
Secure Passwords Through Enhanced Hashing

Benjamin Strahs Chuan Yue Haining Wang

Department of Computer Science

The College of William and Mary

Williamsburg, VA 23187, USA

{bgstra,cyue,hnw}@cs.wm.edu

Abstract

Passwords play a critical role in online authentication.

Unfortunately, passwords suffer from two seemingly in-

tractable problems: password cracking and password

theft. In this paper, we propose PasswordAgent, a new

password hashing mechanism that utilizes both a salt

repository and a browser plug-in to secure web logins

with strong passwords. Password hashing is a technique

that allows users to remember simple low-entropy pass-

words and have them hashed to create high-entropy se-

cure passwords. PasswordAgent generates strong pass-

words by enhancing the hash function with a large ran-

dom salt. With the support of a salt repository, it

gains a much stronger security guarantee than existing

mechanisms. PasswordAgent is less vulnerable to of-

fline attacks, and it provides stronger protection against

password theft. Moreover, PasswordAgent offers some

usability advantages over existing hash-based mecha-

nisms, while maintaining users’ familiar password entry

paradigm. We build a prototype of PasswordAgent and

conduct usability experiments.

1 Introduction

Passwords remain the most common security method to

authenticate or verify a user’s online identity [25]. They

provide a powerful guard against unauthorized access to

systems and data, and are ubiquitously used in various

online activities such as shopping, banking, communi-

cation, and learning. User authentication via password

relies on the something you know authentication factor,

i.e., you know some secret that no one else does. Al-

though two other authentication factors something you

have (e.g., hardware token) and something you are (e.g.,

fingerprint) have also been recognized and used in prac-

tice, they have not gained a wide acceptance on the Inter-

net, primarily because of their high cost, limited flexibil-

ity, and restricted portability. On the contrary, passwords

are simple, inexpensive, easy to implement, and conve-

nient to use. Consequently, they occupy the dominant

position in online user authentication, and this situation

will not change in the foreseeable future.

Despite their prevalence and importance in online au-

thentication, passwords do have two well-known and

long-standing problems: weak passwords are easy to

crack, and passwords are vulnerable to theft. Password

security depends on creating strong passwords and pro-

tecting them from being stolen. A strong password

should be sufficiently long, random, and hard to dis-

cover by crackers. In contrast, a weak password is usu-

ally short, common, and easy to guess. Examples of

strong passwords include “t3wahSetyeT4” and “Tpftc-

its4Utg!”; and examples of weak passwords include “su-

san123” and “password” [6]. Weak passwords suffer

from vulnerability to brute-force and dictionary attacks

[29]. The dilemma in a password system is that a user

will often choose guessable passwords simply because

they are easy to remember [11, 19, 29]. Moreover, no

matter how strong they are, passwords are also vulner-

able to theft. One of the most significant threats to on-

line users is phishing attack [18, 39], which uses social

engineering techniques to steal users’ personal identity

data on spoofed websites [1]. In recent years, this type

of identity theft has risen sharply and has cost billion-

dollar losses [2]. Other attacks like shoulder surfing [33]

can also steal user passwords, especially in public places

such as cybercafes, airports, and libraries.

As more online services are password-protected, users

have to create and memorize an increasing number of

passwords. This, combined with the inherent limitation

of human memory, forces users to revert back to insecure

habits such as choosing simpler passwords, reusing pass-

words across different websites, or even writing down

their passwords [37]. A recent large-scale study of web

password usage shows that on average, a user has ap-

proximately 6.5 passwords shared across 25 different

websites, and the majority of users choose weak pass-

words that contain only lower case letters [22].

To address these problems and enhance online pass-

word security, a number of techniques have been pro-

posed. For example, password managers generate

strong passwords and automatically store them in a lo-

cal database [8, 5]. Single sign-on systems allow users

to log into many websites using one account, which re-

duces the number of passwords a user must remember

[9]. Graphical passwords enable users to click on im-

ages to authenticate themselves [26, 17]. However, these

solutions all have their own limitations. Password man-

agers store passwords on a fixed computer and thus lack

mobility; single sign-on systems place too much trust on

a centralized system and thus are vulnerable to single-

point failure [27]; and graphical passwords, although

proposed as an alternative to traditional text-based pass-

words, are still hampered by security and usability con-

cerns [16, 34].

A promising approach to obtaining secure online pass-

words is password hashing, in which hashed passwords

are sent to remote websites instead of plain-text pass-

words. Password hashing is very attractive for a few rea-

sons: it is lightweight and convenient to use, increases

password strength, and can defend against phishing at-

tacks. This approach has been taken in projects such as

the Lucent Personal Web Assistant (LPWA) [23], Pwd-

Hash [31], Password Multiplier [24], and Passpet [38].

However, these systems still have security limitations

which will be discussed in Section 2. Moreover, pass-

word hashing systems, if not carefully designed and im-

plemented, suffer from usability problems that may di-

rectly lead to security exposures [14].

In this paper, we present PasswordAgent, an automatic

password management system with enhanced hashing,

which consists of a Salt Repository server and a browser

plug-in Agent for securing online passwords. The Salt

Repository stores a list of salts for each registered user

while the Agent provides the user interface, salt retrieval,

and hashing functionality. When a plain-text password

needs to be protected for a specific website, the user sim-

ply activates the Agent and enters the plain-text pass-

word. The Agent automatically concatenates the plain-

text password and the website specific salt to determinis-

tically generate the site password via a hash function.

The contribution of PasswordAgent to online pass-

word management lies in the following aspects. First,

it automatically provides a stronger security guarantee

by using randomly generated and securely stored salts.

Second, it improves phishing protection by giving users

accurate warnings if they attempt to enter protected ac-

count information on an unprotected website. More-

over, even if phishers obtain the plain-text passwords

by using subtle techniques such as JavaScript attacks or

“spoofed password field in Flash” [31], they still can-

not access users’ accounts because they do not have the

salts. Third, as long as the password to the Salt Repos-

itory server is not observed by an attacker, PasswordA-

gent also reduces the risks of shoulder surfing attacks.

Finally, a few usability suggestions made in [14] are in-

corporated into PasswordAgent, providing some usabil-

ity advantages over existing solutions.

The remainder of this paper is structured as follows.

We describe existing password hashing solutions in Sec-

tion 2. We present the design of PasswordAgent in Sec-

tion 3 and analyze its security and usability in Section 4.

We detail the implementation and usability evaluation of

PasswordAgent in Section 5. We discuss the limitations

of PasswordAgent in Section 6, and finally we conclude

in Section 7.

2 Related Work

In this section, we highlight the contributions of the Lu-

cent Personal Web Assistant (LPWA) [23] and three re-

cent systems: PwdHash [31], Password Multiplier [24],

and Passpet [38]. These existing systems exemplify the

concept and value of password hashing in online user au-

thentication, and they are most related to our proposed

PasswordAgent.

LPWA is an HTTP proxy providing data anonymity

services to users. To a user, LPWA generates secure, con-

sistent, and pseudonymous usernames, passwords, and

email aliases for different websites based on three inputs:

a UserID, a universal password to the proxy, and a desti-

nation website address. Using LPWA, users can protect

their real identities and weed out junk email based on

the recipient email address. LPWA was successful be-

fore, but now it has serious limitations. LPWA does not

support HTTPS, but the identities that need to be pro-

tected the most are those that are transmitted via HTTPS.

LPWA also requires users to fully trust the proxy server,

which knows all the login credentials to the destination

servers, resulting in security and privacy concerns.

PwdHash is a browser extension that transparently cre-

ates a different password for each site, improving web

password security and defending against phishing at-

tacks. PwdHash addresses a few challenges of imple-

menting password hashing as a secure and transparent

extension to web browsers. In particular, PwdHash uses

the destination domain name as a salt and sends a hashed

password to the remote site. However, PwdHash, as ac-

knowledged by the authors, is vulnerable to two major

kinds of attacks. One is a dictionary attack on the hashed

passwords. This vulnerability is due to three factors:

a phishing site can obtain hashed passwords, PwdHash

uses MD5 [30], a very fast hashing algorithm, and the

salt is publicly known. The second vulnerability of Pwd-

Hash is its susceptibility to advanced phishing attacks,

such as using Flash objects or focus stealing. Flash ob-

jects and focus stealing are a form of phishing that allows

keyboard strokes to be intercepted before other browser

plugins have a chance to handle them.

As a browser extension, Password Multiplier can gen-

erate strengthened passwords for an arbitrary number of

accounts while requiring the user to memorize only a

single short password. It uses the same three inputs as

LPWA: a UserID, a master password, and a destination

domain name. The key contribution of Password Multi-

plier is using a strengthened hash function to determin-

istically generate high-entropy passwords. However, the

main problem with Password Multiplier is that all the de-

rived passwords will be known to attackers if the master

password is stolen. At present, it is possible for an at-

tacker to steal a master password through a keylogger

or other spyware. Moreover, changing a password for

a specific site is complicated because Password Multi-

plier requires users to remember additional information.

Changing the master password also becomes tedious be-

cause the password on every site needs to be updated.

Built upon Password Multiplier and Petname Tool [7],

Passpet turns a single master password into distinct pass-

words for different websites and uses petnames to help

users recognize phishing attempts. In order to gener-

ate correct passwords, Passpet relies on a remote server

to store site label files. However, Passpet has the same

drawback as Password Multiplier in terms of master

password vulnerability. Changing the master password

is still tedious because a user needs to migrate passwords

for every site. In addition, its remote storage server

is vulnerable to various malicious attacks, which is ac-

knowledged by the authors. We compare PasswordAgent

with these existing systems and detail the advantages of

PasswordAgent in Section 4.

3 Design of PasswordAgent

3.1 Overview

PasswordAgent consists of two major components: the

Salt Repository and the Agent. The Repository stores

salt lists enabling PasswordAgent to function transpar-

ently across either enterprise networks or the Internet.

The Agent is used to retrieve the salts from the Reposi-

tory, provide visual security indicators, and generate site

specific passwords. In our design, each enterprise net-

work maintains a Salt Repository providing salt storage

services for its users. To achieve high reliability and scal-

ability, it is possible that multiple servers function as the

Salt Repository within one enterprise network. Usually,

each user has a primary Salt Repository, but it is possible

that one user has salt lists stored in multiple repositories.

� � �

� � � � � � � �

� � 	 �
 � � 	

� � 	

� � � � � � 	 �
 �

�

� � 	 � �� � 	 � �

� � 	 � �

� � � �
 � � � �

� � � � 	

� � � � � � 	 �
 � � � � � � � 	

� � � � � � 	 �
 �

� � � � � � � �

� � 	

� � � � � � 	 �
 �

� �

� � �

� � � � � � 	

Figure 1: The architecture of PasswordAgent.

In contrast, the Agent is associated with each individual

web browser as a browser extension. The basic architec-

ture of the PasswordAgent is shown in Figure 1. Before

continuing, it is important to have a grasp of the five dif-

ferent types of passwords discussed in this paper. Table 1

describes these passwords in detail.

Term Description Example

Plain-text Password The user’s password. “secret”

Protected Password The plain-text password but with

additional data (either the activa-

tion hotkey or activation prefix)

added to notify PasswordAgent

that a site password needs to be

generated.

“@@secret”

OR

[F2]“secret”

Site Password The unique password generated

for a site based on the site salt and

plain-text password.

“2T7fYe10”

Agent Password A password chosen by the user

to protect their salts. It is only

entered at the beginning of the

browser session.

“likk@#0”

Repository Password A password automatically gen-

erated from the Agent Password

and used to authenticate to the

Salt Repository.

“LT8@!dbn9”

Table 1: Password terminology.

To facilitate the deployment of the Salt Repository in-

side an enterprise network, the Repository can be inte-

grated with any accessible web service that implements

the Repository Interface. The web server can be pub-

licly accessed via the Internet so that users can retrieve

their salt lists from any location. The interface is a sim-

ple XML protocol that allows a user to register an ac-

count, save a domain and its associated salt, and retrieve

a list of domains and salts. All the information in the

salt list is encrypted before being stored. This not only

guards against a compromised Repository, but also alle-

viates privacy concerns by making the domains inacces-

sible to anyone but the user. An overview of the data

stored by the Salt Repository is illustrated in Figure 2.

� � � � � � � �

� � � 	
 � � 	

� � � � � 	 � � � � � � � � � � � � 	
 � � 	 �

� � � � � � 	 � � � � � � � � � � � � � � 	

� � � � � � � � � � � � 	 � � � � � � � � � � �

� � � � � ! � " # � � $ � " %

 & � � � � 	 � � � � � � � � � ' � � � � � � (� � � 	 � �

)))

 & � � � � 	 � � � � � � � � � ' � � � � � * (� � � 	 * �

 & � � � � 	 � � � � � � � � � ' � � � � � + (� � � 	 + �

� � � � � � 	 � � � � � , � � �

� � � � � � 	 � � � � � , � � �

� � � � � � 	 � � � � � , � � �

� � � � � � 	 � � � � � , � � �

� � � � � � 	 � � � � � , � � �

� � � � � � 	 � � � � � , � � �

� � � � � � 	 � � � � � , � � �

Figure 2: Data stored by the Salt Repository.

The Agent directly integrates into a web browser, al-

lowing a user to generate passwords. The Agent is a vari-

ation of PwdHash for Firefox, but creating plug-ins for

other major browsers should be a relatively simple task.

A PasswordAgent session begins like a normal brows-

ing session with the user launching a web browser. The

user must then log into the Agent with a username and

Agent password. The Agent then transparently deter-

mines which Repository to use, and loads the user’s salt

list from it. The user continues to browse the web until a

login form is encountered. Once the user enters a pass-

word field, the Agent indicates whether the current site

is registered or not. If the user activates PasswordAgent,

a unique site password will be generated by hashing the

site’s salt and the entered plain-text password. The login

form is submitted with the site password, and the user

logs into the site.

3.2 User Flow

Before using the PasswordAgent service, the user must

register with a Repository and install the Agent. Reg-

istration consists of selecting a username and Agent

password. Because the Agent is Repository agnostic,

the username must provide enough information to de-

termine which Repository to use. In consideration of

this, all PasswordAgent usernames take the form of

username@domain where domain is the domain

name that the Repository belongs to. For example, a user

who has the username jsmith and utilizes the institu-

tion of XYZ’s PasswordAgent service would use the lo-

gin jsmith@xyz.edu. The Agent can then locate the

Repository at passwordagent.xyz.edu. This approach re-

quires minimal memorization for a user, and allows for

easy deployment and configuration of the Repository.

The Agent encrypts all the information that it stores in

the Repository, so there is a requirement for both an en-

cryption key and a password to authenticate to the Repos-

- . / 0 1 2 . 3 4 5 2

6 4 5 2 7 8 9 5 2 4 - . : ; 8
< 8 = . 2 > / 9 ; . 8

? / @ 9 A 5 B . 4 ; 9 . 2 C

6 4 5 2 1 2 . 3 4 5 4 ? ; 9 5

6 4 5 2 7 8 9 5 2 4
D / 4 4 3 . 2 0 E ; 5 @ 0 6 B 0 / 9 5 F 6 < ? 9 / 9 G 4

E . 2 > ? G H > ; 9 9 5 0

- . : ; 8 < 8 = . 2 > / 9 ; . 8

? / @ 9 - . . I G B

? / @ 9 - ; 4 9

6 4 5 2 7 8 9 5 2 4
D 2 . 9 5 J 9 5 0 D / 4 4 3 . 2 0

< 8 9 5 2 J 5 B 9 / 8 0 ? 9 . 2 5
D / 4 4 3 . 2 0K 5 C 4 9 2 . I 5 4

6 4 5 2 - 5 / L 5 4
D / 4 4 3 . 2 0 E ; 5 @ 0 ? ; 9 5 D / 4 4 3 . 2 0 F 5 8 5 2 / 9 5 D / 4 4 3 . 2 0? / @ 9

Figure 3: Basic user flow.

itory. To avoid having the user memorize two secrets,

the Agent password is used as the encryption key and

the Repository password is generated by hashing the full

username (including the domain) and the Agent pass-

word together:

PasswordRepository = SHA256(PasswordAgent||Username) (1)

EncryptedSalt = AESPasswordAgent
(PlaintextSalt) (2)

Since the Repository never knows the Agent password

of a user, it cannot decrypt the stored information. In

order to guarantee the integrity of the salt list, the Agent

also stores a Message Authentication Code (MAC) [12,

13] calculated as:

MAC = HMAC − SHA256P asswordAgent
(Domain1||Salt1

||Domain2||Salt2||...||Domainn||Saltn) (3)

Registration can be accomplished either with auto-

matic enrollment by a network administrator or via a web

form provided by the Repository. Once registered for an

account, a user would then need to install the browser

plug-in. After installation, the user is ready to log in and

begin a browsing session. An overview of a PasswordA-

gent session is given in Figure 3.

3.2.1 Login

When a web browser (e.g., Firefox) is first launched, the

Agent lacks a salt list and is unable to protect any pass-

words. The user must authenticate to the Repository via

Figure 4: Toolbar displaying the status of PasswordA-

gent.

a login dialog. A toolbar button displayed by the Agent

allows the user to enter the login dialog as shown in Fig-

ure 4.

Once the user enters a username and Agent pass-

word, the Agent determines the location of the Reposi-

tory based on the domain portion of the username, gen-

erates the Repository password, and retrieves the salt list

from the Repository. If successful, the salt list is de-

crypted using the user’s Agent password and the MAC

is verified. Should the MAC determine that the salt list

has been tampered with, the user is warned via a dialog

and the Agent remains logged out. Otherwise, the Agent

updates the toolbar to reflect the new logged in status and

retains the salt list in memory until the user logs out or

exits the browser. To guard against fraudulent Reposito-

ries, all communication is performed over HTTPS. Be-

cause the Repository has to identify itself via an SSL

certificate, the Agent is protected from being tricked into

divulging the Repository password.

3.2.2 Browsing

If the user enters a password field during the process of

web browsing, the Agent toolbar changes to inform the

user whether or not the current site is registered. A site

is considered registered if it has a salt associated with it,

as shown in Figure 5(a), and unregistered if it does not,

as shown in Figure 5(b). This allows the user to decide

whether or not to enter a protected password.

3.2.3 Password Protection

The password input mechanism of the Agent is similar

to that of PwdHash. In order to notify the Agent that

a site password should be generated, the user enters a

protected password. A protected password is created by

either prefixing the plain-text password with @@ or by

pressing a hotkey (F2). For example, a user who wishes

to protect the plain-text password “secret” would type

the protected password “@@secret” which would cause

PasswordAgent to generate a site password. When a pro-

tected password is entered, PasswordAgent captures all

keystrokes before they appear on the page, so JavaScript

keyloggers cannot steal the plain-text password. Once

the user leaves the password field, the protected pass-

word is analyzed to reveal the plain-text password (by

removing the @@ prefix) and hashed together with the

site’s salt to create the site password. The site specific

password is generated using the SHA256 hash function

[3]:

PasswordSite = SHA256(PasswordP laint−text||SaltSite) (4)

The main reason for using either the @@ prefix or the

F2 hotkey is to let a user explicitly inform the hashing

mechanism where to intercept the plain-text password.

This guarantees that the data in other input fields will

not be incorrectly hashed. The prefix @@ is chosen,

because it is extremely unlikely that it will appear in a

normal context. This enables PasswordAgent to scan the

keystream and interpret @@ as an indicator to activate

password protection. F2 is selected as a hotkey since it

is currently not mapped to any functionality in Firefox

[31].

3.2.4 Site Registration

To create a site password for a website, the site must first

be registered in order to have a salt associated with it. If

a user attempts to generate a site password via the pre-

fix or hotkey mechanism on a site that has not yet been

registered, an instructional dialog will appear. The dia-

log walks the user through registering the site with Pass-

wordAgent. The dialog first confirms that the user wants

to register the site with PasswordAgent, and hasn’t acci-

dentally triggered password protection. The user is then

given a list of already registered sites as shown in Fig-

ure 6. The user is asked if the target site appears in this

list. If it does, then the target site is actually a phishing

attempt because it appears to be a registered site but in

reality is from a different domain. The user is warned

and prompted to navigate away. If the target site is not

listed, the user is asked if he or she has an account with

the target site or is creating a new account. Different in-

structions are displayed based on the user’s response:

If the user has an existing account with the target site,

that account must be migrated to use PasswordAgent.

Migration is achieved by: (1) logging in with the plain-

text password, (2) navigating to the change password

page, and (3) entering the new protected password. A

salt will then be generated, encrypted, and sent to the

Salt Repository along with the updated MAC.

If the user is creating a new account on the unregis-

tered site, then the user simply has to enter a protected

password on the site registration form. The salt is gen-

erated, the new MAC for the salt list is calculated, and

(a) (b)

Figure 5: User focused password fields: (a) on a protected site, (b) on an unprotected site.

both are sent to the Repository for storage. The new salt

is then used to generate the site password.

3.2.5 Multiple Accounts on One Site

A user can have multiple accounts on a single site, for

example, someone may have two Gmail accounts. Pass-

wordAgent is compatible with this scenario, as it can

use the site’s salt to hash both passwords. In this case,

password uniqueness cannot be guaranteed because if

the user selects the same password for both accounts, the

protected password will also be the same. This is a mi-

nor issue, given that it is a relatively rare scenario. This

issue also exists in PwdHash and Password Multiplier.

Password protection is provided in that a compromised

password on the site with multiple accounts will only ef-

fect that particular site - all other sites are guaranteed to

have unique passwords.

3.2.6 Changing Site Password

The site password can be changed by one of two mech-

anisms. The first is to change the plain-text password as

one would do with a normal password (i.e., “@@pass-

word” to “@@newpassword”). The Salt Repository does

not need to be notified in this case, since the salt remains

unchanged. The new password is protected in the same

manner as the old password. This has the advantage of

not requiring the user to learn any new paradigms about

changing passwords. The second is to keep the plain-text

password intact but to change the site salt.

3.2.7 Password Format

Every site has different requirements for passwords.

Some sites require at least one non-alphanumeric char-

acter, while others prohibit them entirely. To allow for

these different formats, the user’s plain-text password is

examined for clues as to the makeup of a valid site pass-

word. If the user does not include a non-alphanumeric

character in the plain-text password, the site password

would not contain one and the site would notify the

Figure 6: Information dialog that assists users in recog-

nizing phishing sites.

user of the incorrect composition of the password. Any

changes in the plain-text password will be reflected in the

site password, enabling PasswordAgent to generate valid

passwords for all sites without any specific prior knowl-

edge. Such a design was first presented in [31]. While

this technique does leak information about the plain-text

password, it is of little concern because no information

about the salt is revealed. This technique avoids the need

to constantly update a list of composition rules for com-

mon sites on the Internet. This also addresses an impor-

tant usability issue of users being dissatisfied with site

passwords. Users become concerned when sites, like

Hotmail, offer a password strength meter and the site

passwords are rated as medium instead of strong [14]. By

inspecting plain-text passwords for clues, the indicated

strength of a password is directly related to the strength

of the plain-text password. It should be noted that the

actual strength of the site password is greater, even if the

password meter indicates they are the same. A user pro-

vided character string has less entropy than a salted and

hashed version of that string.

3.2.8 Roaming

Roaming can be achieved in one of two ways. A roam-

ing user can either install the Agent as outlined before,

or site passwords can be generated via a web interface

provided by the Repository. The web interface allows

the user to log in and generate passwords for a specific

site, which can be copied and pasted into the login form.

This enables users without the ability to install the Agent

to still access their accounts. PwdHash implements a

similar web based mechanism for roaming users, how-

ever it is located at a URL that is complex and difficult

to memorize [14]. Because the Repository is located at

passwordagent.domain, it is simple to provide the web

interface at that address. Doing this reduces the mem-

ory burden as users already know the domain of their

Repository as part of their logins, all they have to do is

remember to prepend passwordagent to it.

4 Security and Usability Analysis

4.1 Security Analysis

The primary goal of PasswordAgent, like other password

hashing schemes, is to improve user security. Here we

compare the security of PasswordAgent with those of

LPWA, PwdHash, Password Multiplier, and Passpet

in ten different aspects. The comparison results are

summarized in Table 2. A detailed discussion is as

follows, outlining the major security concerns with the

existing password hashing mechanisms.

Unique Passwords: Each password hashing solu-

tion generates a unique password for each site, even if

the plain-text password is the same.

Offline Attacks: PasswordAgent is less vulnerable

to offline attacks. Because the salt list is not stored

locally, launching an offline attack to retrieve the salt list

is difficult. Moreover, the Salt Repository can defend

against online attacks by limiting the number of login

attempts allowed per minute. Password Multiplier and

Passpet are also resistant to offline attacks as long as the

local machine remains uncompromised. However, if an

attacker breaches the computer and retrieves the cached

master password, a relatively inexpensive offline attack

can be launched to expose every site password. With

PasswordAgent, even if the Agent password is stolen,

only the salt list is revealed. The attacker would still

need to launch an online attack against the target site to

determine the site password.

Compromised Plain-text Password: In the sce-

nario where the plain-text password is compromised,

only PasswordAgent still provides user protection.

An attacker would be unable to use the compromised

password, because the random site salt is not known.

PwdHash does not have this advantage, as the salt is

the site’s domain name, allowing an attacker to utilize

the compromised password to access the site. Even

worse, Password Multiplier and Passpet both use one

plain-text password as a master password to generate all

of the site passwords. Should the master password be

compromised, every password protected by Password

Multiplier and Passpet will also be compromised.

Compromised Site Password: All password hash-

ing schemes claim to protect users when a site password

is compromised. However, because PwdHash uses

MD5 and a known salt, the domain name, it is possible

to launch a brute force attack on the compromised

password. A phisher impersonating a single site could

launch a time-space trade-off attack and feasibly retrieve

the plain-text password. In contrast, PasswordAgent

defends against offline attacks with a large random salt.

Assuming that it takes 1ms to calculate a hash with a

256-bit salt, it would take roughly 10
66 years on average

to find the plain-text password. Furthermore, even if

attackers are able to recover the plain-text password,

they still have to launch an online brute force attack in

order to discover the salt for any other site that uses the

same plain-text password.

Basic Phishing Protection: The nature of hash-based

password generation allows all schemes to provide

a basic level of phishing protection. Because each

site password is unique, using any of these password

generation tools on a phishing site will not immediately

expose the login of the target site. As previously noted

though, the site password can be used in offline attacks

to reveal the plain-text password. LPWA, PwdHash,

Password Multiplier, and Passpet all suffer from this

problem. However, PasswordAgent offers the additional

security with random salts, so even a stolen plain-text

password will not give an attacker access to a login.

Advanced Phishing Protection: PasswordAgent

provides early warning against phishing sites. If a

user attempts to enter a protected password on an

unregistered site, an information dialog notifies the user.

This dialog, as shown in Figure 6, warns the user that

the current site is not registered and displays a list of

registered sites. This allows users to check if they are

on a phishing site. Displaying security information in

the browser chrome, PasswordAgent prevents its user

interface from being spoofed by web pages. Because

web pages do not have access to the browser chrome,

it is difficult to place a fake login button or security

indicator.

Shoulder Surfing Protection: PasswordAgent makes

shoulder surfing—watching a user type in a password—

much more difficult to succeed, because it requires the

LPWA PwdHash Password Multiplier Passpet PasswordAgent

Security

1 Unique Password for Each Site yes yes yes yes yes

2 Resist Offline Attacks - - no no yes

3 Protect Compromised Plain-text Password no no no no yes

4 Protect Compromised Site Password yes yes yes yes yes

5 Basic Phishing Protection yes yes yes yes yes

6 Advanced Phishing Protection no no no yes yes

7 Enhance Shoulder Surfing Protection no no no no yes

8 Secured Remote Storage - - - no yes

9 Adaptation to Faster Computers no no yes yes yes

10 Provide Data Anonymity yes no no no no

Usability

1 Allow Easy Site Password Update yes yes no yes yes

2 Notify if Site is Protected no no no yes yes

3 Support all Site Specific Password Requirements no yes no no yes

4 Minimal Change to Browsing Paradigm yes yes no no yes

5 Requires 3rd Party Server no no no yes yes

Table 2: Comparison of PasswordAgent with four other tools.

observation of two separate events, the typing of the

Agent password and the typing of the site password.

Since the Agent password is entered only when the user

begins a session, an attacker is forced to hover around

the victim for longer periods of time, increasing the

chance of detection. Other schemes, however, only

require one password, making the attacker easier to

succeed.

Secured Remote Storage: The Salt Repository of

PasswordAgent is cryptographically secure, and does

not leak any useful information to attackers. By contrast,

Passpet leaks not only whether a username exists

(through the list command) but also how large k1 is

[38], where k1 is the number of iterations of a hash

function used for generating the site password. The

smaller the k1, the weaker the password. Armed with

this knowledge, an attacker can target a user with a

small k1 value and launch a brute force attack on the

weakest master password. Both PasswordAgent and

Passpet store only encrypted data and guarantee the

integrity of the data with a MAC. Even in a situation

in which a Salt Repository is compromised, the leaked

information would not be useful because the attacker

would have to brute force the salt list and then launch

an online attack against the site specific passwords. It is

technically possible to launch a brute force against the

salt list, however it would take a prohibitively long time.

This in combination with the required online attack

against individual sites mitigates the possibility of a

malicious Salt Repository compromising the security of

PasswordAgent.

Adaptation to Faster Computers: PasswordA-

gent can adapt to faster computers and the associated

greater power of attackers in launching dictionary/brute

force attacks, by increasing the salt size. This is a minor

change to the Agent implementation. The user simply

regenerates a longer salt while keeping the plain-text

password intact. The newly-generated site password is

stronger, and no extra memory burden is placed on the

user. In contrast, it is not easy for PwdHash to adapt to

adversaries with more computing power. Both Passpet

and Password Multiplier can increase the number of

iterations to make it harder for an attacker to compute

the site password.

Data Anonymity: Only LPWA has data anonymity as

its goal. The other solutions, including PasswordAgent,

focus solely on password protection. LPWA enables a

user to browse, hold accounts, and email without ever

revealing personal identification information.

4.2 Additional Usability Benefits

Usability is a key factor in any software system. A

simple usability flaw might render a cryptographically

secure system useless. Care is taken in the development

of PasswordAgent to address usability concerns that

exist in previous password hashing solutions. The

specific usability benefits of PasswordAgent are detailed

as follows.

Ease of Site Password Updating: PasswordAgent

allows users to change their site passwords exactly like

they normally do, via the change password page of the

website. By changing it to a new protected password,

users maintain all the benefits of PasswordAgent without

any complicated or confusing processes. PwdHash has

the same functionality. In contrast, Password Multiplier

forces users to append information to the domain name

being hashed. Not only is this confusing, but it also

forces users to remember what additional information

they are using for their logins [14]. Passpet uses a similar

mechanism, in which users can change the label of a

site to change the password. Unlike Password Multiplier

though, it remembers the change and does not require

additional memorization.

Notification of Protected Sites: Only PasswordA-

gent and Passpet notify users when a site requires

protected passwords. PasswordAgent displays a “noti-

fication bubble”, which informs the user of the status

of the site and how to login, as shown in Figures 5(a)

and 5(b). In addition to notification bubble, PasswordA-

gent allows the user to view a list of all the registered

sites. Both PwdHash and Password Multiplier fail

to indicate whether a site is expecting a protected or

plain-text password. Users who enter an incorrect

password will often proceed to enter many of their other

passwords, including plain-text passwords [14]. This

leads to multiple passwords being exposed, a situation

that is even worse than if no password protection is used.

Changing Master Password: The user can change the

master password for the Salt Repository at any point

without changing the password on any individual site.

By entering the old and new Agent Password, the salt

list can be decrypted and then re-encrypted with the new

password. Because the same salts are used to generate

the password, the site password remains the same.

This is more convenient than in Passpet and Password

Multiplier, where a change to the master password

requires the user to login into each individual site and

manually change the password.

Site Specific Password Requirements: Many sites

have different password requirements, including size

and acceptable characters. Only PasswordAgent and

PwdHash examine the user’s plain-text password for

clues to the expected composition of a password.

Any errors with the plain-text password are mirrored

in the site password, so the user receives useful feedback.

Minimal Changes to Browsing Paradigm: Simi-

lar to PwdHash, PasswordAgent makes only minimal

changes to the normal interaction between a user and

a web browser. The only two changes include: (1) the

user must log into the Agent when beginning a session,

and (2) the protected password must start with @@ (or

the user must activate PasswordAgent via the F2 key).

These minimal changes should make the adoption of

PasswordAgent easy. Password Multiplier and Passpet

both require obvious deviations from the normal user

login.

Ease of Switching Storage Servers: PasswordA-

gent is completely repository agnostic, and can easily

<?xml version=’1.0’ encoding=’utf-8’?>

<response>

<status>statusInfo</status>

<message>messageBody</message>

......

<data>dataSection</data>

</response>

Figure 7: XML Response Format.

transfer the salt list from one repository to another. In

contrast, Passpet uses the storage server address as part

of the master password generation, thus any change in

the storage server address forces users to create a new

master password and update all their site passwords.

5 Implementation and Evaluation

5.1 Implementation

We build a prototype of PasswordAgent, in which the

Salt Repository is implemented as a Java servlet and the

Agent is implemented as a Firefox extension.

5.1.1 Salt Repository Interface

The Salt Repository Interface is a simple XML-based

REST-style protocol, which allows the creation of user

accounts, the updating of site salts, and the retrieval of

the salt list. These methods fulfill the minimum re-

quirements to maintain a salt list. The Interface is de-

signed for ease of use with JavaScript’s XMLHTTPRe-

quest object. Because the XMLHTTPRequest object al-

lows synchronous HTTPS requests and can translate an

XML response into a DOM document, it takes minimal

additional code for the Agent to communicate with the

Repository. The Salt Repository is written as a Java

servlet, which eases its deployment across different plat-

forms. Any web server supporting HTTPS can serve as a

Repository, as long as it implements the Salt Repository

Interface and is located at passwordagent.domain.

Here the Salt Repository is maintained by a publicly

accessible HTTPS server that implements the REST [20]

methods as listed in Table 3. These methods allow users

to maintain their salt lists.

The Interface is designed to be as simple as possible

for implementation, and uses a simple XML response

format that is easy to parse. The response format is il-

lustrated in Figure 7. Each response contains at least

a <status> element that is either “success” or “error”

and a <message> element that includes a natural lan-

guage description of the response. Some methods return

Method Description Parameters Data Section Format

CreateUser Creates a new user

account.

user - the desired username.

password - the desired repository password.

hmac - the HMAC code to store for the current (empty) salt list

N/A

GetSites Retrieves the salt

list for a user.

user - the username of the user.

password - the repository password of the user

<data hmac=“SaltListHMAC”>

<site domain=“domain.com” salt=“salt” />
<site domain=“domain2.com” salt=“salt2” />
</data>

SetSite Stores a salt for a

specified domain.

user - the username.

password - the repository password.

site - the domain

salt - the new salt

hmac - the HMAC code to store for the current (including this updated

entry) salt list

N/A

UpdateUser Updates a user’s

repository pass-

word.

user - the username.

password - the repository password.

newpassword - the desired new authentication password.

N/A

Table 3: Salt Repository methods.

a <data> section that includes more information, allow-

ing further data to be passed to the caller.

5.1.2 Agent

The Agent is a Firefox extension written in JavaScript

and XML User Interface Language (XUL) [10], with-

out using native components. It is a modified version

of the open source PwdHash. While the basic password

protection activation code remains the same, additional

functionality is provided in the form of a GUI, a more

secure hash function, and a module to communicate with

the Salt Repository. PwdHash has no visible GUI, Pass-

wordAgent, by contrast, includes status indicators and

warning dialogs to assist users in protecting their pass-

words. PwdHash uses the MD5 hash function, but recent

collision attacks have rendered MD5 insecure [35]. Pass-

wordAgent uses SHA256 for all hashing functions and

AES [4, 15] for salt encryption. Although PasswordA-

gent uses a more complex hash algorithm and hashes

larger values, it is still reasonably efficient as it takes

only about 45ms to generate a password using SHA256,

benchmarked on a 2.26Ghz Intel machine running SuSE

Linux 10.2 with 512MB RAM.

5.2 Evaluation

We focus our evaluation on the usability of PasswordA-

gent, which is a key measure determining whether a pass-

word manager is really useful or even secure [14]. We

choose user studies, i.e., laboratory user tests [32, 36],

to assess the usability of PasswordAgent. We select

PwdHash for a direct comparison with PasswordAgent.

This is because both use the same activation method, and

PwdHash scores higher than Password Multiplier on per-

ceived security and usability [14]. In the design our us-

ability tests, we follow a similar approach to the usability

study on PwdHash and Password Multiplier [14].

Question People Responding “Yes”

Do you sometimes reuse passwords on

different sites?

96.4% (27)

Are you concerned about the security of

passwords?

28.6% (8)

Criteria for choosing passwords:

Easy to remember 75.0% (21)

Difficult for others to guess 42.9% (12)

Suggested by the system 0% (0)

Same as another password 57.1% (16)

Other 10.7% (3)

Participation in online activities requiring personal or financial details:

Online purchases 75% (21)

Online banking 75% (21)

Online bill payments 28.6% (8)

Other activities 42.9% (12)

Do you use:

A password manager? 3.6% (1)

A password generation tool? 0% (0)

Table 4: Participants’ initial attitude towards password

security.

5.2.1 Participants

There are 28 individuals ranging in age from 17 to 63

years old participated in the user study. Only one of

the participants is a computer science major. None of

the participants has any particular experience with com-

puter security. A pre-task questionnaire, similar to the

one in [14], is used to survey participants’ initial attitude

towards password security. The questions and responses

are summarized in Table 4. We can see that only 42.9%

of participants choose “difficult for others to guess” pass-

words, only 4% of participants do not reuse passwords

across different websites, and only one participant has

ever used software to manage passwords. A useful pass-

word generation tool would resolve the security issues

caused by these poor password practices.

5.2.2 Tasks

Each participant is asked to complete a set of tasks us-

ing two password generation plugins: PasswordAgent

and PwdHash. The tasks are completed on two personal

computers, designated A and B. Both computers run

SUSE Linux and Mozilla Firefox. Computer A serves

as the participants’ primary computer, while Computer

B is used to let participants install and use plugins from

a computer other than their primary machine. Five tasks

are carefully selected to reflect the realistic daily usage

of a password generation plugin:

• Migrate Login : From computer A, logging on to

a website W (Yahoo) with an account that has not

yet been protected, migrating the account, and get-

ting the password protected by the plugin. This task

simulates taking an existing account and protecting

it with the plugin.

• Log Into Site : From computer A, logging on to

a website W (Google) with an account that has al-

ready been protected by the plugin. This task sim-

ulates a user’s regular login process using protected

accounts.

• Update Password : From computer A, logging on

to the website W (Hotmail) with a protected ac-

count, and changing its password. This task simu-

lates the process of changing the password of a pro-

tected account.

• Second Login : From computer A, logging on to

a website W (Hotmail) with the protected account

whose password has just been updated in “Update

Password”. This task simulates the process of log-

ging in with updated passwords.

• Remote Login : From computer B, logging on to

the website W (Amazon) with a protected account.

This task simulates when users log in from remote

machines that do not have the plugin installed.

Each task is performed with PwdHash and Pass-

wordAgent. Participants are given a simple instruction

sheet, which instructs them on how to use PwdHash and

Password Agent. They are allowed to refer to the instruc-

tions whenever necessary. Accounts are created for the

purpose of the usability tests, instead of having the par-

ticipants use their personal accounts.

5.2.3 Results

Results are collected through both observation and ques-

tionnaires. An experimenter observes the test session

of each participant and records the results. The exper-

imenter does not provide additional instructions to a par-

ticipant during the test session. The observed outcome

of each task is classified into one of five groups: suc-

cessful, i.e., the participant completes the task without

Figure 8: Mean questionnaire responses for each ques-

tion group on scale of 1 to 5 (1 very negative, 3 neutral,

5 very positive).

a problem; dangerous success, i.e., the participant com-

pletes the task after an attempt that may lead to a security

exposure; failed, i.e., the participant cannot complete the

task and gives up; false completion, i.e., the participant

erroneously thinks that the task has been correctly com-

pleted, when it has not; and failed due to previous, i.e.,

the participant does not complete this task due to the fail-

ure of previous task(s). Table 5 lists the task completion

results for PasswordAgent and PwdHash. We can see

that PasswordAgent achieves an over 90% success ratio

for four tasks, and meanwhile it outperforms PwdHash

in all the five tasks.

After completing the tasks for a plugin, each user an-

swers a questionnaire for that plugin. The questionnaire

consists of eight Likert scale statements [28]. The par-

ticipants are asked to indicate their degree of agreement

with each statement after they finish the tasks. We use a

five-point Likert scale: strongly disagree, disagree, neu-

tral, agree, and strongly agree. Table 6 lists the ques-

tionnaire statements, which are very similar to the ones

in [14]. A summary of the results are shown in Figure 8.

The questionnaire focuses on four different categories:

Perceived Security, Perceived Comfort, Perceived Ease

of Use, and Perceived Necessity and Acceptance. While

PasswordAgent scores higher than PwdHash in all four

measurements, we further use t-test to determine the sta-

tistical significance of the differences in scores and ob-

serve that these differences do not have statistical signif-

icance.

6 Limitations

In this section, we discuss three limitations in Pass-

wordAgent: vulnerability to keyloggers [21], the re-

liance on Salt Repository, and the usability limitations.

PasswordAgent is designed to protect against web based

attacks and cannot thwart compromises outside of the

browser. Should a system have malicious software in-

Task PasswordAgent PwdHash

Success Dangerous

Success

Failures Success Dangerous

Success

Failures

Failure False

Com-

pletion

Failed Pre-

vious

Failure False

Com-

pletion

Failed Pre-

vious

Migrate Login 92.9% (26) 0% (0) 7.1% (2) 0% (0) 0% (0) 75% (21) 14.3% (4) 10.7% (3) 0% (0) 0% (0)

Log Into Site 96.4% (27) 0% (0) 3.6% (1) 0% (0) 0% (0) 89.3% (25) 10.7% (3) 0% (0) 0% (0) 0% (0)

Update Password 96.4% (27) 0% (0) 3.6% (1) 0% (0) 0% (0) 67.8% (19) 14.3% (4) 17.9% (5) 0% (0) 0% (0)

Second Login 96.4% (27) 0% (0) 0% (0) 0% (0) 3.6% (1) 75% (21) 7.1% (2) 0% (0) 0% (0) 17.9% (5)

Remote Login 82.1% (23) 0% (0) 17.9% (5) 0% (0) 0% (0) 46.4% (13) 28.6% (8) 25% (7) 0% (0) 0% (0)

Table 5: Task completion results for PasswordAgent and PwdHash.

Perceived Security

My passwords are secure when using PasswordAgent.

I do not trust PasswordAgent to protect my passwords from cyber criminals.

Comfort Level with Giving Control of Passwords to a Program

I am uncomfortable with not knowing my actual passwords for a website.

Passwords are safer when users do not know their actual passwords.

Perceived Ease of Use

PasswordAgent is difficult to use.

I could easily log on to web sites and manage my passwords with PasswordAgent.

Perceived Necessity and Acceptance

I need to use PasswordAgent on my computer to protect my passwords.

My passwords are safe even without PasswordAgent.

Table 6: Post-task Questionnaire (for PasswordAgent, the questionnaire for PwdHash was identical other than the

name of the software).

stalled such as spyware or a keylogger, both the Agent

password and the individual site passwords can be com-

promised.

The Salt Repository is an important part of the Pass-

wordAgent solution. Should it become unavailable (be-

cause of server issues, network problems, or DOS at-

tacks), the user would be unable to log into any protected

site. However, it is possible to use the Salt Repository as

a backup, if the user’s primary computer stores the salt

list and then mirrors any changes to the Repository. This

can achieve high reliability, but would come at a security

cost. If the primary computer is compromised, the salt

list has a higher chance of being exposed than before.

A potential area for improvement would be the support

of multiple synchronized repositories to prevent a single

point of failure. Building such a mechanism is beyond

the scope of this paper.

A user must activate the password protection by us-

ing @@ (the F2 key, or some other means). This is the

main usability limitation that is common to PwdHash,

Password Multiplier, and PasswordAgent. This extra ac-

tivation step may make some users feel inconvenienced.

Moreover, if a user forgets to invoke the protection, this

limitation may lead to security exposures because the

user’s plain-text password might be sent to a phishing

site [14]. Although the inconvenience still exists, the

security risks caused by this limitation is eliminated in

PasswordAgent. A phisher cannot obtain the correct site

password since the salt is not accessible to the phisher.

Another usability limitation is that if a user forgets

the Agent password, then there is no mechanism to re-

trieve the users salts. The user has to manually reset their

passwords on each site, using a forgotten password fea-

ture. While inconvenient, most websites today provide a

mechanism to reset forgotten passwords so serious harm

is avoided.

7 Conclusion

We have developed PasswordAgent, an automatic pass-

word management system with enhanced hashing. Pass-

wordAgent includes a Salt Repository and a browser

plug-in Agent, and it provides a convenient and secure

password protection service in an automatic manner.

Without altering the normal interaction between a user

and a login form, PasswordAgent automatically secures

the user’s plain-text password by rendering a unique site

password for each website visited. Under the stronger

security guarantee, a user’s site password is robustly de-

fended against password cracking and theft. We have im-

plemented a prototype of PasswordAgent and conducted

usability experiments. The evaluation results clearly in-

dicate the usability benefits of PasswordAgent.

Acknowledgment

We would like to thank the anonymous reviewers and our

shepherd Travis Campbell for their insightful comments.

This work was partially supported by NSF grants CNS-

0627339 and CNS-0627340.

References

[1] Anti-Phishing Working Group.

http://www.antiphishing.org/index.html.

[2] Consumer sentinel network data book.

Federal Trade Commission, February 2009.

[3] FIPS Publication 180-2. NIST, August 2002.

[4] FIPS Publication 197. NIST, November 2001.

[5] KeePass Password Safe. http://keepass.info/.

[6] Password strength.

http://www.passwordmeter.com.

[7] Petname Tool. http://petname.mozdev.org/.

[8] RoboForm: Password Manager, Form Filler,

Password Generator, Fill&Save Forms.

http://www.roboform.com/.

[9] Windows Live ID.

https://accountservices.passport.net/.

[10] XML User Interface Language (XUL) Project.

http://www.mozilla.org/projects/xul/.

[11] ADAMS, A., AND SASSE, M. A. Users are not the

enemy. Commun. ACM 42, 12 (1999), 40–46.

[12] BELLARE, M., CANETTI, R., AND KRAWCZYK,

H. Keying hash functions for message authentica-

tion. In Proceedings of Crypto’96 (1996), pp. 1–15.

[13] BELLARE, M., KILIAN, J., AND ROGAWAY, P.

The security of the cipher block chaining message

authentication code. In Proceedings of Crypto’94

(1994), pp. 341–358.

[14] CHIASSON, S., VAN OORSCHOT, P., AND BID-

DLE, R. A usability study and critique of two

password managers. In Proceedings of the 15th

USENIX Security Symposium (2006), pp. 1–16.

[15] DAEMEN, J., AND RIJMEN, V. The design of

rijndael: Aes - the advanced encryption standard.

Springer-Verlag (2002).

[16] DAVIS, D., MONROSE, F., AND REITER, M. K.

On user choice in graphical password schemes. In

Proceedings of the 13th USENIX Security Sympo-

sium (2004), pp. 151–164.

[17] DHAMIJA, R., AND PERRIG, A. Dejà vu: A

user study using images for authentication. In Pro-

ceedings of the 9th USENIX Security Symposium

(2000), pp. 45–58.

[18] DHAMIJA, R., TYGAR, J. D., AND HEARST,

M. Why phishing works. In Proceedings of the

SIGCHI conference on Human Factors in comput-

ing systems (2006), pp. 581–590.

[19] FELDMEIER, D. C., AND KARN, P. R. Unix pass-

word security - ten years later. In Proceedings of

Crypto’89 (1989), pp. 44–63.

[20] FIELDING, R. T., AND TAYLOR, R. N. Principled

design of the modern web architecture. ACM Trans-

actions on Internet Technology (TOIT) 2, 2 (2002),

115–150.

[21] FLORENCIO, D., AND HERLEY, C. Klassp: Enter-

ing passwords on a spyware infected machine us-

ing a shared-secret proxy. In Proceedings of the

22nd Annual Computer Security Applications Con-

ference (ACSAC’06) (2006), pp. 67–76.

[22] FLORÊNCIO, D. A. F., AND HERLEY, C. A large-

scale study of web password habits. In Proceedings

of the 16th International Conference on World Wide

Web (2007), pp. 657–666.

[23] GABBER, E., GIBBONS, P. B., KRISTOL, D. M.,

MATIAS, Y., AND MAYER, A. Consistent, yet

anonymous, Web access with LPWA. Commun.

ACM 42, 2 (1999), 42–47.

[24] HALDERMAN, J. A., WATERS, B., AND FELTEN,

E. W. A convenient method for securely managing

passwords. In Proceedings of the 14th international

conference on World Wide Web (2005), pp. 471–

479.

[25] HERLEY, C., VAN OORSCHOT, P., AND PATRICK,

A. S. Passwords: If we’re so smart, why are we still

using them? In Proceedings of the Financial Cryp-

tography and Data Security Conference (2009).

[26] JERMYN, I., MAYER, A., MONROSE, F., REITER,

M. K., AND RUBIN, A. D. The design and analysis

of graphical passwords. In Proceedings of the 8th

USENIX Security Symposium (1999), pp. 1–14.

[27] KORMANN, D. P., AND RUBIN, A. D. Risks of the

passport single signon protocol. Comput. Networks

33, 1-6 (2000), 51–58.

[28] LIKERT, R. A technique for the measurement of

attitudes. Archives of Psychology 140 (1932), 1–

55.

[29] MORRIS, R., AND THOMPSON, K. Password

security: a case history. Commun. ACM 22, 11

(1979), 594–597.

[30] RIVEST, R. L. The md5 message-digest algorithm.

In RFC 1320 (April 1992).

[31] ROSS, B., JACKSON, C., MIYAKE, N., BONEH,

D., AND MITCHELL, J. C. Stronger password

authentication using browser extensions. In Pro-

ceedings of the 14th USENIX Security Symposium

(2005), pp. 17–32.

[32] RUBIN, J., AND CHISNELL, D. Handbook of Us-

ability Testing: How to Plan, Design, and Conduct

Effective Tests. John Wiley & Sons, Inc., 1994.

[33] TARI, F., OZOK, A. A., AND HOLDEN, S. H. A

comparison of perceived and real shoulder-surfing

risks between alphanumeric and graphical pass-

words. In Proceedings of the second symposium on

Usable privacy and security (SOUPS ’06) (2006),

pp. 56–66.

[34] THORPE, J., AND VAN OORSCHOT, P. Human-

seeded attacks and exploiting hot-spots in graphi-

cal passwords. In Proceedings of the 16th USENIX

Security Symposium (2007), pp. 103–118.

[35] WANG, X., AND YU, H. How to break md5 and

other hash functions. In Proceedings of EURO-

CRYPT 2005 (2005), pp. 19–35.

[36] WHITTEN, A., AND TYGAR, J. D. Why johnny

can’t encrypt: a usability evaluation of pgp 5.0. In

Proceedings of the 8th USENIX Security Sympo-

sium (1999), pp. 169–184.

[37] YAN, J., BLACKWELL, A., ANDERSON, R., AND

GRANT, A. Password memorability and security:

Empirical results. IEEE Security and Privacy 2, 5

(2004), 25–31.

[38] YEE, K.-P., AND SITAKER, K. Passpet: conve-

nient password management and phishing protec-

tion. In Proceedings of the second symposium on

Usable privacy and security (SOUPS’06) (2006),

pp. 32–43.

[39] YUE, C., AND WANG, H. Anti-phishing in offense

and defense. In Proceedings of the 24th Annual

Computer Security Applications Conference (AC-

SAC’08) (2008), pp. 345–354.

