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Luigi Catuogno1, Hans Löhr1, Mark Manulis2, Ahmad-Reza Sadeghi1, Marcel Winandy1
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Abstract

Mobile Storage Devices, such as USB flash drives, of-
fer a flexible solution for the transport and exchange of
data. Nevertheless, in order to prevent unauthorized ac-
cess to sensitive data, many enterprises require strict se-
curity policies for the use of such devices with the effect
of rendering their advantages rather unfruitful.

Trusted Virtual Domains (TVDs) provide a secure IT
infrastructure offering a homogeneous and transparent
enforcement of access control policies on data and net-
work resources, however, the current model does not
specifically deal with Mobile Storage Devices.

In this paper, we present an extension of the TVD ar-
chitecture to incorporate the usage of Mobile Storage De-
vices. Our proposal addresses three major issues: coher-
ent extension of TVD policy enforcement by introducing
architectural components that feature identification and
management of transitory devices; transparent manda-
tory encryption of sensitive data stored on mobile de-
vices; and highly dynamic centralized key management
service. In particular we address offline scenarios allow-
ing users to access and modify data while being tem-
porarily disconnected from the domain. We also present
a prototype implementation based on the Turaya security
kernel.

Keywords: security, mobile storage devices, USB stor-
age, trusted virtual domains

1 Introduction

Trusted Virtual Domains (TVDs) [22, 9] are the forth-
coming framework for the implementation of multi-
domain/single-infrastructure computer networks like
centralized data centers, where computational resources
from different owners share the same physical infrastruc-
ture, or single organizational LANs that span over differ-
ent offices, branches or functional areas.

Amongst the strengths of TVDs is the transparent en-
forcement of access control policies — platforms and
users logically assigned to the same TVD can access
distributed data storage, network services, and remote
servers without executing any additional security proto-
cols, while the resources belonging to different TVDs are
strictly separated and, thus, remain inaccessible.

In this paper, we extend the security concept of TVDs
to capture the use of Mobile Storage Devices (MSDs)
such as portable hard drives and USB sticks, which offer
additional flexibility for the transport of data across mul-
tiple working locations and devices (e.g., work stations,
printers, cell phones, cameras, etc.). The non-triviality
of this task results from the diverse security risks with
regard to the data stored on MSDs. For example, MSDs
can be easily lost or stolen, and consequently the con-
fidentiality of data becomes an issue. Once left unat-
tended by the user, MSDs can be manipulated with the
goal to breach the integrity of the data or to dissemi-
nate corrupted data or malicious code once the device
is re-connected to the enterprise platform. Many secu-
rity solutions for MSDs adopted in practice rely on a
mixture of different techniques. In fact, the choice of
appropriate mechanisms is guided by trade-off between
their costs and offered benefits [33, 4]. Recent surveys
indicate that existing security policies vary across orga-
nizations from none to very restrictive ones disallowing
MSDs at all [16, 17, 45].

The deployment of MSDs is a challenging task for the
current TVD model. Indeed, TVD infrastructures that
want to take the major advantages of versatility of mobile
storage devices have to address two main objectives: On
the one hand, they should be efficient enough to reduce
the overhead of enforcing security policies; on the other
hand, they have to be secure enough to reduce the efforts
requested to users and consequently reducing the effects
of human errors.



Our Contribution In this paper we present an en-
hanced secure management model for MSDs within the
framework of TVDs. Moreover, we present the design
and the implementation of a comprehensive solution to
enable transparent user-friendly encryption of sensitive
data within a TVD. In particular, we address the usage of
mobile storage devices to transport data within a domain
by pursuing a separation between data storing and cen-
tralized key management. This separation is necessary to
achieve offline data access, e.g., to allow a platform that
is temporarily disconnected from the domain to process
the data while preserving the desired security properties.

Paper organization We describe the problem defini-
tion in more detail in Section 2, and briefly overview
the existing TVD concept in Section 3. Section 4 in-
troduces our solution of integrating MSD management in
TVDs, whereas we discuss the details of our MSD access
control in Section 5. We describe our prototype imple-
mentation (Sec. 6), evaluate the security of our approach
(Sec. 7), and discuss related work (Sec. 8). Section 9
concludes our work.

2 Problem Description

TVDs (see Section 3 for background) introduce a homo-
geneous and transparent infrastructure that aims at the
separation between multiple domains with different se-
curity and trust policies. Enterprises and other organiza-
tions often have to deal with data of more than one se-
curity level. As a consequence, they separate their work-
flows to meet the different security requirements of their
domains, e.g., working with confidential (internal) and
public documents at the same time. The application of a
TVD infrastructure can help these organizations to trans-
parently enforce their security policies.

The incorporation and usage of mobile storage de-
vices in TVDs would increase the flexibility of users in
their workflows, but poses a challenging task in the de-
sign of the overall security architecture. MSDs are reg-
ularly employed to store copies of documents that the
user may take home or to another office, raw data to be
processed elsewhere, or on-the-fly data backups. In par-
ticular, MSDs are frequently used offline, i.e., plugged
to any platform while it is not connected to the domain
network (e.g., a laptop on the airplane).

MSD deployment raises several concerns about data
confidentiality and integrity. Adversaries could intercept
(steal) devices and try to read private data or even to
make unauthorized changes. While encryption and digi-
tal signatures can achieve confidentiality and integrity of
data stored on MSDs, the average human user is likely to
be unskilled to properly configure and use standard se-

curity solutions. This may increase the probability of
human errors and result in ineffective data protection.
Moreover, users may feel any security policy as a nui-
sance that introduces overhead in their tasks and, there-
fore, try to circumvent or ignore it.

One important issue is that MSDs are passive com-
ponents, thus enforcement of security policies relies on
the computer they are connected to. We may assume the
policy is correctly enforced as long as the MSDs are used
within the TVD boundaries. This assumption is in gen-
eral no longer true if any MSD is used outside its domain,
e.g., when is connected to an outsider computer.

Our aim is to extend the TVD model with the benefits
of using MSDs, allowing the transparent binding of an
MSD to a certain TVD so that only platforms of the same
TVD can access the stored data. Deploying MSDs within
the TVD requires some refinement to the model due to
the following concerns:

• Device identification. An MSD can move from a
workstation to another without any control by the
TVD infrastructure. Hence, whenever an MSD is
plugged in, the platform should be able to distin-
guish the device and the domain this device belongs
to.

• Dynamic Device Management. Unlike weighty
storage devices, MSDs may unpredictably appear
and disappear within the domain, according to the
users’ needs. This requires the introduction of an
MSD management infrastructure in order to handle,
e.g., creation and distribution of encryption keys.

2.1 The Offline Scenario
As mentioned above, MSDs are also used offline (i.e.,
the policy-enforcing platform is not connected to the do-
main), which introduces additional security problems.
Almost all duties related to policy enforcement (e.g., au-
thentication, key distribution, etc.) rely on interactive
protocols. But policy rules may change, platforms may
join/leave the domain (and should no longer access data),
(disclosed) encryption keys may be revoked (and new
ones should be generated and distributed). Whenever a
policy change occurs, these changes have to be promptly
propagated to all platforms in order to prevent further
disclosure or sensitive data.

Hence, allowing offline platforms to access domain
data stored on MSDs needs to fulfill the following se-
curity requirements:

• Delegation. Each domain platform should be able
to enforce a policy (this means online and offline).
For instance, each platform should store locally an
instance of the policy and any credentials needed to
enforce the policy.



• Delayed revocation. The notification of revocation
of any platform, compartment, or device to offline
platforms is delayed to the time they will re-connect
to the domain network. In the meantime, data pro-
cessed by these platforms and transferred over the
domain through a mobile device may be made par-
tially (or totally) invalid because of revocation. In
order to validate data on mobile storage devices, ev-
ery platform should be able to verify whether the
data has been processed by a revoked platform.

• Authentication and data integrity. Access and data
modification should be infeasible for outsiders.

• Traceability and recovery. Domain members
should be able to track unauthorized data modifi-
cations and to reconstruct the previous data layout.

3 Background on Trusted Virtual Domains

Trusted Virtual Domains (TVDs) [22, 9] are a novel se-
curity framework for distributed multi-domain environ-
ments which leverages virtualization and trusted comput-
ing technologies. In this section we give a brief overview
of the TVD concept and its features, and briefly introduce
its main components and protocols.

In a virtualized environment, different applications
and services together with their underlying operating
systems are executed by different Virtual Machines
(VMs) that share the same physical infrastructure. Each
virtual machine runs in a logically isolated execution en-
vironment (which we call compartment), controlled by
the underlying Virtual Machine Monitor (VMM). In such
an environment, the user’s work space is now executed
by a virtual machine that is hosted by the VMM running
on the physical platform along with other architectural
components.

A TVD is a coalition of virtual machines that trust
each other, share a common security policy and enforce
it independently of the particular platform they are run-
ning on. Moreover, the TVD infrastructure contains the
VMM and the physical components on which the virtual
machines rely to enforce the policy. In particular, the
main features of TVDs and the TVD infrastructure are:

• Isolation of execution environments. The underly-
ing VMM provides containment boundaries to com-
partments from different TVDs, allowing the execu-
tion of several different TVDs on the same physical
platform.

• Trust relationships. A TVD policy defines which
platforms (including VMM) and which virtual ma-
chines are allowed to join the TVD. For example,
platforms and their virtualization layers as well as

individual virtual machines can be identified via in-
tegrity measurements taken during their start-up.

• Transparent policy enforcement. The Virtual Ma-
chine Monitor enforces the security policy indepen-
dently of the compartments.

• Secure communication channels. Virtual machines
belonging to the same TVD are connected through
a virtual network that can span over different plat-
forms and that is strictly isolated by the virtual net-
works of other TVDs.

Figure 1 shows an example of two TVDs that are dis-
tributed over different physical machines, and illustrates
main components of the TVD architecture and their rela-
tions. The TVD policy is a set of rules that state security
requirements a compartment should fit to be admitted to
the TVD (e.g., integrity measurements of the platform
and VMs) and defines both intra-TVD and inter-TVD in-
formation flow policy. A special node, namely the TVD
Master, logically acting as a central server, controls the
access to the TVD following the admission control rules
stated in the TVD policy. The TVD Proxy is a compart-
ment that locally enforces the TVD policy on the plat-
form it is running on. Several TVDProxies, belonging to
different TVDs can be instantiated on the same platform.

The process of TVD establishment in two steps,
“deploy” and “join”, is detailed in [29]: With the
TVD deploy protocol, the TVD Master verifies a plat-
form and its ability to enforce the TVD policy. Then,
in the TVD join procedure, the TVD Proxy (verified
by the TVD Master during the deploy phase) can verify
virtual machines that are executed on the platform, and
admit them to the TVD. Trusted computing technology
is used to establish trust in the reported measurement val-
ues. For example – following the TCG approach – hash
values of the software boot stack (including BIOS, boot-
loader, and virtualization layer as well as loaded virtual
machines) are stored in and signed by a Trusted Platform
Module (TPM) [43] and reported to the TVD Master dur-
ing an attestation protocol. The TVD Master can reliably
verify whether the reported values match the required
ones of the TVD policy. Based on this, the TVD Mas-
ter can implicitly rely on the enforcement mechanisms
of the local platforms.1

Techniques to isolate and manage the virtual networks
of different TVDs are given in [10]. Basically, virtual
switches on each platform implement VLAN tagging for

1The definition of the required integrity measurement values in
the TVD policy postulates knowledge about the behavior and security
properties of the corresponding software programs. In practice, this can
be achieved, e.g., through independent trusted third parties who evalu-
ate and certify products according to evaluation standards like Common
Criteria.



Figure 1: An overview of trusted virtual domains (TVDs)

Part a) shows the logical view of two TVDs, distributed over two physical platforms. Part b) shows the physical
deployment of the TVD components, including the TVD Master .

local connections, and secure VPN for remote connec-
tions.

Various applications of TVDs were already shown and
discussed in the literature. One example addresses the
idea of applying the TVD concept for secure information
sharing [26]. Other examples are virtual data centers [5],
or enterprise rights management [20]. However, none of
these works addresses the secure incorporation of mobile
storage devices as we require.

3.1 Management of TVDs

The leading approach of management of TVDs within
both centralized Virtual Data Centers and distributed
organizational networks leverages on the deployment
of advanced network management technologies (e.g.,
the Web-based Enterprise Management [14]) that pro-
vide highly integrated tools to accomplish administration
tasks.

In a TVD-enabled infrastructure, management activi-
ties span over three levels. The infrastructure level con-
cerns maintenance of physical resources, setup and con-
figuration of the overall logical infrastructure, and as-
signment of resources to the different TVDs. At domain
level, administrators take care of the TVD deployment,
virtual machine setup and management of policies, de-
vices and keys. Finally, at compartment level, running
applications and current users can be notified of some
events, coming from the underlying platform (e.g., revo-

cation). At each level, administrators have an integrated
management console that allows them to control all the
operations under their responsibility. The administration
of Virtual Data Centers with TVDs is discussed in [5].

4 Our Solution

In this section, we describe our solution to incorporate
the use of mobile storage within the TVD framework.
First, we describe how mobile storage operations are ac-
complished and, subsequently, we describe the new func-
tionalities we introduce in the existing TVD architecture.

4.1 System Operation

Figure 2 shows an example TVD-enabled infrastructure
in which two different TVDs are deployed. Each physi-
cal platform runs one or more virtual machines belong-
ing to one of the existing TVDs. Several MSDs, variedly
assigned to one of existing TVDs, are available to the
users.

Here follows a typical usage example. The user Al-
ice is working on the virtual machine VM1 and plugs in
her USB stick D1 to the platform P1 to make a backup
copy of her files. Some specific components running on
the platform P1 (see Section 4.2.2) identify the plugged
device, verify whether it has been assigned to the same
TVD of VM1 and retrieve the cryptographic keys that



are used to encrypt and decrypt data on it. If everything
succeeds, the device is made available to VM1.

At this point, a further refinement to the device ac-
cess control can be achieved on a per-VM basis. To this
end, a set of rules that defines access privileges to each
device assigned to the TVD (device access policy), has
been added to the TVD policy. For each device, these
rules state which operations and privileges (e.g., read,
write) are granted to each virtual machine in the same
TVD.

Hence, the platform P1 allows VM1 to mount the de-
vice D1 under the constraints stated by the device access
policy (read-only, read-write). Finally, if it is consistent
with access privileges of VM1, the copy of Alice’s data
can take place.

We recall that both device identification and key re-
trieval are performed automatically and transparently by
the platform when the device is plugged in. The guest
operating system of VM1 does not need any special soft-
ware to open and access the device, and no additional
operation from the user (e.g., further authentications be-
sides login, or providing keys) is required to handle data
contained on the device. Moreover, we stress that data
encryption is mandatory, thus the user cannot choose to
not encrypt data once the mobile storage device has been
assigned to a TVD.

Data stored on D1 can be accessed only by those vir-
tual machines which joined the same TVD. In particu-
lar, let D1 be plugged in to platform P3 which runs two
virtual machines, VM3 and VM4. The virtual machine
VM3, which is in the same TVD as D1, can access D1,
whereas VM4 cannot. Trying to access D1 on a virtual
machine from a different TVD leads to a failure, because
the platform is not allowed to retrieve the corresponding
encryption key.

4.2 Virtual Storage Management

The main idea of our approach is to add access rules and
the management of cryptographic keys for mobile stor-
age devices at those components which are already re-
sponsible for handling access rules and keys for the TVD
network, i.e., adding the information to the TVD policy
and performing the enforcement by the TVD Master and
the TVD Proxies. Moreover, we add additional compo-
nents to the virtualization layer of each platform to deal
with the specifics of MSDs: the MSD Manager and a
vMSD component. Hence, the trusted components of
virtual storage management in a TVD are the TVD Mas-
ter and, on each platform, TVD Proxy, MSD Manager,
vMSD, and, of course, the virtual machine monitor. We
explain the interaction of these components in the fol-
lowing subsections.

4.2.1 Device Identification

Information needed for the identification of an MSD is
contained in a special data structure named identification
record, and stored on the device along with the data pro-
vided by the user. This information includes the name of
the TVD the device belongs to, and the device-id, which
uniquely identifies the device within the TVD. The iden-
tification record is generated and stored on the device
when it is initialized.

4.2.2 Device Key Retrieval

To each MSD, our architecture associates a security
record containing some security related information (see
Section 5.2), including encryption keys. Security records
of all MSDs are indexed by the device-id and are stored
in a special database: the Domain Device Directory
(DDD), placed at the TVD Master. On every plat-
form, each TVD Proxy handles a Local Device Direc-
tory (LDD) that partially replicates the domain directory
of its domain. Physical platforms run a stand-alone com-
ponent: the MSD Manager, which waits for a device to
be plugged in. When this happens, the MSD Manager
reads the device’s identification record and extracts the
device-id and the name of the TVD it is assigned to. The
MSD Manager checks whether the TVD Proxy for that
domain is running on the platform, and if so, the MSD
Manager requests it to fetch the security record for the
plugged device from the LDD.

If the record is found, the TVD Proxy allows the MSD
Manager to open the device and releases its keys. If the
TVD Proxy cannot find the requested record, it forwards
the request to the TVD Master, which in turn searches for
the record in the Domain Device Directory and replies
either the requested record or an error message. Finally,
the TVD Proxy stores the received record in the Local
Device Directory and goes on.

The Local Device Directory fulfills two important
functions. The first one is: allowing offline platforms
to open a subset of mobile storage devices assigned
to their domain, provided the corresponding security
records have been added previously. The second one is:
avoiding that the TVD Master is queried every time an
MSD is used within its domain.

4.2.3 Accessing Devices

As stated above, neither the user, nor the virtual machine
(which runs a commodity operating system) need to per-
form any additional task to access the MSD. Indeed, in
our architecture, plugging in an MSD to a platform looks
like plugging in a plain mobile storage that stores data in
clear, from the virtual machine’s point of view.



Figure 2: Example of using MSDs in an environment with two TVDs respectively named red and blue.

Data encryption (as well as device access policy en-
forcement) is performed by a specific component run-
ning on the platform: the virtual MSD (vMSD). The
vMSD features an encryption layer through which the
VM mounts and accesses the device.

More precisely, a vMSD instance is created for each
MSD plugged in to the platform and is given the corre-
sponding keys by the TVD Proxy once the key retrieval
has been completed successfully. Hence, the vMSD an-
nounces itself to the VM as a virtual device. All data the
virtual machine reads/writes through the virtual device is
silently processed by the vMSD layer and stored on the
real MSD.

4.3 System Administration

4.3.1 Device Initialization

New mobile storage devices are assigned to a TVD
through an initialization procedure. When an unassigned
MSD is plugged in to a platform, the user is asked
whether the system may initialize it.

The initialization requires the cooperation of the TVD
Master. Indeed, the TVD Proxy running on the platform
requires the TVD Master to generate the identification
record and the security record (see Section 5.2) for the
new MSD. The former is sent back to the platform and
stored to the device via the vMSD whereas the latter is
saved in the domain device directory and propagated to
the requesting platform through the key retrieval proce-
dure.

The device access policy can be determined at differ-
ent levels. Users can explicitly provide the rules they
need for their devices, or some general rules, stated both
at platform or at domain level can be applied as default

policy. Anyway, it is the TVD Master which writes the
requested rules to the TVD policy.

When an MSD should be removed from a TVD, it can
be de-initialized by simply deleting its security record
from the Domain Device Directory (see Section 5.2).

4.3.2 Revocation

Any user, virtual machine or platform, may leave the
TVD for administrative reasons or can be revoked be-
cause any kind of corruption has been discovered. In
both cases, the administrator has to edit the TVD policy
and any other involved data structures at the TVD Master
(e.g. the Domain Device Directory).

Administrative revocations can be integrated within
the setup and configuration procedures featured by the
employed network management framework, so that,
while modifying the layout of the network, administra-
tors can consistently update the TVD policy.

The TVD architecture allows the TVD Master to real-
ize whether platforms or virtual machines have been cor-
rupted when they try to respectively deploy or join the
TVD. The consequent failure can be notified to the ad-
ministrator who can adopt the needed measures through
the management facilities.

At the moment, the architecture presented in this paper
does not feature any mechanism to automatically detect
run-time intrusions. We discuss details of revocation in
Section 5.5.

5 MSD Access Control Management

In this section we describe the realization of our MSD ac-
cess control management. First, we briefly describe the
enabling technologies, mainly cryptographic primitives



we use, followed by a description of the initialization
phase, and how the access control of MSDs is handled.
Last but not least we present the more advanced feature
of key revocation.

5.1 Building Blocks

In our architecture we apply two cryptographic primi-
tives: a symmetric encryption scheme with lazy revo-
cation for data encryption and an identity-based signa-
ture scheme for data authentication. Our solution is
intended to be independent from the employed crypto-
graphic primitive, so we base our design on a general
model like the one discussed in [2]. Therefore, we briefly
recall terminology and notation needed in the following.
For more details, we refer to [2].

5.1.1 Lazy Revocation

A group of users share some data encrypted with the
same symmetric encryption algorithm. In general, a va-
lidity time (timeslot) is assigned to each key. So, if t is
the current timeslot, all keys ki generated at times i < t,
are considered revoked. At time t, all group members
know the current key kt. Whenever a user leaves the
group, the current key is revoked and the new key kt+1

is generated and delivered to the remaining group mem-
bers. The lazy revocation concept is based on the as-
sumption that protecting old data from revoked users is
not necessary since they could have accessed the data
already and disclosed it to outsiders or other parties.
Hence, previously encrypted data are not re-encrypted,
whereas new data will be encrypted with the new key in
order to preserve confidentiality. Anyway, each user still
needs old keys, to read data encrypted at previous times-
lots.

To avoid that participants store all revoked keys, sev-
eral schemes [3, 32] provide users with a single user mas-
ter key Kt for each timeslot t. Kt can be used to extract
all keys ki (0 ≤ i ≤ t). This kind of schemes is char-
acterized by a trusted status for each timeslot t. The ini-
tialization algorithm of the lazy revocation scheme gen-
erates the initial engine state E0 related to the timeslot
t = 0. User master key K0 is derived from E0. When
a revocation occurs, the scheme updates its state taking
current stateEt to the new stateEt+1, hence, a new mas-
ter keyKt+1 is derived and delivered. Revoked users still
know Kt, but cannot use it to extract the new key kt+1.

5.1.2 Identity-Based Signature

LetW = {w1, . . . , wn} be a group of identities (of users
or platforms), represented as binary strings. An Identity-
Based Signature (IBS) scheme [23, 18] is initialized by

a trusted Key Generation Center (KGC) which generates
the master secret key SK and the corresponding mas-
ter public key PK. Then, using SK and an identity w,
KGC can derive the appropriate secret signing key SKw,
which it then securely transports to w. This allows w to
generate own signatures σw on any message of its choice,
which can be verified by others using the identity w and
the master public key PK.

5.2 Initialization

For each TVD, there is a TVD Master, which is assumed
to be always online in order to handle new key retrieval
requests from the various platforms. The TVD Master
creates and manages for each mobile storage device the
states Et and master keys Kt for lazy revocation, as well
as the master secret key SK and master public key PK
for the identity-based signature scheme. To allow each
platform to verify signatures made by the TVD Master,
we assume a public-key infrastructure that enables the
TVD Master to issue certificates for new master public
keys.

In particular, the initialization (“coloring”) of a new
mobile storage device D for a TVD works as follows.
Let the TVD be identified by (have the color) tvdID. As-
sumeM to be the TVD Master of tvdID. Once the blank
device D is connected to a platform P, the Virtual Stor-
age Management of P formats the device and requests
the local TVD Proxy belonging to tvdID to generate an
identification record IR for the device. The TVD Proxy
contacts the TVD Master to issue the record containing
a newly generated device-id d and tvdID. Figure 3 shows
the corresponding protocol.

Beside the creation of the identification record, M
also initializes encryption and signature schemes for D.
M creates the tuple (E0, PK, SK,W,RL), where E0

is the initial state of the symmetric encryption scheme,
PK is the master public key and SK the master secret
key for the IBS scheme,W is the set of writers (it is given
as input to the initialization procedure) and RL, initially
empty, is the set of revoked writers. All these informa-
tion associated to D are stored in a newly created entry
in the Domain Device Directory (DDD) onM.
M derives its own signing key SKM

from SK. M signs the identification record
(d, tvdID) under SKM and sends the result
IR := (d, tvdID, sig[SKM ](d, tvdID)) to the TVD
Proxy, which in turn stores it to the device. Now we
have D.id = d and D.owner = tvdID. The latter
indicates to which TVD the mobile storage device is
assigned, i.e., the “color” of the TVD. Note that storing
files from different TVDs on the same device is logically
equivalent to having one device for each TVD. Here, for
simplicity, we consider only the second case.



Figure 3: Device coloring protocol.

Note that neither Ei nor SK are delivered to
any platform, they are stored and processed only on
the TVD Master M. Indeed, M distributes to
each platform P the key management record r =
(d, (Kt, PK, SKP ,W,RL)) where: Kt is the current
master key for encryption, and SKP is the signing key
of the platform P which was derived from SK by the
TVD Master. The record r is stored in the Local Device
Directory (LDD) of the corresponding TVD Proxy on P.

Device De-Initialization Finally, a device can be “un-
colored” by deleting its identification record (by format-
ting it) and erasing its corresponding entries in the global
(DDD) and local device directories (LDD). Entries in
both directories can have an expiration time, to avoid
that the TVD Master keeps information about devices
forever.

5.3 MSD Access Control Mechanism
When a device D assigned to the TVD is attached to the
platform P, which hosts VMs of the same domain, then
the Virtual Storage Management of P extracts the iden-
tification record IR from the device. If the device is rec-
ognized, i.e., D.owner is this TVD and the signature of
IR is valid, then the MSD Manager requests the corre-
sponding TVD Proxy to search for the record indexed by
d=D.id in its Local Device Directory in order to obtain
the device keys. If the entry is not found because the de-
vice has not been attached to this platform yet before, the
query is forwarded to the TVD MasterM.

5.4 File Storage

In a naive approach, a platform, once it has obtained re-
quired keys, gets the whole file from the device, decrypts
it, verifies the attached signature and makes it available
to user applications. Eventually, it encrypts and signs the
updated file and copies it back to the device. This ap-
proach raises a problem: new data overwrite old data.

To fulfill our traceability and recovery requirement,
we store data to the MSD using a versioning filesystem.

In a versioning filesystem, each file can exist in sev-
eral versions. Usually, users can access transparently
(unlike in conventional application-level revision control
systems [41]) the latest file version as in a regular filesys-
tem, whereas a set of user-level utilities feature several
administrative tasks on file versions.

Versioning filesystems allow to record the history of
changes to files in data repositories, and are useful where
it is needed to maintain accurate logs of data flows and
possibly to reverse some operations.

The versioning policy we adopted is known as Copy-
on-write: a new file version is created each time it is
modified, e.g., by a write operation. Hence, a node which
accesses any input file fi, saves (and signs) its version to
the mobile storage device as a new file fi+1, instead of
simply overwriting the previous one. Afterwards, each
node can load the latest version of any file for which it
can successfully verify the signature.

As a consequence of this versioning policy users will
progressively consume all the available storage space
on any device. Therefore, the TVD policy also defines



a purge privilege that allows certain users to delete or
merge old versions. The purge operation is rather criti-
cal, hence, it is intended to be done only by domain ad-
ministrators and only when the device is connected to an
online platform.

We embedded both data security (encryption and dig-
ital signatures) and handling file revisions into our ar-
chitecture. The Virtual Storage Management performs
the corresponding operations transparently with respect
to user compartments.

5.5 Revocation of Cryptographic Keys

Both encryption and signing keys can be revoked in three
cases:

• Member revocation: Whenever a platform, VM, or
user is no longer member of the domain, the TVD
Master updates the encryption key (and revokes the
signing key if any).

• Key disclosure: Whenever it is known that a key
has been disclosed to unauthorized parties (e.g., due
to malicious users or compromised platforms), the
corresponding key must be revoked.

• Expiration: Creating and updating keys are bound
to a timer.

Suppose that at time t, revocation of kt is requested,
M updates the encryption engine taking it from state Et

to state Et+1, derives the new master key Kt+1. Kt+1 is
delivered to platforms that can extract the new encryption
key kt+1.

To revoke the signing key SKw, the TVD MasterM
adds w to the revocation list RL. If the revoked key has
to be replaced by a new one,M generates a new writer-
id w′, puts it into the set W of write-enabled nodes and
sends it to the node previously known as w. Moreover,
M sends the new revocation list RL to all other plat-
forms. All data signed with the revoked key SKw are no
longer accepted by any platform.

Key revocation may occur asynchronously with re-
spect to device access and the periodical update requests
by TVD members. Therefore we setup a key event noti-
fication system in which the TVD Master notifies a key
revocation to all platforms hosting VMs of the domain by
raising an appropriate event or alarm. Once the event no-
tification has been received, each online platform renews
its keys. Event notifications are queued, so that they can
be delivered to offline platform once they connect to the
TVD.

5.6 Offline Scenario
We briefly revisit how requirements raised in the offline
(but also online) scenario are addressed by our MSD ac-
cess control management:

• Delegation: Once the TVD deploy protocol [29]
has been carried out, the TVD Proxy locally stores
an instance of the TVD policy and a certain set of
MSD key management records. Hence, it is allowed
to enforce the policy and guarantee the access to the
subset of MSDs whose keys are stored in the Local
Device Directory LDD.

• Lazy revocation: Whenever a key revocation oc-
curs, new data, encrypted with the newly generated
key, do not overwrite the previous ones, hence, the
old data are still available for offline platforms to
which the new key has not been delivered.

• Authentication and integrity are provided by the
identity based signature scheme. Data written to a
mobile storage device is digitally signed with the
key assigned to the platform the device is attached
to. Unauthorized changes afterwards can easily be
detected by verifying the signature.

• Traceability and recovery: Employing a versioning
file service allows to keep track of all modification
made to the data, enabling offline platforms to ac-
cess to the most recent version they can decrypt.
Moreover, whenever a revocation occurs, it is possi-
ble to retrieve and delete all changes performed by
the revoked platform.

6 Implementation

In this section we briefly describe our prototype imple-
mentation of the MSD management in a TVD architec-
ture. In particular, we describe our implementation of
the virtual storage management. Figure 4 illustrates our
implementation.

Our prototype implementation is based on the Tu-
raya [15] security kernel. Turaya is composed of two
layers. The first layer is built upon an L4 microker-
nel [28], which ensures separation among logical exe-
cution environments (compartments) and runs services
that feature resource management (memory manage-
ment, I/O). On top of the L4 microkernel, compartments
can be native processes (called L4 tasks) or virtual ma-
chines (e.g., L4Linux, which is a para-virtualized Linux).
The trusted software layer provides security services in-
cluding secure storage, compartment management, and
trusted channel establishment.

In particular, a trusted channel [21, 39, 19, 1] is a
secure channel established between two compartments



Figure 4: Compartments involved in mounting and ac-
cessing to an attached MSD.

that: (a) validate each the configuration and identity of
the other, (b) negotiate each an encryption key depending
on the configuration of the other, so that data sent over
the channel by the former can be accessed only by the
latter and vice versa. In our architecture, trusted chan-
nels are used for the communication between the TVD
Master and TVD Proxies. In this way, the TVD Master
is ensured that the TVD Proxy to which it is going to send
security-critical data, is trusted, and that only that partic-
ular TVD Proxy can access data. On the other hand, the
TVD Proxy is guaranteed that it is receiving data from
the legitimate TVD Master. The storage manager is a
compartment that provides a persistent storage for other
compartments. The storage manager ensures confiden-
tiality, integrity, and freshness of stored data and bind
them to the configuration of their owner compartment.
For binding data and establishing trusted channels we use
trusted computing functionality of a TPM [43].

In addition to these services, our architecture intro-
duces two components that allow the user compartments
to access files on devices without having to deal with data
encryption themselves.

• The MSD Manager is a compartment, implemented
as an L4Linux virtual machine, which handles plug-

gable USB devices. When a USB disk device is at-
tached, the MSD Manager reads the identification
record of the device and forwards it to the TVD
Proxy for device recognition and, hence, for key re-
trieval.

• The Virtual MSD (vMSD) maps the physical en-
crypted device to a virtual (clear) one which is made
available to each user compartment of the corre-
sponding TVD. Once the TVD Proxy has retrieved
the device keys, it requests the Compartment Man-
ager to create the vMSD, which is implemented as
a native L4 task for each MSD. When the device is
detached, the vMSD is deleted.

Turaya components plus TVD Master, TVD Proxy,
MSD Manager and vMSD compose the Trusted Com-
puting Base of our architecture.

As already exposed in Section 5.4, our architecture
stores data on mobile devices through a secure version-
ing filesystem in which file content is encrypted and each
file version is signed by the user that created it. In our
early experiments, the versioning filesystem has been im-
plemented on Linux as a filesystem layer based on the
FUSE [40] module, making the system independent from
the underlying device filesystem format.

The diagram in Figure 6 summarizes the performance
measurement performed with the Bonnie benchmark
tool [8]. The first column of each group of measure-
ments (version only) shows the respective performance
achieved by the filesystem without performing neither
encryption nor signature of data. The values summarized
by the second column are obtained by running the test
enabling cryptographic features on single versioned files.
The purpose of this test is evaluating the overhead intro-
duced by the encryption scheme. In the third column we
can observe the performance measurement on files that
have eight previous versions. In this case, we aimed to
point out the overhead due to the signature verification
of the previous file versions.

We preliminarily point out that in general performance
of devices like USB sticks, memory cards and so on are
not very good if compared with the traditional hard disks
and that the use of digital signatures (usually avoided in
handling contents in secure filesystems) heavily affects
performance. On the other hand, we notice that actu-
ally mobile devices are mostly used as temporary stor-
age. That is, users prefer to copy documents lying on
the pen drive to the local hard drive, edit them there, and
then copy them back to the mobile device. Hence, in this
usage scenario filesystem performance are not a critical
issue. Nevertheless, our tests allowed us to focus on the
filesystem reliability, though we find that these results
are rather promising and some improvements could be
achieved by enhancing the file signature mechanism.



Figure 5: Performance measurement summary. The first column (versioning only) shows the throughput of the filesys-
tem without cryptographic features. The remaining columns show test results on encrypted and signed files, where in
average Vn versions are present.

7 Security Considerations

In this section we briefly focus on the main security as-
pects of our architecture, focusing on possible attacks an
adversary could launch to untrusted components of our
model: user application, devices and offline platforms.

We denote as “adversary” both an outsider entity who
is unaware of any information about the network and its
TVDs (e.g., old data and keys, namespace conventions
etc.), and revoked members with insider information who
are no longer trusted and are assumed to act as adver-
saries.

We assume that adversaries are not able to attack the
platform hardware. For example, adversaries cannot ex-
amine the content of the memory and possibly extract
any information by rebooting the platform and analyzing
its memory [24].

Moreover, our scheme aims at preventing disclosure of
sensitive data through the misuse of mobile storage de-
vices, whereas it is possible, for example, that insider at-
tackers could make an illegal copy of a confidential doc-
ument by taking a picture of the screen with a camera,
or simply printing it. However, in this work, we do not
cope with this kind of threats.

• Attacks to user applications. An adversary who ex-
ploits a user application running in any user com-
partment (or the compartment’s OS itself), enjoys
his victim’s access privileges to the plugged MSD.
The adversary can obtain and modify data through
the application environment. However, the attacker
can neither obtain the MSD keys he is using nor

can he force the platform to change the keys cur-
rently used, as keys and encryption algorithms are
not present in the application environment. This
threat could be mitigated by letting the TVD Proxy
periodically verify the integrity of the user compart-
ment (e.g., each time check if records in the LDD
are up-to-date). If the verification fails, the TVD
Proxy asks the Compartment Manager to kill the hi-
jacked compartment and requests the TVD Master
for revocation of the key of the MSD it was using.

• Attacks to the MSD. The MSD is a passive de-
vice that cannot enforce any effective security mea-
sure. An adversary who physically accesses the de-
vice, can copy, corrupt and delete both files and the
identification record, making the device content no
longer available to legitimate users. However, ad-
versaries cannot forge any valid data signature since
they have not any valid signing key. Moreover, ad-
versaries cannot read the content of the files stored
on the MSD, because they do not possess the neces-
sary encryption keys. However, revoked users can
still read data that is encrypted with a key they ob-
tained before being revoked. Roll-back attacks are
always possible. Adversaries could make a copy of
the filesystem at a certain time and afterwards they
can overwrite each more recent version of any file.
Revoked users can roll-back the MSD content to a
date it was still legitimate and begin an unautho-
rized branch of the data.

• Attacks to offline platforms. Data modifications car-
rying signatures by revoked users are no longer con-



sidered valid. Offline platforms may still success-
fully verify signatures by certain revoked users, and
even produce some output based on possibly ma-
licious input. However, when the MSD containing
such “corrupted data” is connected to an online plat-
form, unauthorized modifications can be found and
discarded. Nevertheless, in this way, revoked mem-
bers might still obtain new data from offline plat-
forms to which the new key has not been delivered
yet. Currently, our implementation does not include
a solution to this problem.

8 Related Work

The widespread use of Mobile Storage Devices (e.g.,
memory cards, USB sticks, transportable solid-state hard
disks), that allow users to move files among different
workstations, poses several problems, in primis related
to data confidentiality and integrity. In order to cope with
these problems, cryptographic mechanisms, i.e., encryp-
tion and digital signatures are useful means.

Cryptographic filesystems [7, 12, 27, 25] embed en-
cryption mechanisms into the filesystem operation, fea-
turing a way to encrypt data and metadata without any
effort by user level applications. This makes it possi-
ble to have good performance and fine-grained security.
In particular, the Plutus filesystem [25] features lazy re-
encryption [2] at the level of single file-blocks and the
key rotation mechanism to efficiently generate and man-
age new encryption keys.

Traditionally, cryptographic filesystems provide a
client-server architecture in which the former is trusted
and features file content encryption, integrity verification
and key management and the latter (untrusted) simply
acts as storage for encrypted files. Although several en-
crypted filesystem can be used also to encrypt local stor-
age devices, they best fit the networked scenario.

Solutions that focus on local storage encryption vary
between full disk encryption enforced by hardware or
software security modules and creating encrypted par-
tition on local devices [30, 42]. In this case, the aim is
guaranteeing the data confidentiality even if the device is
stolen and connected to another computer.

The Virtual Private File System [44] leverages on vir-
tualization to assure confidentiality whereas data is ac-
cessed through a possibly compromised operating sys-
tem. Sensitive applications run in a trusted compartment
and access their own separated storage through a filesys-
tem layer that features data secrecy, integrity and recov-
erability and relies on the untrusted filesystem provided
by a virtualized legacy operating system.

Encrypted filesystems as those mentioned above are
built on top of a specific operating system and are gen-
erally not portable. This may introduce inacceptable

constrains in a large scale environment. Moreover, dis-
tributed encrypted filesystems have, in many cases, their
own key management infrastructure which may not be
easily interoperable with other existing infrastructures
(e.g., PKIs, LDAP). This introduces some redundancies
and administrative overhead. Conversely, local storage
encryption facilities essentially protect personal devices
and workstation and do not feature any distributed key
management service. The VPFS also suffers from this
shortcoming. In contrast, our solution works for a wide
range of applications and operating systems due to the
virtualization approach. In fact, any application that can
run in a VM transparently benefits from the underlying
encryption mechanism. Moreover, it is possible to use
the same mobile storage device with its encrypted data
on various heterogeneous platforms since the TVD in-
frastructure provides an abstraction of the underlying en-
cryption mechanism and its key management.

Several architectures aim at enforcing sophisticated
security policies within large scale and multi-domain en-
vironments and are built on top of a filesystem encryp-
tion layer. In particular, the Concord framework [37] al-
lows organizations to monitor data while it is accessed by
mobile equipment and makes it possible to enforce the
access policies even in a disconnected scenario. Institu-
tion’s data are stored in encrypted form and encryption
keys are shared (through a threshold encryption scheme)
by a trusted policy enforcer and the user mobile device
(e.g., a laptop). In order to access data, the user and the
enforcer have to cooperate in order to reconstruct the data
encryption key. This approach allows the infrastructure
to promptly deny the access to data if it realizes the client
has been compromised. In the disconnected scenario, the
infrastructure restricts the user privileges to read-only ac-
cesses to a subset of organizational data. The role of the
enforcer is played by a “disconnected” policy enforcer
to which only a limited subset of encryption key shares
has been delivered. To the best of our knowledge, Con-
cord is the approach closest to our proposal. In our ar-
chitecture, Concord’s user machine and policy enforcer
are collapsed into the same platform, though as differ-
ent compartments, namely the virtual machine and the
TVD Proxy. However, our solution features a less re-
stricted off-line scenario (Concord’s disconnected mode
does not allow users to modify protected data). More-
over, the virtual storage management in TVDs is in gen-
eral more flexibile and transparent to the user.

Traceability and reversibility of data modification is an
important feature when allowing full data access within
the offline scenario and can be achieved through so-
called file versioning services, available both at applica-
tion level [41, 6] and at filesystem level [13, 31, 38, 34].
In particular, several recent proposals address security
and integrity checks for stored data, as well as verifiable



audit trails [36, 11, 35]. However, these systems do not
fit our requirements since they have not been designed to
handle totally passive storage devices.

9 Conclusion and Future Work

In this paper we presented an architecture for the secure
and transparent deployment of Mobile Storage Devices
(MSDs) within Trusted Virtual Domains (TVDs). We
believe that multi-domain IT infrastructures addressed in
the TVD model take advantage from the use of these de-
vices. We argued that the usually adopted approaches to
protect data stored on these devices suffer from several
shortcomings, mainly due to: their intrinsic untraceabil-
ity, their lack of any effective security feature, and the
considerable overhead that their management introduce
into the users’ work. Moreover, we pointed out that in-
troducing MSDs within TVDs is not a trivial task if the
resulting architecture should still be compliant with some
typical usage scenarios of these devices, and in particular
in the offline scenario. We introduced a general model
of a multi-domain environment that enables the secure
and transparent use of MSDs and showed how to ex-
tend existing TVD architectures with MSD management
components to realize this model. Finally, we sketched
a proof of concept implementation based on the Turaya
security kernel, which uses an L4 microkernel to provide
protected execution environments for management ser-
vices and virtual machines for reusing user applications.

Another important security problem related to MSDs
is the proliferation of malicious software like trojan
horses and viruses. Our solution limits such attacks, be-
cause only data written and signed by legitimate mem-
bers of a TVD is accepted as input by other TVD mem-
bers. However, legitimate members might still spread
malicious code inadvertently (e.g., if they are infected by
a virus). Future research might be directed towards pre-
venting the execution and propagation of malicious code
from MSDs.

References
[1] ARMKNECHT, F., GASMI, Y., SADEGHI, A.-R., STEWIN, P.,

UNGER, M., RAMUNNO, G., AND VERNIZZI, D. An efficient
implementation of trusted channels based on OpenSSL. In Pro-
ceedings of the 3rd ACM Workshop on Scalable Trusted Comput-
ing (STC 2008) (2008), ACM Press, pp. 41–50.

[2] BACKES, M., CACHIN, C., AND OPREA, A. Lazy revocation
in cryptographic file systems. In 3rd International IEEE Secu-
rity in Storage Workshop (SISW 2005), December 13, 2005, San
Francisco, California, USA (2005), pp. 1–11.

[3] BACKES, M., CACHIN, C., AND OPREA, A. Secure key-
updating for lazy revocation. In Computer Security - ESORICS
2006, 11th European Symposium on Research in Computer Se-
curity, Hamburg, Germany, September 18-20, 2006, Proceed-
ings (2006), vol. 4189 of Lecture Notes in Computer Science,
Springer, pp. 327–346.

[4] BEAUTEMENT, A., COLES, R., J., IOANNIDIS, C., MONAHAN,
B., PYM, D., SASSE, A., AND WONHAM, M. Modeling the
human and technological costs and benefits of USB memory stick
security. In Workshop on the Economics of Information Security
(WISE) (2008).
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[44] WEINHOLD, C., AND HÄRTIG, H. VPFS: Building a virtual
private file system with a small trusted computing base. In Pro-
ceedings of the 2008 EuroSys Conference, Glasgow, Scotland,
UK, April 1-4, 2008 (2008), ACM, pp. 81–93.

[45] WIRED. Under worm assault, military bans disks, USB drives,
Nov. 2008. http://www.wired.com/dangerroom/
2008/11/army-bans-usb-d.


