
Two-Person Control Administration:
Preventing Administration Faults through Duplication

Shaya Potter, Steven M. Bellovin and Jason Nieh
Department of Computer Science

Columbia University
{spotter, smb, nieh}@cs.columbia.edu

Abstract
Modern computing systems are complex and difficult to
administer, making them more prone to system admin-
istration faults. Faults can occur simply due to mistakes
in the process of administering a complex system. These
mistakes can make the system insecure or unavailable.
Faults can also occur due to a malicious act of the system
administrator. Systems provide little protection against
system administrators who install a backdoor or other-
wise hide their actions. To prevent these types of sys-
tem administration faults, we created ISE-T (I See Ev-
erything Twice), a system that applies the two-person
control model to system administration. ISE-T requires
two separate system administrators to perform each ad-
ministration task. ISE-T then compares the results of
the two administrators’ actions for equivalence. ISE-T
only applies the results of the actions to the real sys-
tem if they are equivalent. This provides a higher level
of assurance that administration tasks are completed in
a manner that will not introduce faults into the system.
While the two-person control model is expensive, it is
a natural fit for many financial, government, and mili-
tary systems that require higher levels of assurance. We
implemented a prototype ISE-T system for Linux using
virtual machines and a unioning file system. Using this
system, we conducted a real user study to test its ability
to capture changes performed by seperate system admin-
istrators and compare them for equivalence. Our results
show that ISE-T is effective at determining equivalence
for many common administration tasks, even when ad-
ministrators perform those tasks in different ways.

1 Introduction

As computing systems become more complex, they have
also become harder to administer. From a security per-
spective, these complex systems create an environment
that is easier for rogue users, be they inside or outside

attackers, to make changes to the system that hide their
malicious attacks. For instance, Robert Hanssen, an FBI
agent who was a Soviet spy, was able to evade detection
because he was the system administrator for some of the
FBI’s counterintelligence computer systems [26]. This
allowed him to determine if the FBI had identified his
drop sites and if he was the subject of investigation [5].

Insider attacks have long been known to be very dif-
ficult to address. Most approaches involve intrusion de-
tection or role separation. However, both are ineffective
against rogue system administrators who can replace the
system module that enforces the separation or performs
the intrusion detection. This attack vector was described
over thirty years ago by Karger and Schell [13] and still
remains a serious problem.

Even if administrators can be trusted not to be mali-
cious, they must deal with software that is very compli-
cated. Mistakes can be easy to make and hard to identify
before they cause problems. These mistakes can affect
both the stability of the system and its security. A mis-
take that takes down an important service can prevent the
machine from being usable or further administered, and
can even let malicious attackers access the machine with
impunity.

There are several approaches for preventing and re-
covering from faults that creep into a system, including
partitioning, restore points, and peer review. One of the
most effective approaches is two-person control [1]. This
can be provided by having two pilots in an airplane, re-
quiring two keys for a safe deposit box, or running two
or more computations in parallel and comparing the re-
sults for a fault-tolerant computer system. We believe
this concept can be extended to address problems in sys-
tem administration by leveraging virtualization to create
duplicate environments.

Toward this end, we created the “I See Everything
Twice” [10] (ISE-T, pronounced “ice tea”) architecture.
ISE-T provides a general mechanism to clone execution
environments, independently execute computations that



modify the clones, and compare how the resulting mod-
ified clones have diverged. The system can be used in
a number of ways, such as performing the same task
in two initially identical clones, or executing the same
computation in the same way in clones with some dif-
ferences. By providing clones, ISE-T creates a system
where computation actions can be “seen twice”, apply-
ing the concept used for fault-tolerant computing to other
forms of two-person control systems. There is a crucial
difference though between our approach for using repli-
cas and replicas as used in fault-tolerant computing. Our
goal is to compare for equivalence between two replicas
that may not be completely identical, rather than simply
run two identical replicas in lock step and ensure they
remain identical.

We apply ISE-T’s principle to change the way we ad-
minister machines to provide two-person control admin-
istration. As ISE-T allows a system to be easily cloned
into multiple distinct execution domains, we can create
separate clone environments for multiple administrators.
ISE-T can then compare the separate set of changes pro-
duced by each administrator for equivalence to determine
if the same changes were made. By comparing the sets of
changes for equivalence, ISE-T improves management
by allowing it to be done in both a fail-safe and auditable
manner.

In ISE-T, we force administrative acts to be performed
multiple times before it is considered correct. Current
systems give full access to the machine to individual ad-
ministrators. This means that one person can accidently
or maliciously break the system. ISE-T’s ability to clone
an execution environment creates a new way to admin-
ister machines to avoid this problems. ISE-T does not
allow any administrator to modify the underlying system
directly, but instead creates individual clones for two ad-
ministrators to work on independently. ISE-T is then able
to compare the changes each administrator performs. If
the changes are equivalent, ISE-T has a high assurance
that the changes are correct and will commit them to the
base system. Otherwise, if it detects discrepancies be-
tween the two sets of changes, it will notify the admin-
istrators about the differences so that they can resolve
the problem. This enables fail safe administration by
enabling a single administrator’s accidental errors to be
caught, while also preventing a single administrator from
maliciously damaging the system.

ISE-T leverages both virtualization and unioning file
systems to provide the administration clones for each ad-
ministrator. ISE-T is able to leverage both operating sys-
tem virtualization techniques, such as Solaris Zones [18]
and Linux VServer [20], as well as hardware virtualiza-
tion such as VMware [24], to provide each administra-
tor with an isolated environment in which to perform the
changes. ISE-T builds upon DejaView [14], leveraging

union file systems to provide a layered file system that is
able to provide the same initial file system namespace in
one layer, while capturing all the system administrator’s
file system changes into a separate layer. This enables
easy isolation of changes, simplifying equivalence test-
ing.

ISE-T’s approach of requiring everything to be in-
stalled twice blocks many real attacks. A single mali-
cious system administrator can no longer install modules
that create an intentional back-door to allow future ac-
cess into the system. Similarly, they cannot unilaterally
weaken firewall rules, nor create unauthorized accounts
to allow others into the system.

ISE-T is admittedly an expensive solution, too expen-
sive for many commercial sites. For high-risk situations,
such as in the financial, government, and military sectors,
the added cost can be acceptable if the risk is reduced. In
fact, the two-person controls are already routine in those
environments, ranging from checks that require two sig-
natures to the well known requirement of requiring two
people for any work involving nuclear weapons. How-
ever, we also demonstrate how ISE-T can be used in a
less expensive manner by introducing a form of auditable
system administration. Instead of requiring two system
administrators at all times, auditable ISE-T captures all
the changes performed by the system administrator in the
same manner it uses for equivalence testing, but instead
immediately saves it to an audit log while committing
it to the underlying system. An audit can then be per-
formed on the log to provided a higher level of assurance
that the administrator was only performing the changes
they claimed they were performing.

In a similar manner, ISE-T can be extended to train
less experienced system administrators. First, ISE-T al-
lows a junior system administrator to perform tasks in
parallel with a more senior system administrator. While
only the senior system administrator’s solution will be
committed to the underlying system, the junior system
administrator can learn from how his solution differs
from the senior system administrator. Second, ISE-T
can help train junior system administrators by being ex-
tended to provide an approver mode. In this mode, a
junior system administrator will be provided administra-
tion tasks to complete. However, instead of the changes
being committed directly, they will be presented to the
senior system administrator who can approve or disap-
prove of the changes, without being required to do the
same actions in parallel.

We have implemented an ISE-T Linux prototype with-
out requiring any source code changes to the underlying
kernel or system applications. To evaluate its ability to
do equivalence testing, we conducted a user study to de-
termine ISE-T’s ability to efficiently capture administra-
tion changes through its layered file system, as well as to



System

ISE-T Service

Administrative Clone #1 Administrative Clone #2

Figure 1: ISE-T Usage Model

compare the environments of the multiple administrators
for equivalence. Our results demonstrate that ISE-T is
effective at determining equivalence for many common
administration tasks even when administrators perform
those tasks in different ways. Furthermore, we demon-
strate that ISE-T is able to easily show the differences
that occur when the actions are not performed equiva-
lently, in what situations the actions cannot be performed
equivalently, as well as ISE-T’s ability to detect mali-
cious administration changes.

2 Usage Model

Systems managed by ISE-T are used by two classes of
users, regular unprivileged users and the privileged sys-
tem administrators who manage the machines. ISE-T
does not change how regular users interact with the ma-
chine. They are able to install any program into their per-
sonal space, as well as run any program on the system,
including regular programs and programs with special
privileges, such as setuid UNIX programs that raise
the privileges of the process on execution. This allows
regular users to execute programs such as passwd to
change their passwords.

However, ISE-T fundamentally changes the way sys-
tem administrators interact with the machine. In a reg-
ular system, when administrators want to perform main-
tenance on the machine, they will leverage their ability
to execute arbitrary programs with administrative priv-
ileges. This can be accomplished by executing a shell
with the privilege so that they can execute arbitrary com-
mands with ease, or by leveraging a program such as
sudo that will just execute the arbitrary programs itself
that way. In these systems, administrators are able to
modify the system in a direct manner, change files, and
execute programs and have those changes occur directly.

As ISE-T prevents system administrators from exe-

cuting arbitrary programs with administrative privileges,
this model cannot be directly used in a system man-
aged by ISE-T. Instead, ISE-T provides a new model as
shown in Figure 1. Instead of administering a system
directly, ISE-T creates administration clones. Each ad-
ministration clone is fully isolated from each other and
the base system. ISE-T instantiates an administration
clone for each administrator to perform the administra-
tive acts within. Once both administrators are finished,
ISE-T compares the clones for equivalence and commits
the changes if the clones pass the equivalence test. As
opposed to a regular system, where the administrator can
interleave file system changes with program execution,
in ISE-T only the file system changes get committed to
the underlying system. Therefore ISE-T requires admin-
istrators to use other methods if they require file system
changes and program execution to be interleaved on the
actual system, such as for rotating log files or to do ex-
ploratory changes in order to diagnose a subtle system
malfunction.

To allow this, ISE-T provides a new ise-t command
that is used in a manner similar to su. Instead of spawn-
ing a shell on the existing system, ise-t spawns a new
isolated container for that administrator. This container
contains a clone of the underlying file system. Within
this clone, the administrators can perform generic admin-
istrative actions, as on a regular system, but the changes
will be isolated to this new container. When the ad-
ministrators are finished with the desired administration
changes, they exit their new container’s shell, much as
they would exit a root shell; the container itself is termi-
nated, while its file system remains around.

ISE-T then compares the changes each administrator
performed for equivalence. ISE-T performs this task au-
tomatically after the second administrator exits his ad-
ministration session and notifies both of the administra-
tors of the results. If the changes are equivalent, ISE-
T automatically commits the changes to the underly-
ing base system. Otherwise, ISE-T notifies the admin-
istrators of the file system discrepancies that exist be-
tween the two administration environments, allowing the
administrators to recreate their administration environ-
ments and correct the discrepancies.

Command Description
ise-t new Create an administration environment
ise-t enter Enter administration environment
ise-t done Ready for equivalence testing
ise-t diff Results of a failed equivalence test

Table 1: ISE-T Commands

As ISE-T only looks at file system changes, this can
prevent it from performing administrative actions that
just affect the runtime of the system. In order to han-



dle this, ISE-T provides a raw control mechanism via
the file system, as well as enabling itself to be integrated
with configuration management systems. First, ISE-T’s
raw control mechanism is implemented via a special-
ized file system namespace where an administrator can
write commands. For instance, if the administrators want
to kill a process, stop a service or reboot the machine,
those actions performed directly within their adminis-
tration container will have no affect on the base sys-
tem. Some actions can be directly inferred from the file
system. For instance, if the system’s set of startup pro-
grams is changed, by having a file added, removed or re-
placed, ISE-T can infer that the service should be started,
stopped or restarted when the changes are committed to
the underlying system. However, this only helps when
one is changing the file system. There are times when
administrators will want the services stopped or restarted
without modifying the file system of the system. There-
fore, ISE-T provides a defined method for killing pro-
cesses, stopping and starting services and rebooting the
machine using files the administrator can store on the lo-
cal file system. ISE-T provides each administrator with
a special /admin directory for performing these prede-
fined administrative actions.

For example, if the administrator wants to reboot the
machine, they create an empty reboot file within the
/admin directory. If both administrators create the file,
after the the rest of their changes are committed to the
system, it will reboot itself. Similarly, the administra-
tors can create a halt file to halt the machine. In addi-
tion, the /admin directory has kill and services
subdirectories. To kill a process, administrators create
individual files with the names of the process identifiers
of processes running on the base system that they de-
sire to kill. Similarly, if a user desires to stop, start, or
restart a init.d service, they can create a file named by
that service prefixed with stop, start or restart,
such as stop.apache or restart.apache within
the services directory to have ISE-T perform the ap-
propriate actions when the changes are committed to the
base system. The files created within the /admin direc-
tory are not committed to the base system; they are only
used for performing runtime changes to the system.

However, many systems already exist to manage sys-
tems and perform these types of tasks, namely config-
uration management systems, such as lcfg [2]. At a
high level, configuration management systems work by
storing configuration information on a centralized policy
server that controls a set of managed clients. In general,
the policy server will contain a set of template configu-
ration files that it uses to create the actual configuration
file for the managed clients based on information con-
tained within its own configuration. Configuration man-
agement systems also generally support the ability to run

predefined programs, scripts and execute predefined ac-
tions on the clients they are managing.

When ISE-T is integrated with any configuration man-
agement system, it no longer manages the individual
machines. Instead of the managed clients being con-
trolled by ISE-T, the configuration policy server is man-
aged by ISE-T directly and the clients are managed di-
rectly by the configuration management system. This
provides a number of benefits. First, it simplifies the
complexity of comparing two different systems, as ISE-
T can focus on the single configuration language of the
configuration management system. Second, configura-
tion system already have tools to manage the runtime
state of their client machines, such as stopping and start-
ing services and restarting them when the configuration
changes. Third, many organization are already used
to using configuration management systems; by imple-
menting ISE-T on the server side, they can enforce the
two-person control model in a more centralized manner.

3 ISE-T Architecture

To enable the two-person administrative control seman-
tic, ISE-T provides three architectural components. First,
as the two administrators cannot administer the system
directly, they must be provided with isolated environ-
ments in which they can perform their administrative
acts. To ensure the isolation, ISE-T provides container
mechanisms that allow ISE-T to create parallel environ-
ments that are based on the underlying system that is be-
ing administered. This allows ISE-T to fully isolate each
administrator’s clone environment from each other and
from the base system.

Second, we note that any persistent administrative ac-
tion has to involve a change to the file system. If the
file system is not affected, the action will not survive a
reboot. Whereas some administrative acts only affect
the ephemeral runtime state of the machine, the major-
ity of administrative acts are of a more persistent nature.
Therefore, to allow ISE-T to create two-person admin-
istrative control, the file system is a central component.
ISE-T provides a file system that can create branches of
itself as well as isolate the changes made to it. This en-
ables the easy creation of the clone containers, as well as
enabling the easy comparison of the changes performed
to both environments.

Finally, ISE-T provides the ISE-T System Service.
This service instantiates and manages the life-times of
the administration environments. It is able to compare
the two separate administration environments for equiv-
alence to determine if the changes performed to them
should be committed to the base system. ISE-T’s Sys-
tem Service performs this via an equivalence test that
compares the two administration environment’s file sys-



tem modifications for equivalence. If the two environ-
ments are equivalent, the changes will be committed to
the underlying base system. Otherwise, the ISE-T Sys-
tem Service will notify the two administrators of the dis-
crepancies and allow them to fix their environments in
the appropriate fashion.

3.1 Isolation Containers
ISE-T can leverage multiple different types of container
environments, depending on the requirements of the ad-
ministrators managing the system. In general, the choice
will be between hardware virtual machine containers and
operating system containers. Hardware virtual machines,
such as VMware [24], provide a virtualized hardware
platform that a separate operating system kernel runs on
and provides a complete operating system instance. Op-
erating system containers, such as Solaris Zones [18], on
the other hand, are just isolated kernel namespaces run-
ning on a single machine.

For ISE-T, there are two primary difference between
these containers. First, hardware virtual machines allow
the administrators to install and test new operating sys-
tem kernels as each container will be running its own
kernel. Operating system containers, on the other hand,
prevent the administrators from testing the underlying
kernel, as there is only one kernel running, that of the
underlying host machine. Second, as hardware virtual
machines require their own kernel and a complete oper-
ating system instance to be started up, they take a signif-
icant amount of time to create the administration clones.
On the other hand, operating system containers can be
created almost instantly, allowing the administrators to
quickly perform their actions. As both types of contain-
ers have significant benefits for different types of admin-
istrative acts, ISE-T supports the ability to use both. For
most actions, administrators will prefer to use operating
system containers, while still enabling them to get a com-
plete hardware virtual machine when they desire to test
kernel changes.

When ISE-T is integrated with a configuration man-
agement system, ISE-T does not have to use any iso-
lation container mechanism at all, as the configuration
management system already isolates the administrators
from the client system. Instead, ISE-T simply provides
each administrator with their own configuration manage-
ment tree and let each individual administrator perform
the changes.

3.2 ISE-T’s File System
To support its file system needs, ISE-T leverages the abil-
ity of some file systems to be branched. Unlike a regular
file system, a branchable file system can be snapshotted

at some point in time and branched for future use. This
allows ISE-T to quickly clone the file system of the ma-
chine being managed for both clone administration envi-
ronments. As each file system branch is independent, this
allows ISE-T to capture any file system changes in the
newly created branch, by comparing the branch’s state
against the initial file system state. Similarly, ISE-T can
then compare the set of file system changes from both
administration clones against each other for equivalence.

However, while a classical branchable file system al-
lows one to capture the changes, it does not allow one
to efficiently discover what has changed, as the branch
is a complete file system namespace. Iterating through
the complete file system can take a significant amount of
time, as well as place a large strain on the file system and
decrease system performance. To allow ISE-T to use a
file system efficiently, it must provide two features. First,
it must be able to duplicate the file system to provide each
administrator with their own unique and independent file
system to perform their changes on. Second, it must pro-
vide a way to easily isolate the changes each administra-
tor makes to the file system to easily test the changes for
equivalence. To meet these requirements, ISE-T creates
layered file systems for each administration environment,
where multiple file systems can be layered together into a
single file system namespace for each environment. This
enables each administration environment to have a lay-
ered file system composed of two layers, a single shared
layer that is the file system of the machine they are ad-
ministrating, as well as a layer that will contain all the
changes the administrator performs on the file system.

To support the creation of the layered file system, ISE-
T has to solve a number of file system related problems.
First, it must support the ability to combine numerous
distinct file system layers into a single static view. This is
equivalent to installing software into a shared read-only
file system. Second, as users expect to be able to inter-
act with the layered file system as a normal file system,
such as by creating and modifying files, ISE-T has to en-
able the layered file system to be fully modifiable. In a
related vein, the third problem ISE-T has to solve is that
end users should also be able to delete files that exist on
the read-only layer. However, end users should also be
able to recover the deleted files by reinstalling or upgrad-
ing the layer that contains the deleted. This is equivalent
to deleting a file from a traditional file system, but rein-
stalling the package that contains the file to recover it.

To solve these problems, ISE-T leverages union file
systems. Unioning file systems enable ISE-T to solve
the first problem as they allow the system to join multiple
distinct directories into a single directory view, as shown
in Figure 2. These directories are unioned by layering di-
rectories on top of one another. For example, when two
directories are unioned together, one directory contain-



Figure 2: Unioning Namespaces

ing the file foo and the other containing the file bar,
the unioned directory view would contain both files foo
and bar. To provide a consistent semantic, most union
file systems only allow one layer, namely the topmost to
have files added to it. At the same time, if a file that al-
ready existed is modified, the union file system changes
the underlying file directly, in whatever layer of the union
it existed previously.

Figure 3: COW functionality

To solve the second problem, union file system can
be extended [27] to enable them to assign properties to
the layers, defining some layers to be read only while
others can be read-write. This results in a model that
borrows from copy-on-write (COW) file systems, where
a modifying a file on a lower read-only layer will cause
it to be copied to the topmost writable layer, as shown in
Figure 3. For instance, in the above example, a blank cow
writable layer can be layered on top of a read only layer
containing foo and bar. If, in the course of usage, file
bar get modified to bar‘ it will be copied up to the top
most layer before the modification occurs. When a file is
created or modified, it is written to the private read-write
layer enabling the layered file system to be differentiated
through file system changes.

This layering model also provides a semantic that di-
rectory entries located at higher layers in the stack ob-
scure the equivalent directory entries at lower levels.
Continuing the example, both layers now contain the file
bar, but only the top most layer’s version of the file
is visible. To provide a consistent semantic, if a file is
deleted, a white-out mark is also created on the top most
layer to ensure that files existing on a lower layer are

Figure 4: White-Out Support for Deletion

not revealed, as shown in Figure 4. Now, if the file bar
were deleted, it would not allow the bar on the lower
layer to be revealed. The white-out mechanism enables
obscuring files on the read-only lower layers, simply by
creating white-out files on the topmost layer.

ISE-T’s layered file system provides the ability for
multiple independent views of a file system to be in an
active modifiable state at the same time, while confin-
ing each view’s modifications to itself by providing each
file system with an independent COw layer. To provide
a simple example, imagine one has a directory that one
wants to branch into two distinct views. This implies that
processes operating in one view would be able to modify
the files, without the changes causing any effect in the
other view, and vice versa. This model can simply be
implemented by ISE-T with the above union file system
semantic. ISE-T creates two distinct views of the direc-
tory by creating two distinct ISE-T branched file system
mounts. Since all modifications will cause files to be
copied to the top most directory, it enables one to simply
contain each views modifications into its own space. Fi-
nally, as each COW layer isolates the changes that were
performed to each file system, ISE-T can easily deter-
mine which files it has to compare for equivalence.

3.3 ISE-T System Service
ISE-T’s System Service has a number of responsibilities.
First, it manages the lifetimes of each administrator’s en-
vironment. When administration has to be performed, it
has to setup the environments quickly. Similarly, when
the administration session has been completed and the
changes committed to the underlying system, it removes
them from the system and frees up their space. Third, it
evaluates the two environments for equivalence by run-
ning a number of equivalence tests to determine if the
two administrators performed the same set of modifica-
tions. Finally, it has to either notify the administrators
of the discrepancies between their two environments or
commit the equivalent environment’s changes to the un-
derlying base system.

ISE-T layered file system allows ISE-T system’s ser-
vice to easily determine which changes each administra-



tor made, as each administrator changes will be confined
to their personal layer of the layered file system. To de-
termine if the changes are equivalent, ISE-T first isolates
the files that it does not care about, and that will not be
committed to the base system. This is currently limited to
the administrator’s personal files in their branch, such as
shell history. Instead of just removing them, ISE-T saves
them for archival and audit purposes. ISE-T then iterates
through the files in each environment, comparing the file
system contents and files directly against each other. If
each administrator’s branch has the equivalent set of file
system changes, ISE-T can then simply commit a set to
the base system. On the other hand, if the files contained
within each branch, are not equivalent, ISE-T flags the
differences and reports to each administrator what the
differences are. The administrators can then confer with
each other to ensure that they perform the same steps, so
that they will create the same set of files to commit to the
base system.

Determining equivalence can vary based on the type of
file and what is considered to be equivalent. For instance,
a configuration file modified by both administrators with
different editors can visually appear to be equivalent, but
can differ from each other if one uses spaces and another
used tab characters. These files can be equivalent, as
they would be parsed by applications in the same man-
ner, but would be different when examined on a character
by character level. However, there are some languages
(e.g., Python) where the amount of whitespace matters;
this can have a large effect on how the script executes.
On the other hand, two files that have exactly the same
file contents can have varying meta data associated with
the file, such as permission data, extended attributes or
even the multiple types of time data associated with each
file. Similarly, some sets of files should not matter for
equivalence, such as the shell history that recorded the
steps the administrators took in their respective environ-
ments, and in general the home directory contents of the
administrator in the administration environment. ISE-T
prunes these files from the comparison, and never com-
mits them to the underlying system.

Taking this into consideration, ISE-T’s prototype com-
parison algorithm determines these sets of differences.

1. Directory entries which do not exist in both sets of
changes are differences.

2. Every directory entry that does not have the same
UID, GID, and permission set are different.

3. Every directory entry that is not of the same file
type (Regular File, Symbolic Link, Directory, De-
vice Node, or Named Pipe) are different

For directory entries that are of the same type, ISE-T
performs the appropriate comparison.

• Device nodes must be of the same type

• Symbolic links must contain the same exact path

• Regular files must have the same size and the exact
same contents

There are two major problems with this approach.
First, this comparison takes place at a very low seman-
tic level. It does not take into account simple differences
between files that make no difference in practice. How-
ever, without writing a parser for each individual con-
figuration language, one will not easily be able to com-
pare equivalence. Second, there are certain files, such
as encryption keys, that will never be generated identi-
cally, even though equivalent actions were taken to cre-
ate them. This can be important, as some keys are known
to be weaker and a malicious administrator can construct
one by hand.

Both of these problems can be solved by integrat-
ing ISE-T with a configuration management system and
teaching ISE-T the configuration management system’s
language. First, these systems simplify the compari-
son by enabling it to focus on the configuration man-
agement system’s language. Even though most config-
uration management systems work by creating template
configuration files for the different applications, these
files are not updated regularly and can be put through
the stricter exact comparison test. On the other hand,
when ISE-T understands the single language of the con-
figuration management system, it can rely on a more re-
laxed equivalence test. Second, configuration manage-
ment systems already have to deal with creating dynamic
files, such as encryption keys. A common way configu-
ration management systems deal with these types of files
is by creating them directly on the managed client ma-
chines. As ISE-T understand the configuration manage-
ment system’s language, the higher level semantics that
instruct the system to create the file will be compared
for equivalence instead of the files themselves. However,
a potential weakness of ISE-T is in dealing with files
that cannot easily be created on the fly and will differ
between two system administration environments, such
as databases. For instance, two identical database oper-
ations can result in different databases due to the saving
of a time-stamp, or the simple reordering of updates on
the database server.

4 ISE-T for Auditing

Whereas the two-person control model that ISE-T pro-
vides to system administration is useful for providing
high assurance that faults are not going to creep into the
system, its expense can make it unusable in many situa-
tions. For example, since the two-person control model



requires the concurrence of two system administrators
on all actions, it can prevent timely actions from being
taken if only a single administrator is available. Simi-
larly, whereas the two-person control model provides a
high degree of assurance for a price, it would be useful if
organizations could get a higher degree of assurance than
normal with little extra cost. To achieve these goals, we
can combine ISE-T’s mechanisms with audit trail princi-
ples to create an auditable system administration seman-
tic.

In auditable system administration, every system ad-
ministration act that is logged to a secure location so that
it can be reviewed for correctness at some point in the
future. The ISE-T System Service creates clone adminis-
tration environments for the two administrators and can
capture the state they change in order to compare them
for equivalence. For auditable system administration,
ISE-T’s mechanism can also be used. The audit system
prevents the single system administrator from modifying
the system directly, but require the creation of a cloned
administration environment where the administrator can
perform the changes before they are committed to the un-
derlying system. Instead of comparing for equivalence
against a second system administrator, the changes are
logged so that they can be used by an auditor at some
point in the future as well as immediately committed
to the underlying system. Audit systems are known to
increase assurance that malicious changes are not per-
formed, as the malicious person knows there’s a good
chance his actions will be caught. Similarly, depend-
ing on the frequency and number of audits performed, it
can help prevent administration faults from persisting for
long periods of time in the system. However, it does not
provide as high assurance a model as can be provided by
the two-person control system, as the administrator can
use the fact that his changes are committed immediately
to create backdoors in the system that cannot be discov-
ered until later.

Auditable system administration needs to be tied di-
rectly to an issue-tracking service. This allows an auditor
to associate an administrative action with what the ad-
ministrator was supposed to accomplish. Every time an
administrator invokes ISE-T to administer the system, an
issue-tracking number is passed into the system to tie that
action with the issue in the tracker. This allows the audi-
tor to compare the results of what occurred with what the
auditor expects to have occurred. In addition, auditable
system administration can be used in combination with
the two-person control system when only a single ad-
ministrator is available and action has to be taken in a
more immediate fashion. With auditing, the action can be
performed by the single administrator, but can be imme-
diately audited when the second administrator becomes
available. This helps the system maintain its higher level

of assurance when immediate action has to be taken by a
single administrator.

5 Experimental Results

To test the efficacy of ISE-T’s layered file system ap-
proach, we recruited 9 experienced computer users
with varying levels of system administration experience,
though all were familiar with managing their own ma-
chines. We provided each user with a VMware virtual
machine running Debian GNU/Linux 3.0. Each VM was
configured to create an ISE-T administration environ-
ment that would allow the users to perform multiple ad-
ministration tasks isolated from the underlying base sys-
tem. Our ISE-T prototype uses UnionFS [27] to provide
the layered file system needed by ISE-T. We asked the
users to perform the eleven administration tasks listed in
Table 2. The user study was conducted in virtual ma-
chines running on an IBM HS20 eServer blade with dual
3.06 Ghz Intel Xeon CPUs and 2.5GB RAM running
VMware Server 1.0. These tasks were picked as they are
indicative of common administration tasks, as well as in-
cluding a common way a malicious administrator would
create a back-door in the system for himself.

Each task was performed in a separate ISE-T con-
tainer, so that each administration task was isolated from
the others, and none of the tasks depended on the re-
sults of a previous task. We used ISE-T to capture the
changes each user performed for each task in its own file
system. We were then able to compare each user against
each other for each of the eleven tasks, to see if they per-
formed equivalent modifications or where their modifi-
cations differed.

For every test, ISE-T prunes the changes that were
done to remove files that would not affect equivalence
since they would not be committed to the underlying
file system, as described in Section 3.3. Notably, in our
prototype, ISE-T prunes the /root directory which is
the home directory of the root user, and therefore would
contain differences in files such as .bash history
amongst others that are specific to how they went about
performing the task. Similarly, ISE-T prunes the /var
subtree to remove any files that were not equivalent. For
instance, depending on how an administrator would ad-
minister the system and what tools one would use, differ-
ent files would be created, for instance a cache of pack-
ages downloaded and installed via the apt-get tool
versus being downloaded and installed manually. The
reasoning behind this pruning is that the /var tree is
meant as a read-write file system for per-system usage.
Tools will modify it; if different tools are used, differ-
ent changes will be made. However, one cannot prune
the entire directory tree as there are files or directories
within it that are necessary for runtime use and those



Category Description Result

Software Installation
Upgrade entire system via package manager Equivalent
Install official Rdesktop package Equivalent
Compile and install Rdesktop from source Equivalent

System Services
Install SSH Daemon from package Not Equivalent (Not Desired)
Remove PPP package using package manager Equivalent

Configuration
Changes

Edit machine’s persistent hostname Equivalent
Edit the inetd.conf to enable a service Not Equivalent (Not Desired)
Add a daily run cron job Equivalent
Remove an hour run cron job Equivalent
Change the time of a cron job Equivalent

Exploit Create a backdoor setuid root shell anywhere Not Equivalent (Desired)

Table 2: Administration Tasks

changes have to be committed to the underlying file sys-
tem. Therefore, only those changes that are equivalent
were committed, while those that are different were ig-
nored. ISE-T also prunes the /tmp directory as the con-
tents of this directory would also not be committed to the
underlying disk. Finally, due to the UnionFS implemen-
tation, ISE-T also prunes the whiteout files created by
UnionFS if there is no equivalent file on the underlying
file system. In many cases, temporary files with random
names will be created; when they are deleted, UnionFS
will create a whiteout file, even if there is no underly-
ing file to whiteout. As this whiteout file does not have
an impact on the underlying file system, it is ignored.
On the other hand, whiteout files that do correspond to
underlying files and therefore indicate that the file was
deleted are not ignored.

5.1 Software Installation

For the software installation category, we had the users
perform three separate tests that demonstrated differ-
ent ways administrators install software into the system.
These tests were to demonstrate that when multiple users
install the same piece of software, as long as they install
it in the same general way, the two installations will be
equivalent.

To demonstrate this, the users were first instructed
to install the rdesktop program from its Debian pack-
age. Users could choose to download the package by
hand and install it via dpkg, they could use apt-get
to download it and any unfulfilled dependencies, or use
the aptitude front end amongst many ways to per-
form this task. Most users decided to install the package
via apt-get, but even those who did not made equiva-
lent changes. The only differences were those in pruned
directories, demonstrating that installing a piece of pre-
packaged software using regular tools will result in an
equivalent system.

Second, the users were instructed to build the rdesk-
top program from source code and install it into the sys-
tem. In this case, multiple differences could have oc-
curred. First, if the compiler would create a different
binary each time the source code is compiled, even with-
out any changes, one would have a more difficult time
evaluating equivalence. Second, programs generally can
be installed in different areas of the file system, such as
/usr versus /usr/local. In this case, all the testers
decided to install the program into the default location,
avoiding the latter problem, while also demonstrating
that as long as a the same source code is compiled by the
same toolchain, it will result in the same binary. How-
ever, some program source code, such as the Linux ker-
nel, will dynamically modify their source during build,
for example to define when the program was built. In
these cases, we would expect equivalence testing to be
more difficult as each build will result in a different bi-
nary. A simple solution would be to patch the source
code to avoid this behavior. A more complicated solution
would involve evaluating the produced binary’s code and
text sections with the ability to determine that certain text
section modifications are inconsequential. Again, in this
case the only differences were in pruned directories, no-
taby the /root home directory to which the users down-
loaded the source for rdesktop.

Finally, we had the users upgrade the Debian stable
system with all pending security updates. This was a
more complicated version of the first test, as multiple
packages were upgraded. Although differences existed
between the environments of the users, the differences
were confined to the /var file system tree and depended
on how they performed the upgrade. This is because De-
bian provides multiple ways to do an upgrade of a com-
plete system and those cause different log files to be writ-
ten. As they all installed the same set of packages, the
rest of the file system, as expected, contained no differ-
ences.



5.2 System Services

Our second set of tests involved adding and removing
services: the users were instructed to install the ssh ser-
vice and remove the PPP service. These tests were an
extension of the previous package installation tests and
were meant as a demonstration of how one would auto-
matically start and stop services, as well as a demonstra-
tion of files we knew would be different and therefore
fail equivalence testing.

For the first test, we instructed the users to install the
SSH daemon. This test sought to demonstrate that ISE-
T can detect when a new service is installed and there-
fore enable it when the changes are committed. This
is demonstrated by the fact that in Linux systems, a
System-V init script has to be added to the system to
enable it to be started each time the machine boots. If
the user’s administration environment contains a new init
script, ISE-T can automatically determine that the ser-
vice should be started when this set of administration
changes are committed to the base system. This test also
sought to demonstrate that certain files are always go-
ing to be different between users if created within their
private environment. This is demonstrated by the fact
that the SSH host key for each environment is different.
This is because it is created based on the kernel’s ran-
dom entropy pool that will be different for each user and
therefore will never be the same if created in separate en-
vironment. A way to solve this would be not to create it
within the private branch of each user, but instead have
it be created after the equivalent changes are committed,
for instance, the first time the service’s init script is exe-
cuted.

For the second test, we instructed the users to re-
move the PPP daemon. This test sought to demonstrate
that there are multiple ways to remove a package in a
Debian system and depending on the way the package
is removed, the underlying file system will be differ-
ent. Specifically, a package can either be removed or
purged. When a package is removed, files marked as
configuration files are left behind, allowing the packages
to be reinstalled and have the configuration remain the
same. On the other hand, when a package is purged, the
package manager will remove the package and all the
configuration files associated with it. In this case, the
user’s chose different ways to remove the package, and
ISE-T was able to determine the differences for those that
chose to remove or purge it.

5.3 Configuration Changes

Our third set of tests involved modifications to config-
uration files on the system and involved six separate
tests. These tests could be subdivided into three cate-

gories. The first category was composed of simple file
configuration changes. We first instructed the users to
modify the host name of the machine persistently from
debian to iset, which is accomplished by editing the
/etc/hostname file. As expected, as this configura-
tion change is very simple, all user modified the system’s
hostname in the exact same manner, allowing ISE-T to
determine that all the systems were equivalent.

Next, we instructed the users to modify the
/etc/inetd.conf file to enable the discard ser-
vice. In this case, as the file is more free-form, their
changes were not exact, and many were not equiva-
lent. For example, some users enabled it for both TCP
and UDP, while some users enabled it for TCP alone.
Also, some users added a comment, while others did not.
Whereas the first change is not equivalent, the second
change should be considered equivalent, but this can-
not be determined by a simple diff; one needs the abil-
ity to parse the files correctly to determine that they are
equivalent, an ability our ISE-T prototype does not have.
However, ISE-T was able to clearly report the differences
that existed between the environments of users who per-
formed this administration task differently.

The second set of tests involved setting up and remov-
ing cron jobs and was composed of three tests. First,
we provided the users with a script in /root that we
instructed them to install in the system in a manner so
that it will be executed daily. In Debian there are two
ways to have a cron job execute daily. The best way is
to simply place the script in the /etc/cron.daily
directory, as all the programs located within it are exe-
cuted once a day. On the other hand, a user could use
the /etc/crontab file and instruct it exactly what
time each day to execute the program. We were look-
ing for users to place the file in /etc/cron.daily
which the large majority did; but one user who per-
haps was not used to Debian modified /etc/crontab
directly. Again, ISE-T was able to detect the differ-
ence when it existed and report the discrepancy. Simi-
larly, we instructed users to remove a cron job that ran
hourly. The cron job’s script was already located in
/etc/cron.hourly and not in crontab. All users
deleted it from the /etc/cron.hourly directory,
even the user who modified /etc/crontab in the pre-
vious test. Finally, we had an entry in /etc/crontab
that executed a cron job at 4:35 AM every day, and in-
structed the users to change it to 5:35 AM. As expected,
all users performed the same set of changes by modifying
the /etc/crontab file.

5.4 Exploit

In our final test, we asked the users to create a backdoor
shell into the system. This test demonstrates that ISE-



T will detect when one of the two system administrator
makes a rogue administration change to the system, as
the other administrator will not have made that same ad-
ministration change. We did not specify how or where
the shell should be created, and left it up to the user. The
users created setuid shells in many different locations,
some as “dot files” to be hidden from a normal ls listing,
and some just setuid existing shells. In all cases, as none
of the users made this rogue modification in the same
manner, ISE-T was able to detect the rogue changes as a
difference that existed between all the environments.

6 Related Work

Two-person control mechanisms are known to provide
high levels of assurance [22]. Multiple examples exist
with regard to nuclear weapons. For instance, to launch
a nuclear weapon, two operators must separately confirm
that launch orders are valid and must turn their launch
keys together to launch the missiles. In fact, every sen-
sitive action concerning nuclear weapons must be per-
formed by two people with the same training and author-
ity [3, Chapter 2]. The same notion is applied in many
financial settings: banks will require two people to be
involved in certain tasks, such as opening a safe-deposit
box [25], and companies can require two people to sign
a check [8] over a certain threshold. This makes it much
more difficult for a single person to commit fraud.

However, as far as we know, this mechanism has never
been applied directly to system administration. In the
Compartmented Mode Workstation (CMW), the system
administration job is split into roles, so that many tra-
ditional administration actions require more than one
user’s involvement [23]. These demarcation of roles
were first pioneered in Multics at MIT [12]. Similarly,
the Clark-Wilson model was designed to prevent unau-
thorized and improper modifications to a system to en-
sure its integrity [4]. All these systems simply divided
the administrators’ actions amongst different users who
performed different actions. This differs fundamentally
from the traditional notion of two-person control where
both people do the same exact action.

More recently, many products have been created to
help prevent and detect when accidental mistakes occur
in a system. SudoSH [9] is able to provide a higher level
of assurance during system administration as it records
all keystrokes entered during a session and is able to re-
play the session. However, while sudosh can provide an
audit log of what the administrator did, it does not pro-
vide the assurances provided by the two-person control
model. Even if one were to audit the record or replay it,
one is not guaranteed to get the same result. Although
auditing this record can be useful for detecting acciden-
tal mistakes, it cannot detect malicious changes. For in-

stance, a file fetched from the Internet can be modified.
If the administrators can control which files are fetched,
they can manipulate them before and after the sudosh
session. ISE-T, on the other hand, does not care about
the steps administrators take to accomplish a task, only
the end result as it appears on the file system.

Part of the reason accidental mistakes occur is that
knowledge is not easily passed between the experienced
and inexperienced system administrators. Although sys-
tems like administration diaries and wikis can help, they
do not easily associate specific administration actions
with specific problems. Trackle [6] attempts to solve
this by combining an issue tracker with a logged con-
sole session. Issues can be annotated, edited and cross-
referenced while the logged console session logs all ac-
tions taken and file changes and stores them with the is-
sue, improving institutional memory. Although this can
help prevent mistakes from entering the system due to
enabling the less experienced system administrators from
seeing the exact same steps a previous administrator took
to fix a similar or equivalent issue, it does not prevent
mistakes from entering and remaining in the system, nor
does it prevent a malicious administrator from perform-
ing malicious changes.

ISE-T’s notion of file system views was first explored
in Plan 9 [17]. In Plan 9, it is a fundamental part of the
system’s operation. As Plan 9 does not view manipulat-
ing the file system view as a privileged operation, each
process can craft the namespace view it or its children
will see. A more restricted notion of file system views
is described by Ioannidis [11]. There, its purpose is to
overlay a different set of permissions on an existing file
system.

Finally, a common way to make a system tolerant of
administration faults is to leverage the semantic of file
system versioning, as it enable you to rollback to a con-
figuration file’s previous state when an error was made.
Operating systems such as Tops-20 [7] and VMS [15] in-
clude native operating system support for versioning as
a standard feature of their file systems. These operating
systems employ a copy-on-write semantic that involves
versioning a file each time a process changes it. Other
file systems, such as VersionFS [16], ElephantFS [19],
and CVFS [21] have been created to provide better con-
trol of the file system versioning semantic.

7 Conclusions

ISE-T applies the two-person control model to system
administration. In administration, the two-person control
model requires two administrators to perform the same
administration act with equivalent results in order for the
administration changes to be allowed to affect the sys-
tem that is being modified. ISE-T creates multiple paral-



lel environments for the administrators to perform their
administration changes and then compares the results of
the administration changes for equivalence. When the
results are equivalent, there is a high assurance that sys-
tem administration faults have not been introduced into
the system, be they malicious or accidental in nature.

We have implemented an ISE-T Linux prototype that
creates parallel administration environments where sep-
arate administrators can perform changes, while not hav-
ing administration rights on the machine itself. Our re-
sults from a user study demonstrate that many common
administration tasks will result in equivalence when per-
formed by isolated administrators without any commu-
nication between them. This demonstrates that the two-
person control model can be applied to system adminis-
tration by simply analyzing the results of the file system
changes that occur in the environments created for the
two administrators.

Acknowledgements

Paul Anderson, Andrew Hume, our paper shepherds, and
Matthew Barr provided many helpful comments on ear-
lier drafts of this paper, especially in the area of config-
uration management. This work was supported in part
by NSF grants CNS-0426623, CNS-0717544, and CNS-
0914845.

References

[1] US DOD Joint Publication 1-02, DOD Dictio-
nary of Military and Associated Terms (as amended
through 9 June 2004).

[2] P. Anderson. LCFG: A Practical Tool for System
Configuration. Usenix Association, 2008.

[3] A. B. Carter, J. D. Steinbruner, and C. A. Zraket,
editors. Managing Nuclear Operations. The
Brookings Institution, Washington, DC, 1987.

[4] D. D. Clark and D. R. Wilson. A Comparison of
Commercial and Military Computer Security Poli-
cies. IEEE Symposium on Security and Privacy,
0:184, 1987.

[5] Commission for Review of FBI Security Programs,
William Webster, chair. Webster Report: A Review
of FBI Security Programs, Mar. 2002.

[6] D. S. Crosta, M. J. Singleton, and B. A. Kuperman.
Fighting Institutional Memory Loss: The Trackle
Integrated Issue and Solution Tracking System. In
Proceedings of the 20th Large Installation Sys-
tem Administration (LISA 2006) Conference, pages
287–298, Washington, DC, Dec. 2006.

[7] Digital Equipment Corporation. Tops-20 user’s
guide, Jan. 1980.

[8] M. S. Elmaleh. Nonprofit fraud prevention.
http://www.understand-accounting.
net/Nonprofitfraudprevention.html,
2007.

[9] D. Hanks. Sudosh. http://sourceforge.
net/projects/sudosh/.

[10] J. Heller. Catch-22. Simon and Schuster, 1961.

[11] S. Ioannidis, S. M. Bellovin, and J. Smith. Sub-
operating Systems: A New Approach to Appli-
cation Security. In SIGOPS European Workshop,
Sept. 2002.

[12] P. Karger. Personal Communication, May 2009.

[13] P. A. Karger and R. R. Schell. MULTICS Security
Evaluation: Vulnerability Analysis. Technical Re-
port ESD-TR-74-193, Mitre Corp, Bedford, MA,
June 1977.

[14] O. Laadan, R. Baratto, D. Phung, S. Potter, and
J. Nieh. DejaView: A Personal Virtual Computer
Recorder. In Proceedings of the 21th ACM Sympo-
sium on Operating Systems Principles (SOSP), Oct.
2007.

[15] K. McCoy. VMS File System Internals. Digital
Press, 1990.

[16] K. Muniswamy-Reddy, C. P. Wright, A. Himmer,
and E. Zadok. A Versatile and User-Oriented Ver-
sioning File System. In Proceedings of the Third
USENIX Conference on File and Storage Technolo-
gies (FAST 2004), pages 115–128, San Francisco,
CA, Mar./Apr. 2004. USENIX Association.

[17] R. Pike, D. L. Presotto, K. Thompson, and
H. Trickey. Plan 9 from Bell Labs. In Proceedings
of the Summer 1990 UKUUG Conference, pages 1–
9, London, UK, July 1990. UKUUG.

[18] D. Price and A. Tucker. Solaris Zones: Operat-
ing System Support for Consolidating Commercial
Workloads. In Proceedings of the 18th Large In-
stallation System Administration Conference, Nov.
2004.

[19] D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C.
Veitch, R. W. Carton, and J. Ofir. Deciding When to
Forget in the Elephant File System. In Proceedings
of the 17th ACM Symposium on Operating Systems
Principles (SOSP), Dec. 1999.

http://www.understand-accounting.net/Nonprofitfraudprevention.html
http://www.understand-accounting.net/Nonprofitfraudprevention.html
http://sourceforge.net/projects/sudosh/
http://sourceforge.net/projects/sudosh/


[20] S. Soltesz, H. Pötzl, M. e. Fiuczynski, A. Bavier,
and L. Peterson. Container-Based Operating Sys-
tem Virtualization: A Scalable, High-Performance
Alternative to Hypervisors. SIGOPS Operating
System Review, 41(3):275–287, 2007.

[21] C. A. N. Soules, G. R. Goodson, J. D. Strunk, and
G. R. Ganger. Metadata Efficiency in a Compre-
hensive Versioning File System. In Proceedings of
the 2nd USENIX Conference on File and Storage
Technologies, Mar. 2003.

[22] P. Stein and P. Feaver. Assuring Control of Nuclear
Weapons. University Press of America, 1987.

[23] J. S. Tolliver. Compartmented Mode Worksation
(CMW) Comparisons. In Proceedings of the 17th
DOE Computer Security Group Training Confer-
ence, Milwaukee, Wi, May 1995.

[24] VMware, Inc. http://www.vmware.com.

[25] Wilshire State Bank. Safe deposit boxes.
https://www.wilshirebank.com/
public/additional_safedeposit.asp,
2008.

[26] D. Wise. Spy: The Inside Story of how the
FBI’s Robert Hanssen Betrayed America. Random
House, 2002.

[27] C. P. Wright, J. Dave, P. Gupta, H. Krishnan, D. P.
Quigley, E. Zadok, and M. N. Zubair. Versa-
tility and Unix Semantics in Namespace Unifica-
tion. ACM Transactions on Storage, 2(1):1–32,
Feb. 2006.

http://www.vmware.com
https://www.wilshirebank.com/public/additional_safedeposit.asp
https://www.wilshirebank.com/public/additional_safedeposit.asp

	Introduction
	Usage Model
	ISE-T Architecture
	Isolation Containers
	ISE-T's File System
	ISE-T System Service

	ISE-T for Auditing
	Experimental Results
	Software Installation
	System Services
	Configuration Changes
	Exploit

	Related Work
	Conclusions

