
EVA: A Framework for Network Analysis and Risk Assessment

Melissa Danforth
Department of Computer Science

California State University, Bakersfield
Bakersfield, CA 93311

mdanforth@csub.edu

Tags: security, research, attack graphs

Abstract

EVA is an attack graph tool that allows an administrator
to assess and analyze a network in a variety of fashions.
Unlike other attack graph tools which just focus on vi-
sualizing the network or recommending a set of patches
to secure the network, EVA goes beyond these modes to
fully explore the power of attack graphs for a multitude
of administrative and security tasks. EVA can be used
to derive a set of hardening measures for a network, to
perform strategic analysis of a network, to design a more
secure network architecture, to assist in forensic evalua-
tions after a security event and to augment an intrusion
detect system with information about the likely targets
of an attack. This paper summarizes the framework used
by EVA, provides real-world results of using EVA and
shows how EVA is scalable to large networks.

1 Introduction

Securing a computer network against intrusion is a com-
plicated task. The risk profile of the network depends
not only on the configuration of individual machines, but
also on the connectivity between machines. If an admin-
istrator only evaluates the risk profile of each machine
individually, he will miss multi-stage attacks that propa-
gate across the network. For example, an attacker might
compromise a public web server and then use that server
to compromise the database server. This is a classic
“foothold” scenario whereby the attacker compromises
one machine to use as a base for gaining access to inter-
nal networks he could not directly access. Such scenarios
must be considered when evaluating a network.

Attack graphs [2, 4, 10, 11, 14, 15, 16, 17, 18, 19, 9,
21] and attack trees [6, 7] provide a method to discover
and visualize such “foothold” scenarios in the network.

Attack graphs and trees compute exploit paths that a the-
oretical attacker might take through the network, given
knowledge of the vulnerabilities on each machine, the
firewall rules in the network and the topology of the net-
work. Attack graphs by themselves are purely just a
method to represent and possibly visualize these paths.
The true power of attack graphs lays in analyzing the at-
tack graph.

EVA (Evolutionary Vulnerability Analysis) is an at-
tack graph tool that supports a multitude of analysis
modes. As shown in [5], it is scalable to large networks
containing hundreds of hosts. This paper describes fur-
ther improvements that increase the scalability to net-
works containing thousands of hosts. EVA is a policy
driven model, which allows administrators to tune the
analysis to the specific operating criteria or mission for
their networks. The policy model is flexible so that the
administrator does not need to provide extensive infor-
mation to it.

Most prior work has focused on two modes of analy-
sis: finding a set of hardening measures and performing
“what if” scenarios. A set of hardening measures are typ-
ically patches or firewall rules that prevent the attacker
from achieving one or more goals. The “what if” scenar-
ios allow the administrator to pretend there are unknown
vulnerabilities in the network. This allows an adminis-
trator to explore the consequences of unknown vulnera-
bilities, such as “zero-day” exploits. The “what if” mode
essentially alters the input into the attack graph tool to
support the scenario instead of the actual network. The
resulting “what if” attack graph that can be analyzed us-
ing other modes of analysis. EVA supports these modes
of analysis and uses the policy to guide the analysis.

EVA goes beyond these modes of analysis to further
unlock the power of the attack graph model. It can also
be used for network design, forensic evaluation and IDS
monitoring. For the network design mode, the tool can
be used in two ways. First, it can be given multiple proto-
type networks to evaluate and decide which has the best

security. The mode of analysis has also been used in
GARNET [21]. The second use of the tool for network
design is unique to EVA. Given a prototype network, it
can automatically alter the connectivity and/or add IDS
sensors to improve the security of the network. As with
hardening measures, this analysis is guided by the policy
for the network.

For forensic analysis, the evidence gathered during the
course of the investigation is given to the tool. The tool
then produces a list of resources that the attacker could
have also compromised given the evidence. This gives
direction to the forensic evaluators by pointing out likely
paths the attacker took during the compromise. IDS
monitoring uses a similar approach, but in real-time as
opposed to after-the-fact. Theoretically, the list of poten-
tial exploit paths could be given to a intrusion response
system to prevent the attacker from actually exploiting
those paths.

These analysis modes have not been explored in other
attack graph tools. This work describes how EVA can be
expanded to supporting these new analysis modes. By
supporting these modes, EVA has a much wider use than
simply visualizing or securing the network. It can be
used in multiple phases of operation for a variety of se-
curity purposes.

Section 2 describes prior works in attack graphs and
attack trees. This section highlights how EVA differs
from these prior works. Section 3 details the attack graph
model used by EVA. In Section 4, the methodology used
to generate the attack graphs is given. Section 5 describes
the genetic algorithm used for analyzing attack graphs.
Section 5 also details the policy model and the various
modes of analysis. Section 6 provides some experimen-
tal results of using EVA on our student lab network and
on simulated networks. Section 7 talks about future work
to improve this tool.

2 Related Work

Several prior works [11, 15, 17, 18] have shown that de-
termining a set of hardening measures is in NP. Philips
and Swiler [15] also shows that the problem of plac-
ing sensors to maximize coverage of the exploit paths
an attacker could take is in NP as well. Given this, most
prior works have focused on non-adaptive approximation
methods to find a set of hardening measures.

Philips and Swiler [15] allow an administrator to se-
cure one resource at a time by computing shortest paths
to that resource. This does not actually provide a set of
hardening measures, but instead trims the attack graph to
just the most likely paths an attacker would take. Their
method requires extensive administrator interaction to
actually determine the hardening measures and to secure
all the resources on the network.

Other groups have proposed non-adaptive approxima-
tion methods to derive a set of hardening measures. Noel,
et al. [10, 14] derive an algebraic expression of the initial
conditions that allow an attacker to compromise a single
resource. Sheyner, et al. [11, 17, 18] use a greedy algo-
rithm to protect a given resource. Ammann, et al. [2]
compute the hardening measures for a single resource
based on information added to each node during the at-
tack graph generation. These methods only compute the
set of hardening measures for a single “goal” at a time.
They must be repeated for each resource the adminis-
trator wishes to protect. This requires not only more
processing time, but most likely will result in repeating
computational steps when two resources share a portion
of their exploit paths. EVA on the other hand derives a
set of hardening measures to protect all the resources the
administrator has marked as critical.

Dewri, et al. [7] uses a genetic algorithm to compute
a set of hardening measures for one or more resources.
Their algorithm also supports each hardening measure
having a different cost. This is similar to the approach
used by EVA, but there are several critical differences, as
detailed in [5]. First, their cost model is not very flexible.
It requires the administrator to assign a cost and weight
for every single possible hardening measure. Since the
number of hardening measures increases dramatically as
the size of the network increases, Dewri’s method would
require extensive user input before being able to compute
the set of hardening measures for larger networks. EVA
uses a default cost for most hardening measures, but al-
lows the administrator to adjust the cost for any harden-
ing measure. The administrator also has flexibility in this
adjustment. One can adjust a measure globally, such as
“do not allow port 80 to be disabled”, or one can adjust
a measure for a specific machine. Thus, the administra-
tor only has to specify costs for those measures deemed
desirable or undesirable for the network.

Second, the genetic algorithm used in [7] is not very
scalable to large networks, as shown in [5]. This is be-
cause they use a multi-objective genetic algorithm that
treats the security provided by the set of hardening mea-
sures and the cost of that set as equals. As shown in [5],
this leads to their algorithm maintaining a set of low cost
but also low security hardening measures. Most of these
low cost solutions turn out to be evolutionary dead-ends
because they provided very little security. By maintain-
ing them, the genetic algorithm in [7] is essentially wast-
ing memory and computational time on untenable solu-
tions. The genetic algorithm used by EVA uses a priority
based method which first prioritizes on securing the net-
work and then looks at minimizing the cost of the set
of hardening measures. The experimental results shown
in [5] show that this is a far more suitable approach for
the attack graph problem.

Figure 1: The Computer Science instructional network that was scanned for modeling in EVA.

NetSPA [9] and its graphical front-end GARNET [21]
are the closest competitors to EVA in the market today.
NetSPA is a project out of MIT Lincoln Labs that was
awarded $10k in MIT’s 2008 Entrepreneurship Compe-
tition to form a startup company based around NetSPA
called CyberAnalytix [13]. While NetSPA is similar to
EVA, there are several key differences between NetSPA
and EVA. First, NetSPA uses a different technical ap-
proach to the attack graph problem than EVA. NetSPA
focuses on the data structure of the attack graph and post-
processing the attack graph to reduce complexity. EVA
uses a classic adjacency-list data structure for the attack
graph and focuses on pre-processing the network using
an abstract exploit model described in Section 3.1 and
a meta-machine model described in Section 3.2 to re-
duce the complexity of the network. Both approaches
provide scalability, but are fundamentally different in na-
ture. Second, NetSPA uses a non-adaptive algorithm to
compute the set of hardening measures while EVA uses
an adaptive genetic algorithm that incorporates the site’s
policy when computing the set of hardening measures.
By incorporating the policy, EVA is able to provide rec-
ommendations tuned to the site’s mission or operating
criteria. Third, NetSPA and GARNET focus on pro-
viding a set of hardening measures and visualizing the
network for both actual networks and theoretical (“what
if”) scenarios. EVA supports these modes and also adds
modes for network design, forensic evaluation and IDS
monitoring. This gives EVA more versatility.

3 Attack Graph Model

The attack graph model used by EVA was first described
in [4]. The attack graph itself is an adjacency-list ma-
trix that describes the exploit paths an attacker could
take through the network. The inner nodes of the graph
represent various states the attacker has achieved, such
as “user privilege on host5”. The initial nodes of the
graph represent the initial state of the network, such as
what vulnerabilities are present and what privileges the
attacker has initially. The edges of the graph represent
exploits the attacker has executed. An attack graph for
the network evaluated in Section 6 is shown in Figure 2.

The primary underpinning of the model is a set of ex-
ploit templates that describe exploits an attacker could
use in the network. These templates are represented in
a “requires/provides” [12] format. The “requires” por-
tion of the template specifies what conditions must exist
for the exploit to occur. The “provides” portion of the
template states the consequences of the exploit, such as
new privileges the attacker gains from the exploit. An
attack graph is built by matching templates to the current
knowledge about the network. When all of the “require”
conditions are met for a template, it is executed and all
of its “provide” conditions are added to the attack graph.
For purposes of the representation, each condition is tied
to an individual node in the attack graph.

The initial nodes of the attack graph are derived from
several sources: a model of the network connectivity, a
list of vulnerabilities present on all machines in the net-
work and an attacker model. The model of the network
connectivity describes the firewall and/or routing rules
that would prevent two hosts from communicating with
one another. By default, EVA assumes two hosts can

0: pe_noauth on se rver1

r2r -noauth Zero -> se rver1

r2r -noauth* se rver2 -> se rver1

0: pe_noauth on se rver2

r2r -noauth Zero -> se rver2

r2r -noauth* se rver1 -> se rver2

1: Root pr ivi lege on server1

1: Root pr ivi lege on server2
0: Root privi lege on Zero

0: No pr ivi lege on server1

0: No pr ivi lege on server2

(a) Unpatched

0: pe_noauth on se rver1

r2r -noauth Zero -> se rver1

r2r -noauth* se rver2 -> se rver1

0: pe_noauth on se rver2

r2r -noauth Zero -> se rver2

r2r -noauth* se rver1 -> se rver2

1: Root pr ivi lege on server1

1: Root pr ivi lege on server2
0: Root privi lege on Zero

0: No pr ivi lege on server1

0: No pr ivi lege on server2

(b) Patched

Figure 2: The attack graph for the basic network configuration and the patched attack graph after analyzing it. The
color scheme for the graphs is as follows. The orange oval is the attacker’s starting point. Red boxes represent
machines where the attacker has obtained root privileges. Yellow boxes are machines where the attacker has gained
user privileges. Orange diamonds are the attacks executed against the network. Clear ovals are the initial conditions
in the network. In the patched graph, disabled attacks and nodes are grey while the patched vulnerabilities are aqua.
For this network, the recommended patches prevent the attacker from getting root on both machines, since both root
nodes have been disabled in the patched graph.

communicate on a given port. The connectivity model
only needs to specify denied connectivity. When refer-
ring to TCP connections, the denied connectivity is as-
sumed to be a denied SYN packet. The denied connectiv-
ity is directional, just as firewall rules are. For example,
if you deny host1 from connecting to port 443 on host4,
this does not prevent host4 from connecting to port 443
on host1. This connectivity matrix can be derived from
knowledge of the network’s firewall and routing rules.

The list of vulnerabilities on all machines in the net-
work can be obtained via vulnerability scanner reports.
The vulnerability name must match the naming struc-
ture used in the exploit templates. Currently, EVA can
translate certain Nessus [20] plugin IDs to a vulnerability
name. The machines must also be given unique names in
this list and these names must match the names used in
the connectivity model. IP addresses or domain names
are a very logical name to use for this model. One can
also rename machines in both the vulnerability list and
connectivity model to any name of the administrator’s
choosing.

The attacker model describes what initial privileges
the attacker has in the network and where the attacker
is located in the network. For example, one can model
an attacker that is outside of the network and who has no
initial privileges in the network (the “outsider” problem).
One can also model an attacker who has a machine inside
the network under his control or who has certain priv-
ileges inside the network (the “insider” problem). One
can also use any combination of these two problems, al-
though currently EVA assumes a single-attacker model,
so it cannot distinguish between the nodes achieved by
two or more attackers. In other words, if you model both
an insider and outsider, EVA assumes them to be the
same person. Allowing multiple attackers is a planned
future refinement (see Section 7).

One of the issues with attack graphs that was described
in more detail in [4] is that the number of edges in the
graph, in other words the number of exploits executed
by the attacker, is dominated by the number of exploit
templates in the model and the number of machines in
the network. If a is the number of exploit templates and
n is the number of machines, then the number of edges
is O(an2). To achieve scalability, one must reduce the
number of exploit templates and the number of machines
in the network in such a way that it does not affect the
functionality of the attack graph. To do this, EVA uses
two approaches: an abstract model of exploit classes and
clustering of identical machines.

3.1 Abstract Model of Exploit Classes

When looking at the early literature on attack graphs,
particularly the work of Sheyner, et al. [11, 17, 18], two

things became clear. First, if one were to model each and
every exploit that existed in the world, the exploit tem-
plates would quickly grow to an enormous size. Second,
many exploits shared characteristics and only varied by
the name of the vulnerability and/or the port number used
in the exploit. One could greatly reduce the number of
exploit templates required by coming up with abstracted
templates that apply to a variety of actual exploits.

The difficulty with this approach is creating abstract
templates that retain the ability to model different types
of exploits while still grouping multiple exploits to-
gether. Essentially, a classification system had to be de-
veloped for exploits. The details of this classification
system are given in [4]. In brief, exploit classes such
as “remote to user” or “remote to root” were developed.
Most of the classes focus on privilege escalations, client-
side privilege escalations (such as a browser exploit),
username/password guessing, password cracking, infor-
mation leaks, bypassing firewall rules or altering router
rules. The model currently does not support denial of
service, but it could be extended to do so by writing a
new set of rules for that class.

Rewriting the exploit templates is only part of the ab-
straction process. The vulnerability list also must be
translated from actual vulnerabilities to abstract vulnera-
bilities. This is done currently by comparing the Nes-
sus [20] plugin ID to a mapping that converts known
Nessus plugin IDs to their corresponding abstract vulner-
ability. This mapping is currently maintained by hand.
The translation of the vulnerability list is done during the
pre-processing stage, before generating the graph. For
each machine in the vulnerability list, its set of vulner-
abilities are translated to the abstract vulnerability class.
If two or more vulnerabilities for that machine map to
the same abstract class, the duplicates are discarded.
When post-processing the reports generated by the anal-
ysis tool, this process is reversed.

Likewise, the port numbers given in the model of
network connectivity must also be abstracted. This is
a slightly more complex process, since any given port
may be used for more than one abstract exploit class.
Again, a mapping of port number to abstract port name
is used, except this mapping supports one-to-many map-
pings where one port number might be associated with
several abstract exploit classes.

There are two major advantages to having an abstract
model for the exploit templates. The first advantage is
that this greatly reduces the size of the template set. By
reducing the number of templates, the number of edges
in the graph are also reduced, as detailed above. This
increases the scalability of the model since, as described
in [4], the number of edges are a prime indicator of the
complexity of the attack graph. The second advantage
is reduced administrative overhead. One does not have

to alter the exploit templates every time a new exploit
comes to light. Instead, the administrator can see if that
exploit is part of an existing abstract class. If so, the pre-
processing mappings can be altered to support this new
exploit. If not, the model allows an administrator to write
templates for specific exploits that are not covered by the
abstract templates.

3.2 Clustering
The second approach to reduce complexity and increase
scalability is to group identical machines into a cluster.
In [4], this cluster was modeled as one meta-machine.
This has been updated to model each cluster as two ma-
chines, so that the interactions between machines in a
cluster can be observed.

The process of clustering is similar to what was de-
scribed in [4]. After the connectivity model and list of
vulnerabilities has been pre-processed for the abstract
template model, it is further pre-processed to discover
the clusters. On the first pass, all machines with identical
vulnerabilities are put into a proto-cluster. On the sec-
ond pass, each proto-cluster is subdivided into the final
clusters based on the connectivity. Each final cluster con-
tains machines with identical vulnerabilities and identi-
cal connectivity. Each cluster is assigned a name and the
members of that cluster are recorded. Then the vulnera-
bility list and connectivity model are updated as follows.
If a cluster contains only one machine, that machine is
left as-is in both the vulnerability list and the connectiv-
ity model. If a cluster contains two or more machines,
all machines in the cluster are removed from both the
vulnerability list and connectivity model. Then two ma-
chines whose names are based on the cluster name are
added to both the connectivity model and vulnerability
list. These two cluster machines have all the vulnerabil-
ities and connectivity rules specified by the original ma-
chines in the cluster. Clustering is currently done with a
Perl script to parse and alter the input files.

For a network which has large segments of identi-
cal machines, clustering can greatly improve the perfor-
mance of EVA by reducing the number of machines mod-
eled in the attack graph. Since the members of the cluster
are recorded, it is easy in post-processing to augment all
reports about a cluster with the list of machines in that
cluster. The administrator can then tell that hardening
measures need to be applied to all machines in the clus-
ter.

4 Generation of Graphs

As described in Section 3, the exploit templates are in
a “requires/provides” format. This makes them well-
suited to be encoded as rules in an expert system. The

expert system JESS [8] is used by EVA. The abstract ex-
ploit templates are encoded as rules in the expert sys-
tem. These rules use the CLIPS [1] syntax, so the ruleset
could be exported to other expert systems that support
this syntax. The network connectivity model, the list of
vulnerabilities and the attacker model are encoded as ini-
tial facts to the expert system. From these initial facts,
the “requires” portion of zero or more templates is satis-
fied. The “provides” portion of the template asserts more
facts into the expert system. This in turn may satisfy
other templates.

Unlike some prior works [11, 17, 18, 16] which only
see if the attacker can achieve a specific goal, such as “get
root on the web server”, EVA uses an exploratory ap-
proach to seek out all possible exploit paths the attacker
could take through the network. The matching of facts to
exploit templates continues until the newly asserted facts
cause no more templates to be satisfied. Thus all avenues
of attacks that can be described given the initial facts and
the exploit templates are explored.

The expert system also records each exploit template
rule that is activated, the facts that caused it to be satis-
fied and the facts that are asserted as a consequence of
it being activated. This is equivalent to one edge in the
attack graph. The nodes in the attack graph are equiv-
alent to the facts in the expert system, which are also
recorded. A Perl script translates the output of the expert
system into two formats: a visualization format and the
genetic algorithm format. The visualization format uses
the DOT syntax of the Graphviz project [3]. From DOT,
one can produce images in a variety of formats such as
EPS and GIF. The genetic algorithm format is a list of an-
notated edges used to construct the adjacency-list matrix
for analysis.

5 Evolutionary Analysis

In order to determine a set of hardening measures, one
must first specify what is considered to be the “bad”
states in the attack graph, i.e. what the administrator does
not want the attacker to achieve. For example, the ad-
ministrator might want to prevent the attacker from gain-
ing root-level privileges on all hosts. When deriving the
hardening set, one then seeks to disconnect the attacker
from these undesirable states by applying a hardening
measure. The “bad” states correspond to a set of nodes
in the attack graph. This can be given specifically, such
as “prevent root access on host8”, or generally, such as
“prevent root access on all hosts”. These bad states are
referred to collectively as the goal nodes since they rep-
resent the goals of the attacker.

Related to finding a set of hardening measures, one
can also analyze the network to assess its risk profile. To
do so, one simply measures how many of these “bad”

(a) Unpatched

(b) Patched

Figure 3: The attack graph and analyzed attack graph for the scenario where a user visits a malicious website with a
vulnerable web browser. This is a classic outsider scenario where the attacker gains a foothold in the network then
uses this foothold to further compromise the network. The color scheme is as described in Figure 2.

states the attacker has obtained and output that as a risk
metric or a risk profile. Again, this can be tuned to the
particular needs of a given network by changing the set
of “bad” states to reflect what is undesirable for that par-
ticular network.

The hardening measures supported by EVA are patch-
ing a vulnerability, adding a firewall rule and placing an
IDS sensor. Priority is given to each hardening mea-
sure based on the policy model and the mode of anal-
ysis. Each measure has two attributes associated with
it: the cost of that measure and the security provided by
that measure. Both attributes can be manipulated by the
policy and by the mode of analysis. When the mode of
analysis is to derive a set of hardening measures, the de-
fault costs in order from cheapest to most expensive are
patches, firewalls and IDS sensors. The default behavior
is to have patches and firewall rules confer more security
than IDS sensors. Any of these defaults can be changed
by the policy model. One can also tell the genetic algo-
rithm to only consider a subset of hardening measures,
such as to just consider patches.

A genetic algorithm was chosen as the means of do-
ing the analysis. As described in [5], finding a set of
hardening measures directly is computationally infeasi-
ble. One cannot “brute force” the solution. Genetic al-

gorithms are an approximation method that allows one
to start with random solutions and then refine those so-
lutions into better solutions via an evolutionary process.
This is essentially a guided search of the solutions space.
Each solution is referred to as a chromosome. A group
of solutions being evaluated are called a population. The
evaluation continues iteratively for several rounds, with
each round being called a “generation”. Initially, in the
first generation, the population is randomly generated.
Then the “fitness” of each chromosome is evaluated. The
fitness function determines how well a given solution
works for the problem. The most fit chromosomes are
then selected as parents and recombined, with the hopes
of creating even better solutions. Finally, a few chromo-
somes are randomly mutated. In EVA, a mutation flips
the bit, so if a hardening measure was in use, it would
no longer be used and vis versa. After recombination
and mutation, the population moves on to the next gen-
eration, where it begins with evaluating the fitness of the
chromosomes. The population will keep passing through
the fitness evaluation, recombination and mutation steps
until the programmed maximum number of generations
has elapsed.

More details about the genetic algorithm can be found
in [5]. The code has been updated since that time to be

multi-threaded when evaluating the fitness of the pop-
ulation. Since each chromosome in the population has
its own fitness, this point of the evaluation is well-suited
to multi-threading. The population is broken down into
sub-groups and each sub-group spawns a thread to evalu-
ate the fitness of the chromosomes in its sub-group. The
number of threads is selected when the program is com-
piled. Currently, four threads are spawned. The main
program waits for each thread to complete before mov-
ing on to the recombination step.

The chromosome in the genetic algorithm corresponds
to a proposed set of hardening measures. During fitness
evaluation, each measure in the chromosome is applied
to the attack graph. Each node and edge in the attack
graph records how it is affected by the measure. A patch
disables an initial node, which corresponds to a vulner-
ability on a machine, and all edges leading out of that
node, which correspond to attacks enabled by that vul-
nerability. A firewall rule disables an edge, which corre-
sponds to the attack that the firewall rule blocks. An IDS
sensor watches an edge. This indicates that the attack
represented by that edge will be detected if it is executed.
After applying the hardening measures, a cascade effect
takes place throughout the graph, as described below.

Edges, which correspond to one specific attack, will
disable themselves if any incoming node to that edge is
disabled. This is because the incoming nodes correspond
to preconditions required for the attack to succeed. If any
precondition becomes disabled, the attack can no longer
succeed, so the edge disables itself. It does not disable
the other incoming nodes though since those have not
been affected by the fact that the attack can no longer
succeed. Similarly, if any of the incoming nodes for
an edge are watched, the edge marks itself as watched.
This indicates that one of the preconditions for the at-
tack is enabled by an attack that the IDS can detect. This
will only occur when several attacks are needed in or-
der for the attacker to reach a goal. While the IDS may
not detect the attack corresponding with this edge, it has
detected an early attack that is required for this edge’s
attack to succeed. Thus, this edge will mark itself as
watched.

Internal nodes will disable themselves when all their
incoming edges are disabled. This means that all at-
tacks which lead to that state have been disabled. When a
node disables itself, all edges leading out from that node
will disable themselves due to the behavior of edges de-
scribed above. Similarly, when all edges coming into
a node are watched or disabled, the node will mark it-
self as watched. This indicates that all possible paths to
the privilege or condition represented by the node have
been covered by IDS sensors. The attacker cannot reach
this node without triggering an IDS alarm, so the node
is marked as watched. This will then trigger all edges

leaving that node to mark themselves as watched, for the
reasons described above. If a node or edge is marked as
both watched and disabled, the disabled state takes pri-
ority.

At the end of applying all the proposed hardening
measures and this cascade effect, each goal node is
checked. The preferable result is that all the goal nodes
have been disabled. For each node that is not disabled, its
risk metric is calculated based on if it is being watched
by an IDS sensor and how many enabled edges can still
reach it. The sum of the risk metrics for each goal node
is the overall risk that is still present with that proposed
set of hardening measures. The genetic algorithm fit-
ness function first seeks to minimize this risk and then
attempts to minimize the cost of the measures in the hard-
ening set.

The primary advantage to using a genetic algorithm
for analysis are that the direction of the search can be
easily changed by altering the nature of the chromosome
or the fitness function. For example, if one is just con-
cerned with finding a set of patches to apply, the chromo-
some can be redefined as just the set of hardening mea-
sures corresponding to patches. The same genetic algo-
rithm described above will still work even with this re-
definition. EVA’s flexibility in analysis comes from this
flexibility that genetic algorithms provides.

Another advantage to genetic algorithm is many solu-
tions are evaluated in parallel. EVA keeps a record of
the best solutions across all generations. Each of these
solutions is unique. Currently the ten best solutions are
saved, but this is a tunable parameter. When the maxi-
mum number of generations has been reached, EVA out-
puts all of these saved best solutions, ranked by their fit-
ness. The administrator can then choose amongst the so-
lutions. This is particularly useful when multiple solu-
tions with identical fitness exist. The genetic algorithm
cannot distinguish between them since their fitness is the
same, but a human may have a preference for one solu-
tion over another. This is also useful to fine-tune the pol-
icy model, described below, to obtain better solutions if
the first analysis was not satisfactory to the administrator.
By reviewing the saved best solutions, the administrator
can see if one hardening measure is being excessively
preferred, which could indicate that its cost or benefit
needs to be modified.

5.1 Policy Model

The policy model is designed to give the administra-
tor great flexibility in overriding the default behavior of
the analysis. The administrator can override the secu-
rity provided by each class of hardening measures. This
would affect how the risk metric is calculated for each
goal node. The administrator can also override the cost

(a) Unpatched

(b) Patched

Figure 4: The attack graph and patched attack graph for the malicious student scenario. Since all students are allowed
to log in as a user on the lab machines, the analysis cannot disable the user privilege nodes in the patched graph.

of hardening measures. This can be done for a specific
hardening measure or a group of hardening measures.
The cost can also be changed on different machines.

For patches, the policy model allows an administrator
to specify an abstract vulnerability class from the abstract
exploit templates, a machine name template and the new
cost. The abstract vulnerability class corresponds to a
class of patches. The machine name template can be an
actual machine name, a cluster name or a partial name
which will match all machine and cluster names contain-
ing that name. The administrator can specify just the
vulnerability class or just the machine name template if
desired. The most specific cost is used when there is
overlap between multiple policies. For example, an ad-
ministrator can set the cost of a “privilege escalation”
class patch to 5 on all machines with one policy rule, but
say that the cost of the “privilege escalation” class is only
3 on host4 with another rule. The second rule would be
used for host4.

For firewall rules, the policy model allows the cost to
be set based on the source of the packet, the destination
of the packet and the abstract destination port from the
abstract exploit templates. As with patches, the source
and destination machine names can be an actual machine
name, a cluster name or a partial name. The destination
port can be one of the abstract port names or the keyword

“all”. Similar to the patch policy rules, not all fields need
to be specified. If two rules overlap, again the most spe-
cific rule will be used. IDS sensor placement has all the
fields that firewall rules have and adds a field for the ab-
stract exploit class. The abstract exploit class field allows
one to say it is cheaper or more expensive to monitor for
certain types of exploits.

Policy rules can be set for each mode of analysis. Only
the rules for the current mode of analysis will be consid-
ered. For any hardening measure not covered under a
policy rule, the default cost is used. The administrator
may alter these default costs for each hardening measure
class as well. Default costs can also be altered based on
not only the class, but also the mode of analysis.

5.2 Modes of Analysis
The genetic algorithm is adaptable to many modes of
analysis. Besides finding a set of hardening measures, it
can also be used for strategic planning, network design,
forensic evaluation and IDS monitoring. This is done
by changing the costs and priorities of each hardening
measure (thus altering the fitness of a chromosome), by
redefining the chromosome to only consider a subset of
hardening measures or by altering the input to the attack
graph generator.

(a) Unpatched

(b) Patched

Figure 5: These graphs are for the scenario where a user has a compromised laptop and plugs it in to the instructor’s
station in a lab. The attacker cannot be prevented from obtaining user privileges since an easily-guessed login is used
for student access to the lab machines. The policy prevents this login from being disabled.

For strategic planning, the desired task is to evaluate
how the network would respond to unknown risks by per-
forming “what if” scenarios. Essentially, an administra-
tor adds vulnerabilities to the vulnerabilities list file that
have not actually been detected in the network and/or al-
ters the connectivity of the network. For example, an ad-
ministrator would ask “what if machine x has a remote to
root vulnerability?” The “what if” scenarios are partic-
ularly useful to model vulnerabilities that a vulnerability
scanner can not easily find. For example, Nessus can-
not detect a client-side browser vulnerability, but this is
becoming a common method used to compromise a ma-
chine. If the administrator does not have a client-based
vulnerability analyzer, he can still model client-side at-
tacks by performing a “what if” scenario. The tool com-
putes the attack graph for the given scenario. The admin-
istrator can analyze the resulting attack graph in any of
the other supported modes.

With network design, the administrator wants to create
a network that is resistant to attack. There are two ways
attack graphs can be used to support network design. The
simplest method is to have the administrator design sev-
eral potential networks as input to the strategic planning
mode. The tool would then calculate an attack graph for
each network and its associated risk metric. The results
could then be displayed to the administrator so she can

choose the design which has the lowest metric and which
best suits the requirements of the installation.

A more interesting approach to network design analy-
sis, and an approach unique to EVA, is to give a proto-
type network design to the tool and have the tool auto-
matically reconfigure the network to minimize risk. The
genetic algorithm in this mode does not consider patches
as a possible hardening measure. Instead, it focuses on
firewall rules, which could also be interpreted as routing
rules, and IDS sensor placement. The fitness function
still seeks to minimize the risk of the network. The costs
are policy-driven, using the policy rules for network de-
sign. The set of firewall rules and IDS sensors that min-
imizes the risk and minimizes the cost is favored by the
algorithm. It outputs several potential network designs
that follow this desired outcome.

For forensic evaluation, the current evidence is given
as input. This evidence can consist of known resources
the attacker has achieved, which corresponds to nodes in
the attack graph, or IDS alerts about attacks seen, which
corresponds to edges in the attack graph. All evidence
that corresponds to the attack graph of the network is
highlighted and treated as the initial states of a subgraph
of the attack graph. Any other nodes reachable by these
states could be other resources the attacker could have
compromised. The IDS monitoring mode works simi-

larly, but with current IDS alerts. While it has not been
implemented yet, theoretically one could feed the output
of the IDS monitoring mode to an intrusion response sys-
tem. It could then use the knowledge of resources at risk
to add further protection measures for those resources.
This could prevent the attacker from compromising those
resources.

6 Experimental Results

The Computer Science instructional network, as shown
in Figure 1, was profiled as the input network to this tool.
The network consists of a server zone located outside
the firewall and a NAT zone for all the instructional labs.
The server zone contains five servers: two Debian Linux
servers, one Solaris 8 server, one Solaris 7 server and one
Digital Unix server. The instructional lab machines are
all identical within a single lab room. There are several
prototype lab machines that the administrator clones out
to all the machines in a particular room. These proto-
types are an Ubuntu Linux image for the general access
labs (51 machines), an Ubuntu Linux image for the pro-
gramming lab (36 machines), a Windows XP image for
the hardware labs (24 machines) and an Ubuntu Linux
image for the advanced computation lab (30 machines).
In total, there are 141 lab machines in the NAT zone and
5 machines in the server zone.

The clustering Perl script derived four clusters based
on the vulnerabilities present on the machines and the
connectivity allowed by the machines. The first clus-
ter consisted of the servers. The second cluster corre-
sponded to the general access labs. The third cluster cor-
responded to the programming lab. The fourth cluster
contained both the hardware and advanced computation
labs since they had identical abstracted vulnerabilities.
Even though the actual vulnerabilities differed, the ab-
stracted vulnerabilities are what matters for purposes of
clustering. The process of clustering the network took
0.25 seconds on a Xeon quad core 2.33GHz system.

Three “what if” scenarios were also generated for the
network. The first scenario assumes that a student in
the general access lab is using a version of Firefox with
an exploitable vulnerability that would give a malicious
website the same privileges on the machine as the stu-
dent. It is then assumed the student visits such a web-
site, giving the attacker user privileges on that machine.
The attacker model states that the attacker’s malicious
website would place a bot on that machine which would
then attempt to compromise other machines and would
“call home” to the attacker, thereby allowing the attacker
to communicate with the machine even though it is in a
NAT.

The second scenario assumes a student has decided to
compromise the network. This is a variation of the in-

sider problem. Since the student already has user priv-
ileges on all lab machines and several servers, his goal
is to escalate his privileges to root on one or more ma-
chines. The third scenario assumes an instructor has
brought a compromised laptop on to campus. All lab
rooms have an Ethernet jack at the instructor station
where the instructor can plug in a laptop. There are no
restrictions on the connectivity of these jacks. There-
fore, once plugged in, they have full access to the LAN
containing all the lab machines. Again, this scenario as-
sumes the compromised laptop can “call home” to the
attacker so the attacker can have direct access into the
NAT zone via the laptop.

All three scenarios and the base configuration of the
network were given as input to the attack graph genera-
tor. The attack graph for the base scenario showed that
two of the servers could be compromised via “remote
to root” vulnerabilities. These were two old servers ap-
proaching end-of-life which had not been maintained re-
cently. The attack graph for the Firefox vulnerability sce-
nario showed that once the attacker had a foothold into
the NAT zone, he was able to get user on all lab ma-
chines via the “student” account, which is the account all
students use to log in to the lab machines locally. The
cluster containing the hardware and advanced lab had a
“remote to root” vulnerability that the attacker was able
to exploit to get root privileges on those machines. The
programming lab had a “privilege escalation” vulnerabil-
ity that allowed the attacker to elevate from user to root
on those machines.

The attack graph for the malicious student showed
a similar course of action. The student is able to es-
calate from user to root on the programming lab ma-
chines. The student is also able to exploit the “remote
to root” vulnerability on the hardware and advanced lab
machines. Likewise, the attack graph for the rogue lap-
top also showed these compromise routes once the lap-
top had been plugged into the NAT zone. The generation
of each of these attack graphs took 0.5 seconds on the
aforementioned quad core Xeon machine.

Each attack graph was then given to the hardening
mode of EVA. The goal given to the analysis was to pre-
vent the attacker from gaining root privileges on any ma-
chine. The analysis was further restricted to only con-
sidering patches that could be applied, instead of all pos-
sible hardening measures. The policy rules applied to
the evaluation were that logins could not be turned off to
any machine and on the lab machines the “student” ac-
count could not be disabled, even though it has a guess-
able password. A run was made without these policy
rules and several of the highly fit solutions proposed by
the genetic algorithm did indeed suggest these courses of
action. When the policy rules were applied, none of the
highly fit solutions contained these courses of action.

Figure 6: This is the attack graph for the rogue laptop scenario after redesigning the network to segment off the
Ethernet port at the instructor’s station. Since the laptop plugged into that port can no longer connect to the lab
machines, it is unable to compromise them even though the easily guessed student login from Figure 5 remains.

The genetic algorithm was run several times using dif-
ferent population sizes and different maximum genera-
tion limits. Larger population sizes will more frequently
generate optimal results, but require more CPU time to
complete the analysis. A larger maximum generation
limit likewise can increase the optimality of the result,
but also takes more CPU time. Part of the testing was de-
termining values for these two parameters that balanced
good results against CPU time. In doing so, a “suggested
parameters” matrix can be developed for other networks
that are similarly sized.

When the base configuration was evaluated, the sug-
gested course of action was to patch two servers which
had “remote to root” vulnerabilities. No other courses of
action were suggested because the remaining machines
are inside the NAT and the attacker did not have a vector
into the NAT zone in the base configuration. It took 0.01
seconds to evaluate the base scenario using a population
of 50 chromosomes and 50 maximum generations for the
population. The original and patched attack graph for the
base scenario are shown in Figure 2.

For the Firefox scenario, the suggested course of ac-
tion was to patch the two servers, as before, and to patch
the Firefox vulnerability that gave the attacker a foothold
into the NAT zone. Again, the genetic algorithm was run
with a population of 50 and 50 maximum generations. It
took 0.04 seconds for the genetic algorithm to derive this
recommendation. The attack graph and analyzed attack
graph for this scenario are shown in Figure 3.

For both the malicious student scenario and the rogue
laptop scenario, the suggested course of action was to
patch the two servers, patch the privilege escalation vul-
nerability in the programming lab and patch the remote
to root vulnerabilities in the hardware and advanced labs.
This limits the attacker to just getting user privileges on
the machines via the “student” accounts, since it was not
allowed to disable those accounts. Again, with a popu-
lation of 50 and 50 maximum generations, it took 0.03
seconds for the genetic algorithm to derive these recom-
mendations for each scenario. The attack graphs for the

malicious student scenario are shown in Figure 4 and the
graphs for the rogue laptop are shown in Figure 5.

6.1 Network Design

The three scenarios were also analyzed using the network
design mode. For all scenarios, the most fit solutions
only required new firewall or router rules. None of the
recommendations included placing an IDS sensor for this
data set.

For the Firefox vulnerability scenario, it was assumed
that the vulnerability was just in the general access labs.
The most fit recommendation stated to block Firefox in
the general access labs, since there was no policy rule
stating to avoid this action. Since blocking Firefox was
considered the cheaper course of action, it was recom-
mended over segmenting the NAT zone. With a pop-
ulation size of 250 and 250 maximum generations, the
genetic algorithm was able to find this solution on the
majority of its runs. It took on average 1.3 seconds to
find this recommendation.

For the malicious student scenario, it was assumed the
student just had class in the campus-wide general access
lab. The student was assumed to not have physical access
to the programming, hardware and advanced computa-
tion labs. The most fit recommendation was to segment
the general access labs away from the remaining labs.
Again, a population of 250 and 250 maximum genera-
tions were needed to consistently produce this result. It
took an average of 1 second for the algorithm to run.

For the compromised laptop, the most fit design was to
segment the laptop Ethernet jack at the instructor’s sta-
tion away from the rest of the labs in the NAT zone. As
before, a population of 250 and 250 maximum genera-
tions were needed. It took an average of 1.05 seconds
to calculate. Figure 6 shows the attack graph after the
laptop port has been segmented into a different subnet.

This mode needed a larger population size and a higher
maximum generation limit than finding a patch set be-
cause there were more possible solutions. The number of

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 100 200 300 400 500

C
P

U
 T

im
e

(s
ec

on
ds

)

Number of Hosts in Original Network

Original
Clustered

Figure 7: The CPU time for running the attack graph
generator and analysis in hardening mode for generated
networks with 5 to 500 machines. The original time is for
the unclustered machines. The clustered time includes
the time it takes to cluster the machines before generating
and analyzing the graph.

edges in an attack graph are far greater than the number
of nodes in an attack graph since most nodes are highly
connected. Determining how to segment the network in-
volves finding the minimal set of edges to cut to discon-
nect the attacker from the goal nodes, while finding a
patch set involves finding a minimum set of nodes to dis-
able. Since there are more edges than nodes, the network
design mode has more possible solutions than deriving a
set of patches.

6.2 Scalability Testing

The simulated network described in [5] was run through
the clustering script, had the attack graphs generated and
then was evaluated using the hardening mode in order to
test the scalability of this approach. Previously in [5],
the tool was tested to a network with 500 unclustered
machines. Those same networks were clustered and run
again.

For both the unclustered and clustered networks, the
proposed hardening measures completely prevented the
attacker from getting root privileges on any machine in
the network. Figure 7 shows the CPU time of the two
methods when the genetic algorithm had a population of
250 and 500 maximum generations. The CPU time is
used for this figure since the results in [5] did not use
a multi-threaded form of the genetic algorithm. Com-
paring the CPU time allows the clustering results, which
do use the multi-threaded algorithm, to be meaningfully
compared to the single-threaded algorithm. It is clear
that with clustering, it took far less time to derive the
hardening set.

Again, the tool was run with multiple values for the

population size and maximum generations. This allowed
the “suggested parameters” matrix to be filled with in-
formation from larger networks than the Computer Sci-
ence instructional lab network. As expected, the smaller
networks needed only small values for these two param-
eters. The largest network tested, which contained 2500
unclustered nodes and 337 clustered machines, needed
a population size of 500 and a maximum generations of
500 to determine a set of patches. It took an hour and
a half on the Xeon quad core 2.33GHz system to ana-
lyze this graph due to the complexity of the graph and
the large genetic algorithm parameters needed to produce
optimal results.

7 Future Work

There are still several areas of improvement for this tool.
The first area of improvement is the gathering of input
data for the tool. Currently, the firewall and routing rules
have to be imported by hand. The next improvement will
be to automatically import firewall rules using tools that
can extract firewall rules from the network. Another area
of input automation is the Nessus plugin ID to abstract
vulnerability mapping. A student is currently working
on a evolutionary technique to scan the plugin descrip-
tion and classify the plugin based on the keywords in the
description. If this works, it should greatly reduce the
maintenance needed for the abstraction mappings. Of
course, another area for input improvement is to support
other vulnerability scanners besides Nessus. This is also
planned for the tool.

The second area of improvement is the attacker model.
Currently, only one attacker is assumed. If one wishes to
model multiple attackers, one needs to run several sce-
narios, similar to what was described in the results sec-
tion. A future improvement is to allow multiple attacker
models for a single attack graph. This will require mark-
ing the nodes to identify which attackers have gained that
node and altering the genetic algorithm to pay mind to
this node marking.

Another area of improvement is the visualization of
the attack graphs. While DOT [3] is nice for small net-
works, it does not visualize large networks well. A better
visualization technique would allow an administrator to
“drill down” into the graph to see more specific details or
“zoom out” to see more general details.

On the analysis side, one desired area of improvement
is to integrate the IDS correlation mode with an intrusion
response system to see if it would be feasible to run the
analysis in real-time and also if doing so would stop an
attacker before they compromised resources. This would
be a very powerful extension to the tool.

8 Acknowledgements

I would like to thank the undergraduate students who
have worked on this project for their hard work. Jonathan
Berling was instrumental in translating the Nessus re-
ports into the appropriate format for attack graph gen-
eration and in assisting with the creation of the scenarios
that were presented in this paper. Fred McHale and John
Millikin played a key role in setting up the isolated net-
work that was used to test the scalability of EVA. I’d also
like to thank the Computer Science network administra-
tor, Steve Garcia, and his student assistant, Nick Tooth-
man, for their help in scanning and modeling the Com-
puter Science instructional network.

References
[1] CLIPS: A Tool for Building Expert Systems. [Online]

http://clipsrules.sourceforge.net/.

[2] AMMANN, P., WIJESEKARA, D., AND KAUSHIK, S. Scal-
able, Graph-Based Network Vulnerability Analysis. In CCS02:
9th ACM Conference on Computer and Communication Security
(Washington, DC, November 2002), ACM, pp. 217 – 224.

[3] AT&T RESEARCH. Graphviz - Open Source Graph Drawing
Software. [Online] http://www.graphviz.org/, April 2006. Ver-
sion 2.8.

[4] DANFORTH, M. Models for Threat Assessment in Networks. PhD
thesis, University of Califonia, Davis, Davis, CA, USA, June
2006.

[5] DANFORTH, M. Scalable Patch Management using Evolutionary
Analysis of Attack Graphs. In Proceedings of the 7th Interna-
tional Conference on Machine Learning and Applications (San
Diego, CA, USA, December 2008), pp. 300–307.

[6] DAWKINS, J., CAMPBELL, C., AND HALE, J. Modeling Net-
work Attacks: Extending the Attack Tree Paradigm. In Proceed-
ings of the Workshop on Statistical and Machine Learning Tech-
niques in Computer Intrusion Detection (June 2002).

[7] DEWRI, R., POOLSAPPASIT, N., RAY, I., AND WHITLEY, D.
Optimal security hardening using multi-objective optimization on
attack tree models of networks. In CCS ’07: Proceedings of the
14th ACM conference on Computer and Communications Secu-
rity (New York, NY, USA, 2007), ACM, pp. 204–213.

[8] FRIEDMAN-HILL, E. JESS: Java Expert System Shell. [Online]
http://www.jessrules.com. Version 6.1p6.

[9] INGOLS, K., LIPPMANN, R., AND PIWOWARSKI, K. Practical
Attack Graph Generation for Network Defense. In Proceedings
of the 22nd Annual Computer Security Applications Conference
(Miami, FL, USA, December 2006), pp. 121–130.

[10] JAJODIA, S., NOEL, S., AND O’BERRY, B. Managing Cy-
ber Threats: Issues, Approaches and Challenges. Kluwer Aca-
demic Publisher, 2003, ch. Topological Analysis of Network At-
tack Vulnerability.

[11] JHA, S., SHEYNER, O., AND WING, J. Two Formal Analyses of
Attack Graphs. In IEEE Computer Security Foundations Work-
shop (Cape Brenton, Nova Scotia, Canada, June 2002), pp. 49–
63.

[12] J.TEMPLETON, S., AND LEVITT, K. A Require/Provides Model
for Computer Attacks. In Proceedings of the New Security
Paradigms Workshop (Cork Island, September 2000).

[13] MIT PRESS RELEASE. MIT Lincoln Laboratory
software aims to thwart cyber hackers. [Online]
http://web.mit.edu/newsoffice/2008/security-0827.html, Au-
gust 2008.

[14] NOEL, S., JAJODIA, S., O’BERRY, B., AND JACOBS, M. Ef-
ficient Minimum-Cost Network Hardening Via Exploit Depen-
dency Graphs. In Proceedings of the 19th Annual Computer Se-
curity Applications Conference (Las Vegas, NV, USA, December
2003).

[15] PHILLIPS, C., AND SWILER, L. A Graph-Based System for
Network-Vulnerability Analysis. In Proceedings of the New Se-
curity Paradigms Workshop (Charlottesville, VA, 1998).

[16] RITCHEY, R. W., AND AMMANN, P. Using Model Checking
to Analyze Network Vulnerabilities. In Proceedings of the 2000
IEEE Symposium on Security and Privacy (Oakland, CA, May
2000), pp. 156 – 165.

[17] SHEYNER, O. Scenario Graphs and Attack Graphs. PhD thesis,
Carnegie Mellon University, Pittsburgh, PA, USA, April 2004.

[18] SHEYNER, O., HAINES, J., JHA, S., LIPPMANN, R., AND
WING, J. Automated Generation and Analysis of Attack Graphs.
In Proceedings of the IEEE Symposium on Security and Privacy
(May 2002), pp. 254 – 265.

[19] SWILER, L., PHILLIPS, C., ELLIS, D., AND CHAKERIAN, S.
Computer-Attack Graph Generation Tool. In Proceedings of the
DARPA Information Survivability Conference and Exposition II
(June 2001).

[20] TENABLE NETWORK SECURITY. Nessus. [Online]
http://www.nessus.org/.

[21] WILLIAMS, L., LIPPMANN, R., AND INGOLS, K. GARNET:
A Graphical Attack Graph and Reachability Network Evaluation
Tool. In Proceedings of the 5th International Workshop on Visu-
alization for Computer Security (Cambridge, MA, USA, Septem-
ber 2008), pp. 44–59.

