system repositories to common CVS repositories.
- Use existing tools from the Programming Language (PL) and open source developer communities, e.g.:
 - StatCVS-XML
 - cvs2cl (CVS to ChangeLog)
- Perform additional static file analyses, e.g.:
 - Syntax-aware statistics (i.e. config stanzas)
 - Revision lifetimes

Configuration Files / Code Sample

version 12.2

no service pad

service timestamps debug datetime localtime

service timestamps log datetime localtime

service password-encryption

```
hostname s-bldg-5-2-access
```

```
spanning-tree mode rapid-pvst
```

no spanning-tree optimize bpdu transmission spanning-tree extend system-id

ļ

I

Code Sample (2)

interface FastEthernet1/0/1

- description sample 100Mbps ethernet interface
- switchport access vlan 42
- switchport mode access
- ip access-group nodhcpserver in
- snmp trap mac-notification change added
- snmp trap mac-notification change removed
- no snmp trap link-status
- no mdix auto
- spanning-tree portfast
- spanning-tree bpduguard enable
- spanning-tree guard root

Code Sample (3)

ip access-list extended nodhcpserver

ļ

```
remark Id: ndhcp.acl,v 1.2 2005-05-20 11:26:03 ashley Exp
deny udp any eq bootps any
permit ip any any
```

```
access-list 5 permit 192.2.0.1
access-list 5 remark Allow foo, bar, and baz servers
access-list 5 permit 192.2.0.10
access-list 5 permit 192.2.0.11
```

Campus File / Device Count

Campus LOC by Topology

Campus Network

Campus LOC per Module

Campus Size Per Author

📕 alexander 📕 anne 📕 annie 📙 antonio 📕 betty 📕 bradley 📕 cathy 📕 christina 🔳 cindy 📕 daniel 📕 danny 📕 debbie 📕 deborah 📕 don 📕 edwin 🔳 elizabeth 📕 frederick 📕 glenn 📕 grace 💛 jason 📕 jim 📕 jimmy 🔲 joe 📕 jose 📕 juanita 📕 judith 📕 kathryn 📕 kelly 📕 kimberly 📕 leonard 💻 micheal 💻 michele 📒 mike 📕 monica 💻 paula 📕 ray 📕 raymond 💻 renee 📒 rhonda 📒 samuel 📕 shannon 💻 steve 🔲 steven 🔳 tiffany 📕 tom 📕 tracy 📕 travis 📕 troy 📕 victor 📕 virginia 📕 wayne 📕 ann 📕 barry 📕 catherine 🚽 dana 📕 danielle 📕 diane 🗏 howard 📕 janice 📕 jay 📕 jeffery 📕 jeffrey 📕 john 📕 jonathan 📕 justin 📕 lauren 📕 margaret 📒 maria 📕 matthew 📕 mildred 📕 phyllis 📕 rebecca 📕 sharon 📙 stanley 📒 aaron 📕 amy 📕 brian 📕 ellen 📕 joseph 📕 josephine 📕 nicole 📕 pamela 📕 patrick 📕 randy 📕 russell 📕 ruth 📕 timothy 📕 valerie 📕 vincent 📒 craig 📕 douglas 📕 gail 📕 gloria 📕 kathleen 📕 linda 📕 michelle 📕 nicholas 📕 samantha 📕 thelma 📕 victoria 📕 wendy 💻 amber 💛 brenda 📕 carmen 🗖 clarence 📕 david 📕 edna 📕 ieremy 🚽 ioann 📕 iuan 📕 lisa 📕 thomas 🗏 alice 📕 doris 📕 iackie 📕 marcus 📕 mark 📕 norma 📕 vyonne 💻 amanda 📕 annette 📕 jamie 📕 Jawrence 📕 nancy 📙 robert 📕 sylvia 📕 theodore 🗏 julia 📕 ana 📕 carolyn 📕 barbara 📕 jacqueline 📕 bobby 📕 jack 📕 Jaura 📕 rosa 📕 shawn 📙 heather 📕 michael 📕 mary 📕 sandra 📕 sheila 📕 vivian 📙 donna 📒 carl 📕 charles 📕 geraldine 📕 francis 🔳 lynn 📕 william 📕 albert 📕 carol 📕 sherry 📕 roy 📕 stacy 📕 pauline 📕 wanda 📕 christopher 📕 eleanor 💛 henry 📕 christine 📕 anita 🗏 judy 📕 andrea 📕 helen 🔳 billy 📕 randall 📕 phillip 📕 crystal 📕 gladys 📕 darlene 📕 luis 📒 jacob 💻 jean 💻 alan 📕 miguel 📕 charlotte 📕 clara 💶 donald 📒 george 📕 jessica 📕 martin 📕 herbert 📕 frances 📕 jeff 📕 james 📕 megan 📕 veronica 📕 tina 📕 jill 📕 harold 📕 jane 📕 fred 📕 jerry 📒 hazel 📕 chris 🗖 susan 🔲 scott 📕 tony 📕 eugene 📕 leroy 📕 joshua 📕 erin 📕 todd 📕 richard 📕 rita 📕 anthony 📒 ryan 📒 marvin 📒 kenneth 📕 carrie 📕 eva 📕 norman 📒 audrey 📕 eric 📕 angela 📕 ethel 🗏 johnny 🔳 walter 📕 ronald 📕 regina 📕 keith 📕 bruce 📕 andrew 📕 edward 📕 shirley 📕 lois 📕 gregory 📕 melvin 👎 florence 📕 anna 📕 emma 📕 gerald 📕 april 📕 brandon 📕 ruby 📕 edith 📕 nathan 📕 peggy 📕 sara 📕 ashley 📕 kevin

Campus Size Per Group

Campus Network by Device Type

Lines Of Code (per author)

Campus Commits by Hour

Common Commit Comments

Comment	Frequency
Initial revision	1487 (2.7%)
test	812 (1.5%)
asdf	593 (1.1%)
'newer bulk checkin'	411 (0.7%)
change vlan	316 (0.6%)

An Anomaly

Author	Revisions	Lines of Code	Added Lines of Code	Lines of Code per Change
<u>net</u>	63468 (47.2%)	2418758 (82.9%)	3313853 (74.1%)	38.11
<u>authorized-</u> agents	38625 (28.8%)	1821 (0.1%)	208956 (4.7%)	0.05
<u>system</u>	11218 (8.4%)	-8795 (-0.3%)	125618 (2.8%)	-0.78
noc	10715 (8.0%)	100099 (3.4%)	303481 (6.8%)	9.34
field	6122 (4.6%)	57582 (2.0%)	152498 (3.4%)	9.41
contract	3959 (2.9%)	348207 (11.9%)	368518 (8.2%)	87.95
security	230 (0.2%)	103 (0.0%)	1898 (0.0%)	0.45

Evaluating Practitioner Effort

- Measurements of practitioner effort
 - How often are "fixes" introduced?
 - How often do configurations change?
 - "Bad Days" (are Friday checkins more buggy?)
- Look toward improvements:
 - Syntax-aware revision analysis (stanzas)
 - How do we direct tool development?

Campus Commits by Day

Revision Lifetimes

- How long does a revision last before it is next modified?
 - Suggests the modus operandi of practitioners
 - Suggests the value or the staying power of a revision
 - Might also suggest some measure of network volatility

Campus Revision Lifetimes (<3.5 days)

Campus Revision Lifetimes (<10 min)

% Short-Lived Revisions by Day

% Short-Lived Revisions by Day

Campus Average File Size

Service Provider Average File Size

Campus Revisions by Stanza Type

Stanza Type	Total Revision	Revisions per	
	Count	Instance	
interface	471,23	8 4	4
vlan	25,59	1 1	
global	12,53	4 4	4
logging	12,39	0 9)
ip	12,006		
bridge	4,353		
line	3,936		
banner	3,81	0 1	
dot11	3,324		
control-plane	3,01	3 1	1

Some Conclusions

- With varying device types, LOC is an erratic metric for the stanza-based, declarative network configuration language, (such as Cisco IOS)
- Analysis of network configurations exposes
 pertinent network management details including:
 - Group behaviors
 - Outstanding practitioners
 - Change times
 - High level of user compliance, but some curiosities
 - Tool-based efficiencies both expected and invented

Contributions

- An initial application of software development analysis tools to network operations based on existing, freely-available tools
- Beginnings of a network operations-specific measurement of practitioner effort to guide tool development, such as SCM and IDE-like tools for network operators
- In our case studies, this analogy-based analysis approach shows promise based on feedback by expert interviews.

Discussion and Future Work

- As in software, can we identify and investigate code decay, refactorings, and code clones?
- Leverage other artifacts to measure practitioner compliance and network service reliability and performance.
- Develop a complexity metric based on stanzas and inter-stanza references. (see Benson, et al., NSDI 2009)

An Analysis of Network Configuration Artifacts LISA '09, November 5, 2009

David Plonka & Andres Jaan Tack {plonka,tack}@cs.wisc.edu