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Abstract

Project Crossbow in OpenSolaris is introducing new

abstractions that provide virtual network interface cards

(VNICs) and virtual switches that can have dedicated

hardware resources and bandwidth assigned to them.

Multiple VNICs can be assigned to OpenSolaris zones

to create virtual network machines (VNM) that provide

higher level networking functionality like virtual routing,

virtual load balancing, and so on. These components can

be combined to build an arbitrarily complex virtual net-

work called virtual wire (vWire) which can span one or

more physical machines. vWires on the same physical

network can be VLAN-separated and support dynamic

migration of virtual machines, which is an essential fea-

ture for hosting and cloud operators.

vWires can be reduced to a set of rules and objects

that can be easily modified or replicated. This ability is

useful for abstracting out the application from the hard-

ware and the network, and thus considerably facilitates

management and hardware upgrade.

The administrative model is simple yet powerful. It

allows administrators to validate their network architec-

ture, do performance and bottleneck analysis, and debug

existing problems in physical networks by replicating

them in virtual form within a box.
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VNICs, VNM.

1 Introduction

In recent years, virtualization[2][3][7] has become main-

stream. It allows the consolidation of multiple services

or hosts on smaller number of hardware nodes to gain

significant savings in terms of power consumption, man-

agement overhead, and data-center cabling. Virtualiza-

tion also provides the flexibility to quickly repartition

computing resources and redeploy applications based

on resource utilization and hardware availability. Re-

cently these concepts have enabled cloud computing[6]

to emerge as a new paradigm for the deployment of dis-

tributed applications in hosted data-centers.

The benefits of virtualization is not only in consoli-

dation and capacity management. With virtualization,

the operating environment can be abstracted[14][18] and

decoupled from the underlying hardware and physical

network topology. Such abstraction allows for easier

deployment, management, and hardware upgrades. As

such focus has shifted towards multiple forms of net-

work virtualization that do not impose a performance

penalty[23].

Project Crossbow in OpenSolaris offers high perfor-

mance VNICs to meet the networking needs of a vir-

tualized server that is sensitive to network latency and

throughput. Crossbow leverages advances in the network

interface cards (NICs) hardware by creating hardware

based VNICs which offer significantly less performance

penalties. The VNICs have configurable link speeds,

dedicated CPUs, and can be assigned VLAN tags, pri-

orities, and other data link properties. Crossbow also

provides virtual switches to help build a fully virtualized

layer-2 network.

The VNICs can be created over physical NICs, link

aggregations for high availability, or pseudo NICs to

allow the administrator to build virtual switches inde-

pendently from any hardware. Networking functionality

such as routing and packet filtering can be encapsulated

in a virtual machine or zone with dedicated VNICs to

form virtual network machines. These virtual network

machines can be deployed on virtual networks to pro-

vide layer-2 and layer-3 networking services, replacing

physical routers, firewalls, load balancers, and so on.

With all the virtualized components Crossbow pro-

vides, an administrator can build an arbitrarily complex

virtualized network based on the application needs and

decouple it from the underlying physical network. The



resulting virtual network is called virtual wire. The

vWire can be abstracted as a set of rules such as band-

width limits, and objects such as VNICs and virtual

switches, that can be combined, modified, or duplicated

with ease and instantiated on any hardware. Crossbow

allows migrating not just the virtual machine but entire

virtualized network.

The functionality provided by Crossbow is part of the

core OpenSolaris implementation, and does not require

add-on products or packages.

In this paper we describe the main components of the

Crossbow architecture from the perspective of a system

and network administrator. We will introduce the new

system and networking entities that are used for virtu-

alizing the networking resources and for controlling the

QoS at various granularities. We describe these entities

with an emphasis on the simplified administration model

by showing how they can be used as independent fea-

tures, or as building blocks for the creation of vWires.

In the examples section, we explore how Crossbow basic

components can be used to build fully functional virtual-

ized networks and new ways to do QoS. System admin-

istrators can also use the vWire to create a Network in

a box to do performance, functionality, and bottleneck

analysis.

2 Issues In Existing Models

The current methods of network virtualization are based

on VLANs that are typically configured on the switches.

This model is not very flexible if a VLAN tag is assigned

to a virtual machine and the virtual machine needs to be

migrated due to resource utilization needs. An adminis-

trator needs to manually add the virtual machine’s VLAN

tag to the switch port corresponding to the target ma-

chine. Protocols such as GVRP[13] and MVRP[17] are

available for doing this dynamically. However, these pro-

tocols are not supported on a large number of switches.

The sharing of the common bandwidth between vir-

tual machines also becomes an issue[9], as the current

generation of switches offers fairness only on a per port

basis. If the same port is shared by multiple virtual ma-

chines, any one of those virtual machines can monopo-

lize usage of the underlying physical NIC resources and

bandwidth. Host-based fairness or policy based sharing

solutions impose significant performance penalties and

are really complex to administer. They typically involve

the creation of classes, the selection of queuing models,

jitters, bursts, traffic selectors, and so on, all of which

require an advanced knowledge of queuing theory.

Virtual networks that are created by using the existing

VLANs and QoS mechanisms are prone to errors in the

event of configuration changes or workload changes. The

connectivity and performance testing is based on home

grown solutions and requires expensive hardware based

traffic analyzers. Often, there are heavy performance

penalties and non-repeatable performance that depends

on interactions with other virtual machines of different

virtual networks.

This document will show how Crossbow can move

VLAN separation and enforcement into the host and

allow virtual machines to migrate without requiring

changes to the physical network topology or switches. It

will also show how VNICs can be associated with a link

speed, CPUs, and NIC resources to efficiently and con-

veniently provide fair sharing of physical NICs. VNICs

and virtual switches can be combined to build virtual net-

works which can be observed and analyzed by using ad-

vanced operating system tools such as DTrace.

3 Crossbow Virtualization Components

This section discusses the various Crossbow components

that enable full virtualization, from virtualizing hardware

resources such as NICs to building scalable vWire and

network in a box.

3.1 Virtual NICs

When a host is virtualized, the virtual environment must

provide virtual machines (VMs) connectivity to the net-

work. One approach would be to dedicate one NIC to

each virtual machine. While assigning dedicated NICs

ensures the isolation of each VM’s traffic from one an-

other, this approach defeats one of the main purposes of

virtualization, which is to reduce cost from the sharing

of hardware. A more efficient and flexible option is to

virtualize the hardware NICs themselves so that they can

be shared among multiple VMs.

Crossbow provides the concept of the VNICs. A

VNIC is created on top of a physical NIC, and multiple

VNICs can share the same physical NIC. Each VNIC has

a MAC address and appears to the system as any other

NIC on the system. That is, VNICs can be configured

from the IP stack directly, or they can be assigned to vir-

tual machines or zones.

Crossbow can also assign dedicated hardware re-

sources to VNICs to form hardware lanes. Most mod-

ern NIC hardware implementations offer hardware clas-

sification capabilities[10][20][12] which allow traffic for

different MAC addresses, VLANs, or more generic traf-

fic flows to be directed to groups of hardware rings or

DMA channels. The Crossbow technology leverages

these hardware capabilities by redirecting traffic to mul-

tiple VNICs in the hardware itself. The redistribution of

traffic reduces network network virtualization overhead

and provides better isolation between multiple VNICs

that share the same underlying NIC.



In Crossbow VNICs are implemented by the OpenSo-

laris network stack as a combination of the virtualized

MAC layer and a pseudo VNIC driver. The virtualized

MAC layer interfaces with network device drivers under

it, and provides a client interface for use by the network

stack, VNICs, and other layered software components.

The MAC layer also implements the virtual switching

capabilities that are described in Section 3.3. The VNIC

driver is a pseudo driver and works closely with the MAC

layer to expose pseudo devices that can be managed by

the rest of the OS as a regular NIC.

For best performance, the MAC layer provides a pass-

through data-path for VNICs. This pass-through allows

packets to be sent and received by VNICs clients with-

out going through a bump-in-the-stack, and thus min-

imize the performance cost of virtualization. To as-

sess the performance impact of VNICs, we measured

the bi-directional throughput on a testbed consisting of

5 clients firing packets at a single receiver (quad-core,

2.8GHz, Intel-based machine) through a 10 Gigabit Eth-

ernet switch. The measured performance of a VNIC with

dedicated hardware lanes was the same as the perfor-

mance of the physical NIC with no virtualization[24].

A side-effect of that architecture is that it is not pos-

sible to directly create VNICs over VNICs, although

VNICs can be created on top of other VNICs indirectly

from different OS instances.

Crossbow VNICs have their own dedicated MAC ad-

dresses and as such, they behave just like any other phys-

ical NIC in the system. If assigned to a virtual machine or

zone, the VNIC enables that virtual machine to be reach-

able just like any other node in the network.

There are multiple ways to assign a MAC address to a

VNIC:

Factory MAC address: some modern NICs such as

Sun’s 10 Gigabit Ethernet adapter[20] come from

the factory with multiple MAC addresses values al-

located from the vendor’s MAC address organiza-

tionally unique identifier (OUI). VNICs can be as-

signed one of these MAC addresses if they are pro-

vided by the underlying NIC.

Random MAC address: A random MAC address can

be assigned to a VNIC. The administrator can ei-

ther specify a fixed prefix or use the default prefix.

Crossbow will randomly generate the least signifi-

cant bits of the address. Note that after a random

MAC address is associated with a VNIC, Crossbow

makes that association persistent across reboots of

the host OS. To avoid conflicts between randomly

generated MAC addresses and those of physical

NICs, the default prefix uses an IEEE OUI with

the local bit set. There is currently no guarantee

that a randomly generated MAC address does not

conflict with other MAC addresses on the network.

This functionality will be delivered as part of future

work.

Administratively set MAC Address: If the adminis-

trator manages the set of MAC addresses of the vir-

tual machines or zones, he/she can supply the com-

plete MAC address value to be assigned to a VNIC.

VNICs are managed by dladm(1M), which is the

command used to manage data links on OpenSolaris.

Section 4.1.1 describes in details VNIC administration

with the dladm(1M) command. A VNIC appears to

the rest of the system as a regular physical NIC. It

can be managed by other existing built-in tools such as

ifconfig(1M), or by third-party management tools.

VNICs have their own statistics to allow real time and

historical analysis of network traffic that traverse them.

Section 4.3 describes VNIC statistics and their analysis.

Last but not least, the traffic going through VNICs can

be observed by existing tools such as snoop(1M). Cap-

turing packets going through VNICs is similar to observ-

ing the traffic on a physical switch port. That is, for a

particular VNIC, only the broadcast and multicast traffic

for the VLAN IDs associated with the VNIC, as well as

the unicast traffic for the VNIC MAC address, are visible

for observation.

3.2 Configurable Link Speeds

Transport protocol implementations will attempt to use

the bandwidth that is made available by the underlying

NIC[4]. Similarly, multiple VNICs defined on top of the

same underlying NIC share the bandwidth of that NIC.

Each VNIC will attempt to use as much as it can from

the link’s bandwidth. Various undesirable behaviors can

ensue from this situation:

• A transport or a service can be an active offender –

Some transport protocols are more aggressive than

others. For example a UDP sender will not throttle

its transmission rate even if the receiver cannot keep

up with the received traffic. On the other hand, pro-

tocols like TCP will slow the sender down if needed.

Such differences in behavior can lead to a VNIC

for UDP traffic consuming more of the underlying

bandwidth than other VNICs that are used for TCP.

• A client virtual machine can be a passive target of

an external attack – In a virtualized setup where

a hardware node is used to host virtual machines

of different customers, one or more of those cus-

tomers can become a victim of a denial of service

attack[15][16]. The virtual machine for one cus-

tomer can end up using most of the link’s capacity,



effectively diminishing the performance of all the

virtual machines that share the same NIC.

• Some VMs may have different bandwidth needs

than others – The bandwidth of a NIC should be par-

titioned between VNICs to satisfy the requirements

of the VMs. In some instances customers could be

charged a premium if a larger share of the band-

width is allocated to them. An uncontrolled or even

egalitarian sharing of the resources might not nec-

essarily be the desired behavior.

With the dladm(1M) command, Crossbow allows

the link speed of data links to be specified through link

properties. Configuring the link speed is the equivalent

of setting a maximum bandwidth limit on the data link.

This property can be configured explicitly by the admin-

istrator, or it can be set from the host OS of a virtualized

environment when the VNIC for a virtual machine is cre-

ated, as shown in Section 4.2 below.

3.3 Virtual Switching

When multiple VNICs are created on top of a physi-

cal NIC, the MAC layer automatically creates a virtual

switch on top of that NIC. All VNICs created on top of

the physical NIC are connected to that virtual switch.

The virtual switch provides the same semantics as a

physical switch. Figure 1 shows the mapping between

physical NICs and switches and their virtual equivalent

in Crossbow. Note that multiple VNICs can be created

on different physical NICs. In such cases, each physi-

cal NIC will be assigned its own virtual switch. Virtual

switches are independent, and there are no data paths be-

tween them by default.

3.3.1 Outbound Packet Processing

When a packet is sent by a client of a VNIC, the virtual

switch will classify the packet based on its destination

MAC address. The following actions are taken depend-

ing on the result of that classification:

• If the destination MAC address matches the MAC

address of another VNIC on top of the same physi-

cal NIC, the packet is passed directly to that VNIC

without leaving the host.

• If the MAC address is a broadcast MAC address, a

copy is sent to all VNICs created on top of the same

physical NIC, and a copy is sent on the wire through

the underlying NIC.

• If the MAC address is a multicast MAC address,

a copy of the packet is sent to all VNICs which

joined the corresponding MAC multicast group, and

VNIC1 VNIC2

virtual switch

PNIC

host1
VM

host2 
VM

PNIC1 PNIC2

physical switch

host1 host2

switch switch

Figure 1: Mapping between physical and virtual switches

a copy is sent through the underlying NIC. The

MAC virtual switch maintain a list of multicast

membership for this purpose.

• If MAC destination is unknown, i.e. there is no en-

try for the MAC address in the layer-2 classification

table of the virtual switch, the packet is passed down

to the underlying physical NIC for transmission on

the wire.

3.3.2 Inbound Packet Processing

Packets received off the wire are first classified by the

NIC hardware according to the destination MAC address

of the packet. If there is a match after hardware clas-

sification, the NIC hardware deposits the packet in one

of the hardware rings associated with the MAC address.

The MAC address and VNIC that are associated with

that hardware ring is known to the host. Thus, when the

host picks up the packet from that ring, it can deliver the

packet to the correct VNIC network stack or virtual ma-

chine.

If the hardware classifier cannot find a dedicated hard-

ware ring for the destination MAC address of the incom-

ing packet, it deposits the packet in one of the dedicated

hardware default receive rings. The MAC layer performs

software classification on the packets received from these

default rings to find the destination VNIC.

3.4 Etherstubs

We have seen in Section 3.3 that Crossbow creates a vir-

tual switch between the VNICs sharing the same under-

lying physical NIC. As an alternative, VNICs can also



be created on top of etherstubs to create virtual switches

which are independent of any hardware. Etherstubs are

pseudo ethernet NICs and are managed by the system

administrator. After an etherstub is created, it can be

used instead of a physical NIC to create VNICs. The

MAC layer will then perform virtual switching between

the VNICs which share the same underlying etherstub.

Etherstubs and the MAC layer virtual switching allow

users to create virtual switches which are independent

from physical NICs. Whether the virtual switch is im-

plicitly created over a link (physical NIC or an aggrega-

tion), or explicitly built by an etherstub, all VNICs shar-

ing the same virtual switch are connected and can com-

municate with one another. Conversely, VNICs that are

not members of the same virtual switch are isolated from

each other. Figure 2 shows how virtual switching can be

used between VNICs with both physical NICs and ether-

stubs.

VNIC1 VNIC2 VNIC3 VNIC4

network

NIC

MAC virtual 
switching

etherstub

MAC virtual 
switching

virtual switch

Figure 2: Virtual switching with physical NICs and

etherstubs

Multiple etherstubs can be created to construct multi-

ple virtual switches which can be combined to form flex-

ible virtual networks. Section 5.2 shows an example of

such an architecture.

3.5 VLANs

IEEE 802.1 VLANs can be used to build isolated vir-

tual LANs sharing the same underlying physical layer-2

network infrastructure. Each VLAN is associated with a

VLAN tag and defines its own broadcast domain. Hard-

ware switches allow the traffic of different VLANs to

be separated, and to associate switch ports with specific

VLAN tags.

The Crossbow virtual switching is VLAN-aware and

thus allows VLAN separation to extend to virtual

switches and VNICs. VNICs can be associated with a

VLAN identifier, or VID, which is used along with the

MAC address to classify traffic to VNICs. As it is the

case of physical switches, the Crossbow virtual switch

also implements per-VLAN broadcast domains. In other

words, tagged broadcast frames will be delivered only

to the VNICs that match the VLAN tag. From the per-

spectives of efficiency and security, the Crossbow VLAN

implementation provides two important features: it pre-

vents the unnecessary duplication of frames and it en-

sures that no leakage of frames to the wrong VLAN is

occurring.

Control of the VLAN handling is deliberately kept to

the MAC layer of the host OS (or global zone when ap-

plicable). When a VNIC is used by a guest VM, the VM

can only send and receive untagged traffic. The host’s

MAC layer inserts or strips the VLAN tag transparently.

It also ensures that the VM does not attempt to send

tagged packets. Thus, the VM cannot send packets on

a VLAN to which it does not belong.

3.6 High Availability and VNICs

In order to provide highly available network connectivity,

OpenSolaris supports availability at layer-2 and layer-3

by means of link aggregations and IPMP, respectively.

3.6.1 Layer-2: IEEE 802.3ad Link Aggregation

Link aggregations are formed by grouping multiple NICs

in a single pseudo NIC. Multiple connections are spread

through the NICs of the aggregation. Ports are taken out

of the aggregation if they are misconfigured or fail un-

expectedly. Failure detection is achieved by monitoring

the link state of aggregated NICs or by exchanging Link

Aggregation Control Protocol (LACP) control messages

at regular intervals.

In OpenSolaris, link aggregations are managed by us-

ing dladm(1M) and implemented by a pseudo driver

which registers with the system a pseudo NIC for each

configured link aggregation. Each instance of the pseudo

driver behaves like any other NIC on the system. As

such, the pseudo driver allows VNICs to be created on

top of link aggregations in the same manner that VNICs

can be created on top of physical NICs or etherstubs.

Figure 3 shows how two physical NICs can be aggre-

gated, virtualized, and shared transparently by two guest

domains.

The IEEE link aggregation standard assumes that an

aggregation is built between two entities on the network.

Typically these entities are switches and hosts. Unfor-

tunately, this standard does not allow an aggregation to

connect one host to multiple switches, which is a desir-

able configuration as a measure against possible switch

failure. Some switch vendors have provided extensions

called switch stacking that allow an aggregation to span

multiple switches. These extensions are transparent to

the peers that are connected to the switch stack.
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Figure 3: Using link aggregation to provide high-

availability and increased throughput to VNICs
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Figure 4: Using IP multipathing from virtual machines

for high-availability

3.6.2 Layer-3: IP Multipathing

IP Multipathing, or IPMP[19], is a layer-3 high availabil-

ity feature. It allows multiple IP interfaces to be grouped

together, and provides load spreading and failover across

members of the group. IPMP provides link-based detec-

tion failure, and probe-based detection failure.

Since IPMP is at layer-3 above NIC virtualization,

VNICs cannot be created on IPMP groups and IPMP

high availability cannot be provided transparently to vir-

tual machines. Instead, VNICs can be created on each

physical NIC, and VNICs can be grouped within virtual

machines. Figure 4 shows how two NICs can be virtual-

ized and grouped within virtual machines. IPMP groups

are managed by using the ifconfig(1M) IP configu-

ration tool.

Note that link aggregation and IPMP can be combined.

For example, link aggregations can be used to group mul-

tiple NICs connected to the same switches, and IPMP can

be used to group multiple link aggregations.

3.7 Virtual Network Machines

Virtual NICs and virtual switching constructs are the

building blocks that allow more complex virtual net-

working topologies to be built within a host. The func-

tionality needed to implement typical networking de-

vices on a network, such as routers or firewalls, exists in

modern operating systems like OpenSolaris. Network-

ing devices can be therefore encapsulated within virtual

machines or OpenSolaris zones.

An OpenSolaris zone is a lightweight virtualization ar-

chitecture where the zone provides its own application

environment that is isolated from other zones[21]. Each

zone can be associated with a set of CPUs, data links

such as VNIC, memory cap, and so on. Zones share the

same kernel but each zone can have its own IP network

stack. This feature avoids overheads that are typically

associated with hypervisors. Because of their low over-

head, small memory footprint, and specific functionality

that does not require a full separate OS instance, zones

are particularly suited to implement virtual network de-

vices.

Virtual network machines refer to virtual machines

or zones which are dedicated to implementing specific

network functions. VNMs can be connected by assign-

ing them VNICs and connecting these VNICs to virtual

switches. Several types of network functions can be im-

plemented, such as routers, firewalls, load balancers, and

bridges. With Crossbow, essentially any layer-2 or layer-

3 network can be virtualized within a single host.

3.8 Traffic Flows

Crossbow flows allow bandwidth limits, CPUs, and pri-

orities to be associated with a subset of the network traf-

fic that traverses a NIC, link aggregation, or VNIC. Flow

attributes describe the traffic that is associated with the

flows. Attributes consist of information such as IP ad-

dresses, well known port numbers, protocol types, and

so on.

Crossbow flows span the whole network stack from

the NIC hardware to sockets, and are associated with

their own kernel threads and available hardware re-

sources. Their specific associations make flows distinct

from one another. Consequently, after hardware classifi-

cation of incoming traffic is performed, traffic processing

of flows can be scheduled independently from each other

as well. With a setup that uses Crossbow, flows are bet-

ter isolated, the task of classification is assumed by the

hardware, and the network stack can control the arrival

of traffic into the host on a per-flow basis.



Flows also maintain their own statistics to allow an ad-

ministrator to track real-time statistics and usage history

not only of individual data links as a whole but also of

specific types of traffic the host receives or sends. Traffic

flows are described in more detail in[25].

4 Ease of Management

Crossbow provides management tools that are easy to

use to create VNICs, connect VNICs by using virtual

switches to build vWires, and configure networking re-

sources for these VNICs’ dedicated use. In addition,

statistics on traffic flows, both real time and historical,

provide the administrator the ability to monitor traffic at

a deeper granularity and thus better allocate networking

resources. This section describes the Crossbow tools to

perform these tasks.

4.1 Managing vWire

The vWire building blocks are managed through

the dladm(1M) command, the OpenSolaris data-link

management utility. This section shows how the

dladm(1M) tool can be used to perform the following:

• Manage VNICs.

• Combine VNICs with etherstubs to build virtual

networks.

• Combine VNICs with link aggregations to provide

high availability and increased throughput to virtual

machines and zones.

4.1.1 NIC Virtualization

As seen in Section 3.1, VNICs can be used to virtu-

alize a data link. A VNIC is easily created with the

dladm(1M) create-vnic subcommand. The fol-

lowing example shows the creation of a VNIC called

vnic100 on top of the physical NIC e1000g4.

# dladm create-vnic -l e1000g4 vnic100

In this case the administrator lets the system determine

the MAC address to be associated with the VNIC. Users

can choose any administratively meaningful name for the

data links (NICs, VNICs, aggregations, etherstubs, and

so on) as long as the name ends with a numeral. The

dladm(1M) show-vnic subcommand can be used

to display the VNIC configuration. For example:

# dladm show-vnic -o LINK,OVER

LINK OVER

vnic100 e1000g4

# dladm show-vnic -o LINK,MACADDRESS

LINK MACADDRESS

vnic100 2:8:20:36:ed:5

# dladm show-vnic -o LINK,OVER,MACADDRESS

LINK OVER MACADDRESS

vnic100 e1000g4 2:8:20:36:ed:5

The previous example shows how the -o option can

be used to specify the fields to be displayed for each

VNIC. If the -o option is omitted, then all attributes of

the VNICs will be displayed.

VNIC attributes such as the specified MAC ad-

dress to be associated with the VNIC can be specified

by the user as additional options of create-vnic.

The dladm(1M) delete-vnic subcommand can be

used to delete previously created VNICs from the sys-

tem. Of course, multiple VNICs can be created on top of

the same physical NIC.

After a VNIC is created, it appears to the rest of the

system as a regular data link and therefore can be man-

aged in the same way as other NICs. It can be plumbed

by the network stack directly as shown below, or as-

signed to a virtual machine as shown in Sections 4.2.1

and 4.2.2.

# ifconfig vnic100 plumb

# ifconfig vnic100 inet 10.20.20.1/24 up

# ifconfig vnic100

vnic100: flags=1000843<UP,BROADCAST,...

inet 10.20.20.1 netmask ffffff00

broadcast 10.20.20.255

ether 2:8:20:36:ed:5

4.1.2 Etherstubs

Etherstubs are constructs that can be used to build virtual

switches which are completely independent from phys-

ical NICs (see Section 3.4.) An etherstub can be used

instead of a physical NIC to create VNICs. The VNICs

sharing the same etherstub then appear to be connected

through a virtual switch.

In the following example, an etherstub vswitch0 is

created, and then used to create three VNICs: vnic0,

vnic1, and vnic2.

# dladm create-etherstub vswitch0

# dladm create-vnic -l vswitch0 vnic0

# dladm create-vnic -l vswitch0 vnic1

# dladm create-vnic -l vswitch0 vnic2

4.1.3 VLANs

Section 3.5 described how VLANs can be seamlessly

integrated in the virtualization environment and used to

create multiple virtual networks on the same underlying

physical infrastructure. A VLAN can be easily associ-

ated with a VNIC during its creation.



# dladm create-vnic -l e1000g0 \

-v 200 vlan200vnic0

# dladm create-vnic -l e1000g0 \

-v 200 vlan200vnic1

# dladm create-vnic -l e1000g0 \

-v 300 vlan300vnic0

# dladm show-vnic -o LINK,MACADDRESS,VID

LINK MACADDRESS VID

vlan200vnic0 2:8:20:d5:38:7 200

vlan200vnic1 2:8:20:69:8f:ab 200

vlan300vnic0 2:8:20:3a:79:3a 300

As shown in the previous example, multiple VNICs

can be created on top of the same physical NIC or ether-

stub with the same VID. In this case, the MAC layer vir-

tual switching isolates these VLANs from each other, but

will allow VNICs with the same VID to communicate to-

gether as if they were connected through a switch.

4.1.4 Link Aggregation

Link aggregations are also managed through the

dladm(1M) utility. A link aggregation can be easily

created as shown in the example below where an aggre-

gation called aggr0 consisting of two physical NICs,

e1000g2 and e1000g3 is created.

# dladm create-aggr -l e1000g2 \

-l e1000g3 aggr0

The resulting aggr0 is a regular data link on the sys-

tem. It can be configured using ifconfig(1M), or it

can be used to create VNICs which are then assigned to

zones or virtual machines. In the example below, two

VNICs are created on top of aggr0:

# dladm create-vnic -l aggr0 vnic500

# dladm create-vnic -l aggr0 vnic501

4.1.5 Management Library

The dladm(1M) command is a thin CLI above the

OpenSolaris data link management library libdladm. The

bulk of the work is done by the library, while the com-

mand line tool implements the parsing and formatting

needed. The libdladm management library is also used

by other management tools, agents, and utilities.

4.1.6 Network Flows

Crossbow provides a new command flowadm(1M) to

configure flows. As described in Section 3.8, flows can

be used from vWire to control and measure bandwidth

usage of finer grain traffic. The flowadm(1M) com-

mand takes as its arguments a data link name, traffic cri-

teria, priority, and desired bandwidth. Traffic criteria can

be specific protocols, protocol ports, or local or remote

IP addresses.

For example, a flow to match all UDP traffic passing

through NIC ixgbe0 can be created as follows:

# flowadm add-flow -l ixgbe0\

-a transport=udp udp-flow

Each flow has associated properties specified by the

-p option. These properties can be used to define the

maximum bandwidth or priority for a flow. Properties

of existing flows can be changed without impacting the

flow’s defined criteria. By default, udp-flow uses the

bandwidth of the underlying NIC, which in the example

is 10 Gb/s. To change the bandwidth of udp-flow to 3

Gb/s, issue the following command:

# flowadm set-flowprop -p maxbw=3G \

udp-flow

If no speed unit is specified, the maxbw property

unit is assumed to be in megabits per second (Mb/s).

Additionally, the flowadm(1M) show-flow and

show-flowprop subcommands can be used to display

flow configuration and properties respectively. Flows can

be deleted using the flowadm(1M) remove-flow

subcommand.

4.2 Resource partitioning and QoS

Configuring QoS policies often tends to be laborious. For

example, a typical policy might be to limit TCP traffic to

use a bandwidth of 1000 Mb/s. However, configuring

such a policy by using IPQoS in Solaris 10[19] or tc[5]

in Linux entails several complex steps such as defining

queuing disciplines, classes, filter rules, and the relation-

ships among all of them.

The subsections that follow use real life scenarios to

illustrate how Crossbow vastly simplifies QoS configu-

ration.

4.2.1 Zones

With Crossbow, limiting bandwidth for a zone is sim-

ple to perform. One just needs to create a virtual NIC

with the desired bandwidth and assign it to the zone. For

example, to limit the bandwidth of zone zone1 to 100

Mb/s, first create a VNIC with the desired bandwidth:

# dladm create-vnic -p maxbw=100 \

-l e1000g0 vnic1

When the zone is created, it can be given vnic1 as its

network interface:



# zonecfg -z zone1

...

zonecfg:zone1> add net

zonecfg:zone1:net> set physical=vnic1

zonecfg:zone1:net> end

...

Any traffic sent and received zone1 through vnic1

will be limited to 100 Mb/s. The configuration steps are

a one time exercise. The configuration will be persistent

across the zone or the operating system reboot. Changing

the bandwidth limit at a later time can be achieved by

setting maxbw property of that VNIC to the new value.

Thus, to change bandwidth of zone1 to 200 Mb/s, use

the following command syntax:

# dladm set-linkprop -p maxbw=200 vnic1

One can query the VNIC property zone to determine

if the VNIC is assigned to any zone. Using the previ-

ous example, zone under the VALUE field indicates that

vnic1 is a link that is being used by zone1.

# dladm show-linkprop -p zone vnic1

LINK PROPERTY PERM VALUE

vnic1 zone rw zone1

Plans are currently under consideration to configure

zones’ VNICs and their bandwidth limits directly by us-

ing zonecfg(1M). Thus, VNICs with specific property

values can be created automatically when the zones are

booted.

4.2.2 Xen

When OpenSolaris is used as dom0 (host OS), Cross-

bow provides a simple mechanism to assign bandwidth

limits to domUs (VM guests). The configuration pro-

cess is similar to configuring bandwidth limits for zones.

A VNIC is created with the desired bandwidth limit, and

then supplied as an argument during domU creation. The

domU could be running OpenSolaris, Solaris 10, Linux,

Windows, or any other Xen supported guest. This pro-

cess is independent of the choice of the domU. The pro-

cedure is explained in detail as follows:

When a Xen domU is created, Crossbow implicitly

creates a VNIC and assigns it to the domU. To enforce

a bandwidth limit for a domU, first, explicitly create a

VNIC and assign it to domU during creation. Then, set

the bandwidth limit for the Xen domU by setting the

maxbw property of the VNIC.

For example, to limit the bandwidth of domUguest1

to 300Mb/s, the VNIC with the given bandwidth is first

created:

# dladm create-vnic -p maxbw=300 \

-l e1000g0 vnic1

Then, to assign the newly configured VNIC to the Xen

domU as its network interface, include the following in

the domU’s template.xml configuration file. Use the

dladm(1M) show-vnic subcommand to display the

MAC address of vnic1.

<interface type=’bridge’>

<source bridge=’vnic1’/>

<mac address=’vnic1’s mac address/>

<script path=’vif-dedicated’/>

</interface>

Finally, the domU is created as follows:

# virsh create template.xml

Any traffic sent and received by the guest domain

through vnic1 will be limited to 300 Mb/s. As with

zones, the bandwidth can be changed at a later time by

setting the maxbw property to the new value.

Plans are under consideration to configure bandwidth

limit for Xen domUs by using Xen configuration tools

such as xm(1M) and virt-install(1M). For exam-

ple, the virsh-attach interface command will take

the maximum bandwidth as an optional argument. The

specific bandwidth limit is then automatically applied to

the implicitly created VNIC when the domain is booted.

When using Linux as dom0, bandwidth control on

guests can be configured as follows:1

1. Associate a queuing discipline with a network inter-

face (tc qdisc).

2. Define classes with the desired bandwidth within

this queuing discipline (tc class).

3. Using the IP address of the guest OS’s interface, de-

fine a rule to classify an outgoing packet into one of

the defined classes (tc filter).

For example, the following set of commands issued

from dom0, would set bandwidth limits of 200 Mb/s and

300 Mb/s for each one of the domU instances, and re-

serve the remaining 500 Mb/s for dom0’ use[8].

# tc qdisc add dev peth0 \

root handle 1: htb default 99

# tc class add dev peth0 \

parent 1: classid 1:1 htb rate 1000mbps \

burst 15k

# tc class add dev peth0 parent 1:1 \

1At the time of writing this paper, the latest Fedora release that

could host Xen guests was Fedora 8 (Fedora 9 and Fedora 10 cannot

host Xen guests). It supports a vif parameter ‘rate’to control band-

width limit. However, due to a bug (RedHat bug id 432411), we could

not evaluate that feature.



classid 1:13 htb rate 200mbps burst 15k

# tc class add dev peth0 parent 1:1 \

classid 1:14 htb rate 300mbps burst 15k

# tc class add dev peth0 parent 1:1 \

classid 1:99 htb rate 500mbps burst 15k

# iptables -t mangle -A POSTROUTING \

-p tcp -s 192.168.1.103 -j CLASSIFY \

--set-class 1:13

# iptables -t mangle -A POSTROUTING \

-p tcp -s 192.168.1.104 -j CLASSIFY \

--set-class 1:14

# iptables -t mangle -A POSTROUTING \

-p tcp -s 192.168.1.111 -j CLASSIFY \

--set-class 1:21

Note that the previous approach does not work well

when domUs obtain IP addresses by using DHCP. More-

over, domU users can circumvent the bandwidth limit en-

forcement by changing their IP address.

4.2.3 Traffic Flows

In the previous example, we restricted all traffic passing

through a Xen domU to 300 Mb/s. Suppose that we fur-

ther want to partition the available 300 Mb/s bandwidth

as follows: 100 Mb/s for all TCP traffic and the remain-

ing 200 Mb/s for all other traffic. Crossbow can achieve

this configuration by using flows:

# flowadm add-flow -p maxbw=100 \

-a transport=tcp -l vnic1 tcp-flow1

The concept of flows is applicable to non-virtualized

context as well. For example, a physical NIC can be

specified instead of a VNIC. Thus, Crossbow provides

a simple yet powerful way to administer bandwidth.

In contrast, configuring policies with iproute(8)

and tc(8) on Linux typically involves several steps,

For example:

# tc qdisc add dev eth4 handle ffff: \

ingress

# tc filter add dev eth4 parent ffff: \

protocol ip prio 20 \

u32 match ip protocol 6 0xff \

police rate 1Gbit buffer 1M drop \

flowid :1

# tc qdisc add dev eth4 root \

handle 1:0 cbq bandwidth 10Gbit \

avpkt 1000 cell 8

# tc class add dev eth4 parent 1:0 \

classid 1:1 cbq bandwidth 10Gbit \

rate 10Gbit prio 8 \

allot 1514 cell 8 maxburst 20 \

avpkt 1000 bounded

# tc class add dev eth4 parent 1:1 \

classid 1:3 cbq bandwidth 10Gbit \

rate 1Gbit weight 0.1Gbit prio 5 \

allot 1514 cell 8 maxburst 20 \

avpkt 1000

# tc class add dev eth4 parent 1:1

classid 1:4 cbq bandwidth 10Gbit \

rate 9Gbit weight 0.9Gbit prio 5 \

allot 1514 cell 8 maxburst 20 \

avpkt 1000

# tc qdisc add dev eth4 parent 1:3 \

handle 30: pfifo

# tc qdisc add dev eth4 parent 1:4 \

handle 40: pfifo

# tc filter add dev eth4 parent 1:0 \

protocol ip prio 1 u32 match ip \

protocol 6 0xff flowid 1:3

4.2.4 Flow Tradeoffs

The Crossbow design has traded off richness of flow at-

tributes for simplicity and performance. Crossbow has

departed from the traditional ways to specify QoS that

consists of the following steps:

• Definition of classes of services

• Addition of rules similar to those of packet filtering

• Description of the packets that are assigned to each

class

Instead, a flow is created by specifying its defining at-

tributes that constitute as the common criteria that pack-

ets should match in order to belong to that flow. Resource

controls policies, such as bandwidth constraints, prior-

ity and CPUs are viewed as mutable properties that can

be allotted to flows at creation time and can be modified

later.

Although flows can be created based on different at-

tributes such as IP addresses, subnets, transport, DSCP

marking, and port number, flows are defined based only

on one attribute at a time, not on a combination of multi-

ple attributes. Furthermore, only non overlapping flows

are allowed to co-exist over a data link. Any attempt to

create a flow that conflicts with an existing one fails. This

apparent limitation provides the advantage of keeping the

rule set that describes the flows inside the system unam-

biguous and order independent. A lookup for the flow



that matches a packet will always find the same flow, re-

gardless of the presence of other flows or the order in

which they were added.

4.3 Monitoring Network Statistics

Crossbow also provides a rich set of statistics for gaining

better insight into the behavior of the system. This sec-

tion describes the tools provided to observe these statis-

tics, and concludes with an example scenario to illustrate

how these tools can be combined with other commands

to diagnose and resolve a performance issue.

4.3.1 dlstat(1M) and flowstat(1M)

Crossbow statistics are provided on a per flow or data

link basis. They provide information such as the count of

packets received by polling and by interrupts, hardware

and software packet drops, distribution of load across

hardware lanes and so on. These statistics help to iden-

tify performance bottlenecks.

The current interface provides counts over a certain

interval. Future improvements will provide more sophis-

ticated aggregate level statistics such as percentage of

polled packets, minimum, maximum, and average queue

lengths over a specified time interval, and so on.

Crossbow introduces dlstat(1m) to print dynamic

traffic statistics for links. For example, the following

command prints the aggregate statistics for vnic1:

# dlstat vnic1

LINK IPKTS IBYTES OPKTS OBYTES

vnic1 9.9M 2.3G 4.8M 0.3G

To observe traffic exchange at 5-second interval, use

the following:

# dlstat -i 5 vnic1

LINK IPKTS IBYTES OPKTS OBYTES

vnic1 1.5M 0.3G 0.6M 46.9M

vnic1 2.2M 0.5G 1.1M 73.3M

. . . . .

Apart from dynamic statistics, dlstat(1M) also

supports off-line viewing and analysis of statistics.

acctadm(1m) is used to enable logging network statis-

tics to a specific log file. The dlstat(1M) -u sub-

option can then operate on the log file to extract historical

network statistics. For example, the following command

will extract network statistics for vnic1 from the spec-

ified time range from logfile.

# dlstat -u -f logfile \

-s D1,shh:smm:sss -e D1,ehh:emm:ess vnic1

The output, if generated using -F gnuplot option,

could be directly fed to gnuplot to draw graphical us-

age information for vnic1.

To analyze detailed receiver side statistics such as poll

and interrupt packet counts as well as hardware and soft-

ware drops, do the following:

# dlstat -r

LINK IBYTES INTRS POLLS HDRPS

e1000g0 2.1M 22.3K 78.0 0.0

ixgbe0 13.6G 0.8K 10.7M 0.0

vnic1 13.6G 0.8K 10.7M 0.0

To also analyze per hardware lane statistics, append

the -L option to the previous command. For example,

the following will show per hardware lane statistics for

each hardware lane that belongs to ixgbe0.

# dlstat -r -L ixgbe0

LINK:LNE LTYP USEDBY IBYTES INTRS POLLS

ixgbe0:0 slne ixgbe0 13.6G 0.8K 0.0

ixgbe0:1 hlne ixgbe0 13.1G 0.8K 10.2M

. . . . . .

. . . . . .

ixgbe0:7 hlne ixgbe0 13.4G 0.8K 10.5M

While dlstat(1M) operates on data links,

flowsat(1M) is used for querying network statistics

for flows. For example, to display tcp-flow’s network

traffic statistics, do the following:

# flowstat tcp-flow

FLOW LINK IBYTES OPKTS OBYTES

tcp-flow vnic1 2.3G 4.8M 0.3G

Like dlstat(1M), flowstat(1M) also supports

logging network statistics by using the -u sub-option.

Both inbound and outbound traffic statistics are shown

by dlstat(1M) and and flowstat(1M). The band-

width limits apply to the combined bidirectional traffic,

which is the sum of incoming and outgoing packets over

time. Although we can observe the statistics for each di-

rection, we currently can’t set a different limit on each.

4.3.2 Example: Diagnosing a Scalability Issue

Consider a multi-processor system under heavy network

load that uses the NIC ixgbe0 and whose receiver side

network performance needs improvement. Suppose that

the output of dlstat -r -L is satisfactory. That is,

after listing per-hardware lane packet and byte counts as

well as poll and interrupt counts, you observe that traffic

is evenly distributed across hardware lanes and that 95%

of packets are delivered by polling. You can then check

CPU utilization as follows:



• dlstat -r -F ixgbe0 gives the breakdown

of which CPUs are currently being used to process

packets received by ixgbe0.

• dladm show-linkprop -p cpus ixgbe0

displays the list of CPUs associated with the data

link.

• mpstat(1M) provides information about the uti-

lization of each CPU that is associated with

ixgbe0.

Suppose that the data indicates that all the CPUs that

are currently assigned to ixgbe0 for packet processing

are fully utilized while other CPUs in the system are at an

idle or near-idle state. To dedicate a new list of CPUs for

ixgbe0’s use, the following command syntax is used:

# dladm set-linkprop \

-p cpus=<list of cpus> ixgbe0

5 Virtual Wire: Network in a Box

We have described so far the major components needed

for achieving network virtualization using convenient

and intuitive tools. We then showed how bandwidth and

computing resources can be awarded and controlled at a

fine granularity to data links and VNMs. We can now

use the VNMs, VNICs, etherstubs, along with the vir-

tual switching and resource control capabilities as the

building blocks to construct fully functional vWires of

arbitrarily complex topologies in a single or small set of

machines. The three scenarios below are examples of

vWires used for consolidation of subnet and enterprise

networks and for planning of horizontal scaling.

5.1 Example 1 – Seamlessly Consolidating

Multiple Subnets

This example illustrates the high availability and elastic-

ity features of vWires. It shows how two subnets can be

consolidated together without any change to the IP con-

figuration of the machines. It also shows how this con-

solidation not only reduces the cost but also increases the

availability of all existing services. Figure 5 represents

the two independent subnets. To emphasize the elasticity

point, the subnets use the same internal IP addresses.

The consolidation must meet the following two re-

quirements:

• Existing IP addresses must be retained. Many ser-

vices in the network such as firewalls, proxies, di-

rectory services, kerberos, and so on depend on IP

addresses. Reassigning IP addresses during consoli-

dation risks breaking down these services and there-

fore must be avoided.
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Figure 5: Example 1 – two separate physical subnets

IP: 10.10.10.3

MAC: 0:3:4:5:6:7

VLAN ID: 2

client3

IP: 10.10.10.1

MAC: 0:1:2:3:4:5

VLAN ID: 1

server1

NIC

IP: 10.10.10.1

MAC: 0:6:7:8:9:a

VLAN ID: 2

server2

NIC

IP: 10.10.10.3

MAC: 0:a:b:c:d:f

VLAN ID: 1

client2

IP: 10.10.10.2

MAC: 0:a:b:c:d:e

VLAN ID: 1

client1

IP: 10.10.10.2

MAC: 0:3:4:5:e:f

VLAN ID: 2

client4

switch

VLAN1 VLAN2

Figure 6: Example 1 – two VLANs sharing a physical

network

• The consolidation must preserve the separation of

traffic from the different subnets on the wire.

The traditional way to consolidate the two subnets on

the same physical network would be to assign each sub-

net a VLAN ID, and then configure the switch ports with

the appropriate VLAN IDs of the subnet. Finally, each

machine is connected to the correct port. A VLAN-based

network consolidation is represented in Figure 6. Note,

however, that the resulting consolidation still retains the

same number of machines and connections to a switch

port.

A second approach would be to use virtualization. The

two servers can be converted into two virtual machines

that are co-hosted on a physical server. The same num-

ber of physical NICs for the two VMs can be retained,

as well as the wire-port connectivity to the switch. From

a hardware perspective, the redundancy of network con-

nectivity ensures that there is no single point of failure.

The administrator has several options when assigning



NICs to the VMs. An obvious choice would be to assign

the physical NICs, one to each VM. However, this option

loses the advantage of high availability. In fact, the NIC

of a specific VM becomes the single point of failure for

that VM’s network. If that NIC fails, then all the VMs be-

hind that failed NIC become unreachable. Furthermore,

this setup restricts the scalability of the configuration to

the limited number of physical NICs that can be installed

on the bus as well as the number of ports on a switch.

A better approach would be to first create a link ag-

gregation that bundles the physical NICs together. The

aggregation is then virtualized into multiple VNICs and

assigned to their respective VMs. Figure 7 shows this

virtualized consolidation. In Figure 7, the VNICs are

created based on the VLAN ID of their respective VMs.

Thus, even after the transformation to a virtual environ-

ment is completed, traffic from the different VMs can

still be differentiated on the wire.

Furthermore, every VM benefits from the HA of the

networking connectivity because it has a redundant path

to the network. An outage of one of the NICs or its port

on the switch will result in a possibly slower overall net-

work, however each VM is still reachable.

We show below the steps needed to create the link ag-

gregation and then the VNICs to create the configuration

of Figure 7.

# dladm create-aggr -l nxge0 -l nxge1 \

aggr0

# dladm create-vnic -l aggr0 -v 1 vnic1

Note that in this example, the single switch consti-

tutes a single point of failure. Switch stacking or layer-3

multi-pathing can be combined with link aggregations to

provide high availability across multiple switches, as de-

scribed in Section 3.6.

5.2 Example 2 – Consolidating Multi-Tier

Enterprise Networks

This example is a typical scenario for a cloud operator

that offers hosting services for its enterprise clients. Each

client tenant of the cloud operator’s data center expects

complete separation from the other tenants. This exam-

ple demonstrates that all the three tiers (web server, App

server, Database server and iSCSI storage) of the client

data center as shown in Figure 8 can move to the cloud

but remain isolated and separate from other virtualized

data centers in the cloud.

The following steps show how to convert one of the

client enterprise’s Intranets. First create the etherstub for

the Intranet and three VNICs on top of it.

# dladm create-etherstub stub1

# dladlm create-vnic -l stub1 VNIC_WS1
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Figure 7: Example 1 – a vWire with two VLANs in a box

# dladlm create-vnic -l stub1 VNIC_AS1

# dladlm create-vnic -l stub1 VNIC_DB1

The VNICs can then be assigned to the zone

Webserver1 as described in Section 4.2.1. Similarly,

assign VNIC AS1 and VNIC DB1 to AppServer1 and

DBServer1, respectively. Now connect the Database

server to the back-end storage served by the iSCSI tar-

get: Create a VNIC on the back-end physical NIC:

# dladm create-vnic -l NIC2 VNIC_ST1

Assign VNIC ST1 to DBserver1 as described in

Section 4.2.1. Finally, connect the virtual enterprise sub-

net to the front-end edge router VNM by creating the

VNIC1 on the Etherstub1 and assigning it to the Vir-

tual Router VNM.

Figure 9 shows the resulting virtualized and consoli-

dated Intranets for the two client enterprises. The phys-

ical servers have been converted into virtual appliances

that are running in their respective zones. At the same

time, the virtual network topology mimics the physical

Intranets.

The two enterprises are competing for the CPU re-

sources available on the virtualized server. Therefore,

a remaining step is to define processor sets for each

client, assign them to the zones, and bind the VNICs

accordingly. Assume, for example, that AppServer1

is assigned a processor set containing CPUs 1, 2, and

3. The VNIC can be bound to the CPUs assigned to

AppServer1 by issuing the following command:
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networks, virtual View

# dladm set-linkprop cpus=1,2,3 VNIC_AS1

Future improvements will allow the data links to be

automatically bound to the CPUs that are assigned to

the zone, without requiring the administrator to manu-

ally bind the CPUs as shown above.

5.3 Example 3 – Try-Before-Deployment

and Scale Out Scenario

In this example, we show how some of the observability

and virtualization features of Crossbow can be employed

to plan for scaling up the physical configurations as the

need grows. The starting point is a small web server rep-

resented in Figure 10. As long as the amount of trans-

actions coming from clients over the Internet is low, a

single server is capable of handling the level of load re-

quired.

192.0.2.1

Web server

Internet

Figure 10: Example 3 – initial setting

In this scenario, the monitoring tools described in Sec-

tion 4.3 can be used to log the usage history on the NIC

to which the IP address 192.0.2.1 is associated:

# acctadm -e basic -f /var/log/net.log net

At this stage, only basic accounting for the networking

interface is captured, and no flows are required. As the

business picks up, the web server receives an increasing

number of hits. A simple report to indicate the increased

traffic activity can be obtained thus:

# dlstat -u -f /var/log/net.log

LINK IBYTES OBYTES BANDWIDTH

e1000g 2.5M 0.1G 200.4 Mb/s

Anticipating further increase of traffic, the administra-

tor can plan to horizontally scale the network up to mul-

tiple servers. However, before actually investing or com-

mitting any new physical resources to the network, it is

desirable for the administrator to first understand how the

new network configuration would actually behave while

handling increased traffic. With Crossbow, the new dis-

tributed environment can be deployed and tuned in a vir-

tual environment first.

In the give scenario, the web server is first virtual-

ized into multiple virtual server instances running inside

zones. Each instance can handle any of the URIs orig-

inally served. The virtual servers are connected to an

in-box virtual switch through their respective VNICs. A

load balancer and NAT appliance translates the IP ad-

dresses before forwarding the packet to the appropriate

virtual server. An integrated load balancer [1] is ex-

pected to be available in OpenSolaris late 2009. Fig-

ure 11 shows the virtualized topology.

With the network usage history logging is still en-

abled, the amount of traffic on each link on the virtu-

alized server can be monitored2:

# dlstat -u -f /var/log/net.log

LINK IBYTES OBYTES BANDWIDTH

2It is understood that most web servers also include logging of ac-

cess statistics per URL. The authors’ point here is to show how network

infrastructure tools can be used for such accounting, whether the ser-

vice being deployed included internal logging or not.
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Figure 11: Example 3 – vWire for live workload analysis
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Figure 12: Example 3 – De-virtualizing for horizontal

scaling

e1000g0 2.5M 0.1G 180.4 Mbps

vsw1 1.5M 52.7M 203.4 Mbps

vnic1 0.1M 3.0M 47.4 Mbps

vnic2 1.4M 49.8M 156.0 Mbps

This test run shows that the balance of traffic between

the two virtual server appliances is imbalanced. The traf-

fic through vnic1 is only 23% of all traffic coming in

the system, as opposed to the 77% being handled by the

second virtual web server. The system administrator can

then adjust the load balancer parameters to bring a more

equitable distribution of the load.

When the load nears saturation levels for a single

physical server to handle, the administrator can make an

educated decision on the configuration of the new hard-

ware. Note that the virtual web servers can be migrated

to the new physical host with the exact same network

configuration, without any need for IP renumbering. The

final deployment is represented Figure 12.

It should be noted that more information can be de-

rived from the usage history. The administrator could

for example quantify the variation of load over time, and

study the peaks of load, and the progression of the net-

work usage, and extrapolate that progression to estimate

the right time to start considering an upgrade.

6 Related Work

The Crossbow architecture provides mechanisms to

achieve network virtualization within a host with ease of

use and minimum performance penalty. The virtual NICs

and flows leverage NIC hardware advancements such as

classification and multiple receive and transmit rings to

ensure the separation of virtualized packet streams with-

out any processing overhead on the host. The virtual

NICs and flows can be created over physical NICs, link

aggregations, and etherstubs to provide private connec-

tivity between virtual machines.

The idea of virtual switching has been implemented

in other main stream virtualization technologies as well.

Citrix System Xen [7] has a native Linux implementation

where the physical NIC is owned by the hypervisor and

virtual machines access the network by means of a front

end driver that run in the guest domain and the back end

driver that runs in the hypervisor. The hypervisor runs

the physical NIC in promiscuous mode and uses a soft-

ware based bridge implementation to provide all packets

to the back-end drivers, which then select the packets that

match their respective MAC addresses. There are mech-

anisms available to enforce bandwidth limiting and fire-

wall rules on the traffic for virtual machines. However,

these are typically separate subsystems, often very com-

plex in implementation and administration, and can re-

sult in significant performance overheads [25]. VMware

ESX based hypervisor has a proprietary implementation

on a Linux variant but apparently suffers from some of

the same issues [26] in terms of demultiplexing packets

for various virtual machines and resource separation.

More recently, Cisco Systems announced a new virtu-

alization offering under the Unified Computing System

(UCS) [22] umbrella and based on the VMware EX hy-

pervisor. The solution uses a specialized NIC along with

a Nexus switch where packets from individual virtual

machines are tagged to allow the switch to implement

virtual ports and provide features similar to the Cross-

bow implementation. A centralized management solu-

tion in the form of a Virtual Supervisor module manages

the physical and virtual components on the switch as well

as hosts to provide easy management of resources and fil-

tering policies. At the same time, the implementation is

proprietary to Cisco software and hardware and VMware

ESX hypervisor.

Some work is also occurring in the research com-

munity as part of the OpenFlow [11] consortium which

helps in building a standard based programmable switch.



Such a switch would enable the Crossbow based hyper-

visor to program the switch with VLAN tags that are as-

sociated with customers and thus create more dynamic

virtual networks where the switch can also provide sepa-

ration, fairness, and security for the Crossbow vWire.

7 Conclusion and Future Work

The Crossbow virtualization and QoS components pre-

sented in this paper provide a unique mechanism to

achieve network virtualization and consolidate multiple

networks into one physical network. Assigning VLAN

tags to VNICs and performing host based VLAN switch-

ing allow the creation of fully virtualized and isolated

networks. Because the VNICs can be assigned link

speeds, priorities, and dedicated NICs and CPU re-

sources, a collection of virtual machines can span mul-

tiple physical machines and yet have deterministic per-

formance characteristics. The configuration of VNICs

and resource assignment is easy to configure and can be

driven by external management tools with the provided

APIs.

Apart from VNICs and virtual switches, multiple

VNICs on different physical NICs can be assigned to

OpenSolaris zones or virtual machines to create network

components like routers, load balancers, firewalls, and

so on. These virtual network machine along with VNICs

and virtual switches can be combined together to create

a fully virtualized network called vWire.

The Crossbow vWire offers a fully elastic, isolated,

and dynamic virtualized network where virtual machines

can migrate to other physical machines. The vWire ex-

tends with these VMs without needing any changes to

the physical cabling or switches. Since the vWire uses

VLAN tags and extended VLAN tags to provide isola-

tion, it can work with any existing switch.

The various enterprise level features for failover and

high availability such as link aggregation and IPMP, are

designed in the architecture. Thus VNICs can be created

over link aggregations and multiple VNICs on different

attach points can be assigned to the same IPMP group.

Care has been taken to ensure that a VNIC shows up

as a separate interface on the MIB with the configured

link speed as the interface speed. Existing network man-

agement tools can thus continue to work seamlessly in a

virtualized environment.

The various examples in this paper show some of the

possibilities where Crossbow can be used in an enterprise

to decouple the application from the physical hardware

and network to ensure easier deployment, management,

and hardware upgrade. Because the vWire is a collec-

tion of rules and objects, it can be easily migrated from

one physical network to another. This flexibility allows

enterprises to migrate their network in full or in part to

a public cloud when needed. The same concepts can be

used by startups to create their data-center in a box in

a public cloud. They can use Crossbow tools to analyze

their usage and scale out to multiple machines seamlessly

as business needs and traffic grow.

The core of the Crossbow architecture and all the

features described in this paper have been imple-

mented and integrated in OpenSolaris and available at

http://opensolaris.org to any user.

Near term work focuses on enhancing the manage-

ment tools to visualize and configure these vWires and

virtual network machines. Crossbow has achieved a

powerful level of control and observability over the net-

working resources inside a single system. One of the

directions being pursued is to extend that kind of con-

trol beyond the boundaries of a single box, to encompass

flows that span multiple subnets of physical and virtual

machines. To that end, new wire protocols are being ex-

plored to convey some of the QoS requirements between

nodes. We need to address both the data plane, and the

control plane. Priority-based Flow Control (PFC) is the

layer-2 mechanism defined by the IEEE and used for dis-

criminating based on the VLAN tag’s priority field on

data packets. On the control plane, Generic Attribute

Registration Protocol (GARP) and Multiple VLAN Reg-

istration Protocol (MVRP) are being considered for two

reasons: The scalable administration of multiple inter-

connected nodes underscores the need for a hands off

propagation of QoS information across the links. Sec-

ondly the network must be protected from the floods of

unnecessary broadcasts from unused VLANs.
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