
Auto-configuration by File Construction:
Configuration Management with Newfig

William LeFebvre and David Snyder – CNN Internet Technologies

ABSTRACT

A tool is described that provides for the automatic configuration of systems from a single
description. The tool, newfig, uses two simple concepts to provide its functionality: boolean logic
for making decisions and file construction for generating the files. Newfig relies heavily on
external scripts for anything beyond the construction of files. This simple yet powerful design
provides a mechanism that can easily build on other tools rather than a single monolithic stand-
alone program. This provides for a great deal of flexibility while maintaining simplicity. The
language is a combination of boolean logic and output statements, and also provides for macros
and other essential elements. All output is written to channels: an abstraction which provides for
extensive configurability. Examples are provided that show the tool’s power and flexibility. A
description is also provided of the efforts undergone at CNN to integrate this tool in to a sizable
infrastructure. The paper concludes with a discussion of future improvements.

Introduction

As the number of systems in an infrastructure
grows, the administration problem grows with it.
Unless the engineering staff grows accordingly, at some
point the management of the systems will need to be
automated. This realization is nothing new, and several
successful tools have been developed to meet this need.

Configuration data used by a system to control
how it behaves can be broken down into three basic
categories: information which is unique to a system,
information which is common to a proper subset of
systems, and information which is common to all sys-
tems in the infrastructure. Unique information includes
a system’s hostname, local disk partitions, and network
address assignments. Global information includes such
files as /etc/services and /etc/networks. The partially
global information is the most interesting: it is com-
mon across systems which share a similar function but
not necessarily others. The task of configuring a sys-
tem requires that all of this information be in place and
correct. The most complicating factor in achieving a
correct configuration is in the management of files
which combine data from more than one category.

A file that only contains unique data can be
copied into place when a system is installed. Such files
are rarely touched after system installation. Files that
contain only global information can be easily updated
from a central repository. Likewise, files that contain
partially global information can be updated from a cen-
tral authority provided there is some mechanism that
distinguishes among the different classes of systems
and is able to determine which data are appropriate for
the system. However, when a file contains a mixture of
these data categories, its maintenance becomes signifi-
cantly more difficult. This is most noticeable in files
such as fstab, inetd.conf, hosts.allow, rc script directo-
ries, and sometimes passwd.

When we sought out a tool for automated sys-
tems configuration, we were looking for certain prop-
erties that we believe would be beneficial in our envi-
ronment. We wanted the system to be idempotent,
congruent, deterministic, transportable, extensible, and
fail-safe. We wanted a specification language that was
both clear and concise, to minimize training and maxi-
mize understanding. When a tool could not be found
that met all of these criteria, we set out to design a
new solution to the problem. The result, newfig, takes
a new approach to the problem while providing all of
the qualities that we believe are important. As a result,
very little is built in to newfig. Instead it is a frame-
work which can utilize other tools and scripts to
accomplish results. Rather than provide a wide range
of built-in mechanisms, newfig uses file construction
as its only primitive operation. Its configuration is a
purely declarative language based on boolean logic.
The files that newfig constructs, called channels, can
be used to replace existing files on the system or as
input to external programs (including scripts). As a
result, the system is naturally extensible. Newfig is
used to generate input for and monitor the execution
of the programs and scripts which perform the actual
modifications to the system. It provides a structure
around which system administrators can do what they
do best: automate through scripting. We believe that
the resulting system meets all our initial design goals
and provides us with an excellent platform for auto-
mated configuration.

Related Work

Prescriptions [8] is a declarative language for
describing the desired state of configuration for dis-
tributed systems. It provides mechanisms for specify-
ing operations that may be used to bring systems into
conformance with a specification. However, it does

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 93



Auto-configuration by File Construction: Configuration Management with Newfig LeFebvre and Snyder

not seem to provide mechanisms for file distribution
and synchronization. We have not been able to find
recent work on this project since Thornton’s 1994
technical report.

CFengine [1] is the most widely known work in
this area. It is to automated systems configuration
what awk(1) is to scripting. The main concepts are
patterns, actions, and an execution context that is man-
aged by an interpreter. It provides a rich body of built-
in actions, but has little room for expansion beyond
that set. The configuration drives actions to perform
on a system, whereas newfig provides a description of
the desired target for the system and enforces con-
formity to that description. CFengine implements con-
vergence by providing a mechanism that brings a sys-
tem closer to an ideal. In our environment we sought a
tool that implements congruence, which is a tighter
standard than convergence. The idea of file construc-
tion is not central to CFengine, and a CFengine con-
figuration that uses such a methodology tends to be
cumbersome. CFengine is also not able to remove
changes implicitly: such steps must be explicitly given
in the configuration.

Psgconf [6] takes a highly modular approach to
configuration management, providing hooks for vari-
ous data stores, policy rules, and actions. The configu-
ration parsing is order dependent, making psgconf a
procedural configuration tool rather than declarative,
which has some advantages and some drawbacks.

Site [3] uses declarative statements to describe
the configuration of a computing site at three levels of
abstraction. At the lowest levels, drivers written in C
are used to construct the contents of configuration
files. The paper describes a prototype implementation
only. In contrast, newfig provides no restrictions on the
language used to construct channels, which is good for
admins who have long since shed their systems pro-
gramming scales (or never had them to begin with).

PIKT [5] is an interpreted scripting language,
preprocessor, and scheduler that is primarily intended
to monitor systems, reporting problems and taking
corrective action when possible. Over time, it has been
extended to include configuration management fea-
tures, but most of the terminology in the language is
built around monitoring. For example, scheduling
periodic execution of a script involves adding it to the
‘‘alarms’’ section of the alerts.cfg file.

Radmind [2] takes a file based approach to con-
figuration management by integrating intrusion detec-
tion with centralized system management. An advan-
tage is that complex, out-of-band changes can be cap-
tured and incorporated into the configuration, but
maintaining consistency of configuration data that is
duplicated across multiple files may present a chal-
lenge without factoring tools.

ISconf [9] is a highly order dependent configura-
tion tool based on make(1) files. A description of

changes is provided to the tool, and it ensures that
those changes are carried out on each system in an
exact order. ISconf version 2 requires that the descrip-
tion be created and maintained manually, whereas later
versions provide more automated ways for generating
the description. The basic premise of ISconf is that
‘‘order matters’’: it is easier to replicate the order in
which operations are conducted than it is to determine
and accommodate the interactions of those operations.
Like newfig, ISconf implements congruence. The dif-
ficulty with ISconf is the monotonic increase to the
description and the steps required to recreate a system.
As changes are piled on top of changes, the time
required to build or rebuild a system continues to
increase. Although preservation of the order of
changes is sufficient to achieve congruence, it is our
belief that it is not necessary.

Design

Newfig is a system designed to provide for the
automatic configuration of individual machines from a
common description. Boolean algebra is used to con-
trol the generation of output to a number of channels.
Each channel can be used to control the contents and
characteristics of a file. Channels can also be used as
input to scripts for operations which are more compli-
cated than basic file construction. All channel defini-
tions are part of the configuration, allowing the func-
tionality of newfig to be extended with ease. Newfig is
designed to be idempotent, transportable, extensible,
conformant (rather than convergent), and fail-safe.

The configuration consists of a series of boolean
phrases interspersed with output statements. Boolean
algebra is used as the logical structure for the newfig
configuration language. Clauses are used to infer the
logical value of a symbol from other symbols. The
algebra supports the three basic logical operations:
and, or, not. Parentheses are also recognized for
grouping operations. Between the boolean clauses are
statements that send lines to channels. Each channel
must be explicitly defined in the configuration along
with its characteristics. A channel can be associated
with a file, in which case its contents becomes that of
the file. A channel can also be associated with an
external command or script, in which case the script is
used to process the channel’s contents. External com-
mands are also used to perform syntax and semantic
checks of channels’ content to ensure correctness.

Processing is performed in several distinct
phases in newfig: read, intrinsic definition, inference,
macro definition, generation, filtering, instantiation.
No changes are performed on the system until the
instantiation step, giving newfig ample opportunity to
discover problems before changes are made. If any
problems are detected before instantiation, newfig will
be fail-safe and not make any changes to the system.

Decisions about a system are solely dependent
on the boolean clauses in the configuration; the role of

94 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA



LeFebvre and Snyder Auto-configuration by File Construction: Configuration Management with Newfig

the first few phases is to evaluate the clauses. First, the
entire configuration is read in and parsed. Then certain
facts about the system are used to determine a set of
intrinsically true symbols. The name of the system is
one such symbol: it is always true. Additionally, the
following symbols are intrinsically true: the name of
the operating system (in all lower case), the name
combined with the operating system release, and the
platform type. Thus, a system named sammy running
Solaris 9 on a SPARC platform will have the follow-
ing intrinsically true symbols: sammy, sunos,
sunos-5.9, sparc. Another intrinsically true symbol
represents the network of the system’s IP address (or
addresses). For example, a system with the address
10.5.2.12 would have the symbol net.10.5.2 defined as
intrinsically true. The configuration can also invoke
external commands to augment the set of intrinsic
symbols with either true or false values.

Once the intrinsics have been determined, the
values of the other symbols in the configuration are
determined through inference. Not every symbol’s
value can be determined. When inference is complete
there will be a set of symbols known to be true, a set
known to be false, and a set of symbols whose values
are unknown. For all the remaining phases, the only
symbols which matter are those known to be true.

External
Scripts

Configuration

Intrinsics

uname()

Macro
Definition

Inference
Channel

Generation

Syntax &
Filter

Scripts

Instantiate

Action
Scripts

Files

Figure 1: The phases of newfig.

The configuration language allows for the defini-
tion and expansion of macros in the statements and the
channel declarations. In the macro definition phase,
the values for all macros are determined. A special
append operator (+=) is available to add to an existing
macro definition, such as a PATH.

The generation phase creates the content of
every channel. This is done by processing the output
statements associated with true symbols.

Once the contents of each channel is known, syn-
tax checking is performed by an external program as
specified in the channel definition. Since newfig itself
has no knowledge of the intended content of a chan-
nel, syntax checkers provide a way to verify that a
channel’s content are correct. Although this phase is

named syntax checking, any sort of checks can be car-
ried out by an external program. Examples of checks
which could be performed are: ensure that each line of
a channel has the correct number of fields, ensure a
passwd channel has a line for root, verify that every
program listed in inetd.conf exists. If any of the syntax
programs indicates an error, then newfig will fail-safe
and not make any changes to the system.

A close variant to syntax checking is the filtering
phase. This phase is similar to syntax checking, except
that the external programs invoked in this phase alter
the content of the channel in addition to performing
simple syntax checking. Each program acts as a Unix-
style filter, reading the channel contents from standard
input and writing to standard output. The results of the
filter are used to replace the content of the channel.
Although the order of records in most files is unimpor-
tant, it may be desirable to sort the output to improve
human readability. The passwd file is commonly
sorted by UID, and a filter could easily perform this
task for generated passwd files. Optimization is
another good use of filtering. A generated hosts.allow
file may contain overlapping address ranges, and a fil-
ter could remove them as well as reformat the output
to improve readability. It is important to the integrity
of the entire system that filters perform no side effects
and that their actions are restricted to producing output
and error messages.

The final phase is instantiation, which is per-
formed once all of preceding phases have executed
without error. This phase ensures that the underlying
system matches the configuration. For file channels,
the file is compared to the generated content of the
channel. If there is no difference, the file is left
untouched (thus modification times are unchanged). If
the channel contains different content, a new copy of
the file is created and put into place. A file channel can
also specify ownership and permission modes for the
file. An action channel has its action command
invoked with the channel contents available as standard
input. Action commands usually perform side effects.

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 95



Auto-configuration by File Construction: Configuration Management with Newfig LeFebvre and Snyder

A channel can have both a file and an action associated
with it. In such cases, the action is only performed
when the file is changed. Thus an action can be used to
restart or ‘‘tickle’’ a daemon only after its configura-
tion file has been updated by newfig. Figure 1 show the
basic flow of information through the various phases.

Configuration Specifics

Each configuration statement has two separate
components: a logical relationship and a body of state-
ments. A statement need not contain both components.
Logical Clauses and Expressions

The logical relationships are specified using a
simple boolean algebra. The rules for symbol names
are very generous, allowing numbers, letters, and many
special characters. Expressions can contain and, or,
inversion, and grouping. There are two ways to specify
a logical relationship: a standard clause and implica-
tion. A standard clause takes the following form:
symbol: expression

If the value of the expression can be determined, then
it becomes the symbol’s value. An expression consists
of any combination of the following elements:
or symbol1 symbol2
xor symbol1 ˆ symbol2
and symbol1 & symbol2
not !symbol1

Parentheses can be used to group expressions together,
as in:
symbol: !(a b c d)

Wherever a clause can be used, an expression may
also be used. An expression is just a clause with no
left hand side, as in:
!(a b c d)

The second relationship is implication, where a single
symbol’s value is used to imply the value of a list of
symbols (expressions do not make sense in this con-
text). This takes the following form:
symbol -> symbol1 symbol2 symbol3 ... ;

This is equivalent to:
symbol1: symbol;
symbol2: symbol;
symbol3: symbol;
...

A clause may be optionally followed by a body. When
present, this body must be contained in braces. The
body consists of a mixture of any number of the fol-
lowing: a statement that sends output to a channel, a
macro definition, or an expression with its own body.
A body is processed when the symbol or expression
with which it is associated is known to be true.

The symbols all and true are preassigned the
value of true, and the symbol false is preassigned the
value of false. Other symbol values are determined by
intrinsic settings. Symbols which appear in the config-
uration only on the right hand side of a clause (or only

on the left hand side of an implication) are called ter-
minal symbols. The value of a terminal symbol cannot
be determined by anything in the configuration. Ter-
minal symbols which do not have an intrinsic value
are assumed to be false.
Macros

Macros can be defined and expanded much like
Makefile macros, although all macros are created
before any statements (thus any expansion) takes
place. Macros are created as follows:
MAC=value;

There is a special append operator to allow definitions
to be augmented:
MAC+=value;

When expanded, such macros will have spaces sepa-
rating each added component. Expansion is invoked
with a dollar sign followed by the macro name in
braces, for example:
${MAC}

Some macros have special meaning. The PATH macro
is used as the execution path for all commands
invoked by newfig. HOSTNAME is preset to the name
of the current host. Unlike other statements, macro
definition can appear outside of a clause.

Much like make(1), all macros are defined before
any are expanded. Thus definition need not precede
use in the configuration. The order in which macros
are defined is only significant in two cases. First, if a
macro is redefined then the last definition will be
used. Second, the order in which macro append defini-
tions are processed will determine the order in which
the strings appear in the final macro. Currently there is
no way to directly control the order in which defini-
tions are processed other than basic sequential order.
Channel Statements

Channel statements are very simple. The state-
ment begins with a channel name, is followed by any
number of fields, and ends with a semi-colon. When
processed, all fields are written to the named channel,
and separated by a single space. Here are some exam-
ples of channel statements:
resync /opt/proftpd;
hosts.allow "ALL: 127.";
inetd.conf telnet stream tcp nowait
root /usr/sbin/in.telnetd in.telnetd;

The usable characters in an unquoted field are limited.
Quoted strings are written exactly as they appear after
macro expansion. A dollar sign can be represented
with two dollar signs. In the second example, the
macro MAC is not expanded:
"string ${MAC}"
"string $${MAC}"

A special form of channel statement is the %include
statement. This allows the entire contents of an exist-
ing file to be included in a channel. For example:
%include passwd /etc/base.passwds;

96 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA



LeFebvre and Snyder Auto-configuration by File Construction: Configuration Management with Newfig

Clause and Body

The entire clause with its body must end with a
semi-colon. Thus any of the following are valid
clauses:

Property Definition
action external action program
directory target directory for directory channel
file target file for file channel
filter external program to check and augment channel contents
syntax external program to check channel contents
owner required file owner (for file and directory channels)
group required file group (for file and directory channels)
mode required permissions (for file and directory channels)
singlesource channel contents may only come from one body
after channel must be processed after another channel

Figure 2: Channel properties.

symbol: !(a b c d)
{

channel line;
};

symbol: e & f;

symbol1:
{

channel line2;
};

symbol2
{

channel line2;
};

A statement or a macro definition within a body may
be guarded with a boolean expression. Thus the fol-
lowing two clauses do the same thing:
x { y { channel a; }; };
x & y { channel a; };

The first form is more useful when the body has a
number of statements, only one of which needs to be
guarded, as in:
x {

ch1 a;
ch2 b;
y { ch3 c; };

};

In this form, ch1 and ch2 receive output whenever x is
true, but the ch3 statement is only processed when
both x and y are true. This can be useful in situations
where certain statements are needed only for particular
operating systems.

If a clause defines the value of a symbol, then
any body associated with the clause is performed
whenever that symbol is true, even if it became true
via a different clause. Consider the following example:
x: a b
{ output line1; };

x: c d
{ output line2; };

Note that both lines are sent to the output whenever
the symbol x is true. More specifically, if a is true
while b, c, and d are false, then the symbol x is
asserted to be true and both lines are sent to the output,
even though the second expression (‘‘c d’’) is false.
Channel Definitions

There are no predefined channels. All channels
must be explicitly defined in the configuration. This
definition is done with a %channel clause. Following
the keyword %channel is the channel name and then,
in braces, its definition. For example:
%channel hosts {

file /etc/hosts;
};

A channel may have a number of characteristics as
declared in the body of the channel definition. How-
ever, a channel may only be defined once.

A channel may take on several forms, sometimes
in combination. A channel that is associated with a
file, or ‘‘file channel,’’ ensures that the file contains
exactly what appears in the channel. During instantia-
tion, the contents of the channel are compared to the
file, and if they differ, the file is rewritten to exactly
match the channel. If they are the same, the file is left
untouched. Mode and ownership are also compared
and corrected where necessary.

An ‘‘action channel’’ has an action associated
with it. The action is an external program that is run
during the instantiation phase and uses the channel
contents as standard input. It is expected that an action
program will perform side effects.

A channel may be both an action channel and a
file channel. In these cases, the action is only performed
when the file is changed. This form is useful for updat-
ing daemon configuration files, as the action can ensure
that the daemon is signaled or restarted.

A directory may be associated with a channel to
form a ‘‘directory channel.’’ Such a channel is
expected to contain a list of files (one per line). The
target directory is checked to ensure that it contains
the listed files and nothing else. The contents of those
files is checked and updated. Consider the following
series of statements where ‘‘xinet’’ is a directory chan-
nel for /etc/xinetd.d:

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 97



Auto-configuration by File Construction: Configuration Management with Newfig LeFebvre and Snyder

xinet /opt/proftpd/xinetd/proftpd;
xinet /opt/rsync/xinetd/rsync;

Each of the named files will be copied in to the target
directory, and newfig will ensure that no other files
exist in that directory.

samba {
inetd.conf netbios-ssn stream tcp nowait root /opt/samba/bin/smbd smbd;
inetd.conf netbios-ns dgram udp wait root /opt/samba/bin/nmbd nmbd -d2;
resync /opt/samba;

};
alpha -> samba;

Figure 3: Sample Samba configuration.

Channel Properties
Figure 2 shows properties that can be set for each

channel.

External Programs

The filter, syntax, and action properties invoke
external programs, either binaries or scripts. The inter-
face for all of these programs is the same. The con-
tents of the channel is readable on standard input. Pro-
grams that exit with a zero status code indicate normal
success, a non-zero exit code indicates that an error
occurred. Lines written to standard error are consid-
ered to be error messages. If formatted correctly then
newfig will be able to match the message up with the
line that caused it. The error message format is a line
number followed by a colon then the message.

Filter programs must write a revised copy of the
channel contents to standard output. These results will
be taken as the new channel contents. Error messages
generated by filters are treated the same as the ones
generated by a syntax program. Note that, in both
cases, the contents of standard error is ignored unless
the program exits with a non-zero status code.

In order to preserve the idempotent characteristic
of newfig, syntax and filter programs should not pro-
duce any side effects. This includes modifying, creat-
ing, or removing files, and signaling, stopping, or
starting processes. These programs can, however, use
temporary files provided they are removed when the
program finishes. The action programs are expected to
produce side effects: that is their purpose. Although
the channel contents is made available on standard
input, an action program need not read it.

Interesting Properties

Newfig has a number of interesting properties
that make it a strong utility. These features are gener-
ally desirable in a tool that automatically adjusts a sys-
tem’s configuration and behavior.
Idempotency

An operation that is idempotent is one that acts as
if it was only invoked once even if it is invoked multi-
ple times. An idempotent operation does not have a
cumulative effect. Newfig is designed to be idempotent,
but its ability to retain this characteristic is entirely
dependent upon the action commands that it invokes.

The intrinsic symbol values for a system are
entirely dependent upon characteristics of the system
itself: its platform, operating system, and IP address.
As long as these remain constant, the intrinsic symbols
will always have the same value. However, it should
be noted that the system does provide an external
mechanism for augmenting the intrinsic set. If this
mechanism does not provide a constant set of results,
the idempotent behavior may be compromised.

As long as the intrinsic set remains constant
between invocations, the results of inference will
always be the same. This is insured by the boolean
algebra which drives the inference phase. The set of
true and false symbols derived from inference is the
only means of selection for the remaining phases,
guaranteeing that their results will always be the same.
The only exception to this is the use of external pro-
grams for syntax, filtering, and action. Both syntax
and filter commands are required to have no side
effects, thus they can easily be idempotent. This leaves
the action scripts. Newfig performs idempotent opera-
tions if and only if the action scripts it invokes also
perform idempotent operations.

Transportability
The term transportability is being adopted to

describe a characteristic of newfig that is unique to an
automated configuration tool. A tool that is trans-
portable is one that is capable of creating the same
result regardless of the actual system on which it is
run. Transportability is essential for the testability of a
site’s configuration. In order to perform regression
tests on an infrastructure configuration, the testing
mechanism must be able to determine the results of
the configuration tool for a variety of systems (per-
haps all) in the infrastructure. Without transportability,
the generation of this data must take place on each
system in the test set.

Newfig provides transportability through its strict
use of boolean algebra to drive all the decisions.
Assume that both the newfig configuration files and the
external programs used by newfig are constant (func-
tionally equivalent) across the infrastructure. All that
newfig needs to be able to generate the output of each
channel for a given host is the intrinsic set and the list of
predefined macros for that host. Newfig provides mech-
anisms for generating just this information and using it
instead of the local set. This provides transportability.

Extensibility
One of the problems with systems such as

CFengine is the limited range of capability. In fairness,

98 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA



LeFebvre and Snyder Auto-configuration by File Construction: Configuration Management with Newfig

CFengine has a great deal of functionality already
built in, but its ability to extend that functionality is
limited. Newfig is designed to be extensible through
extensive use of external commands. These commands
may be anything that can run on the native system:
scripts, perl, python, pre-compiled binaries, etc. There
is very little capability actually built in to newfig. The
design philosophy is similar to that of the original
Unix: newfig is a tool which can easily be used as a
building block for other tools.

Conformance

The configuration for newfig is a complete
description of the files which it controls. Rather than
providing a series of steps to edit an existing file, the
configuration provides enough information to recon-
struct the entire file. This approach ensures that the act
of removing data from a file’s description will get
implemented correctly on the affected machines.

Some automated configuration systems, such as
CFengine, provide convergence toward an ideal. In
some environments, especially those with loose control
over root access, convergence is an appropriate tool for
effective centralized management. However, installa-
tions which primarily consist of servers and where
configuration changes are typically co-ordinated by a
single organization do not need the flexibility of con-
vergence. It is simpler to provide a complete descrip-
tion of a configuration and enforce conformance to it.
This ensures that changes are implemented completely
and with a single iteration. A complete configuration is
also descriptive in what it does not contain, making the
removal of unnecessary items simpler.

Consider a system that is configured to include a
samba [7] server. This configuration might look like
the one in Figure 3.

Such a configuration would ensure that any sys-
tem for which the symbol samba is true would have
the lines needed for samba in inetd.conf and the direc-
tory /opt/samba synced up correctly with a central
repository. The last line of the configuration ensures
that when alpha is true samba is true also. Thus the
system alpha would have the smbd and nmbd lines
added to inetd.conf. Other parts of the configuration
would contain the remaining lines that are expected to
appear in inetd.conf. Now consider what happens
when the association between alpha and samba is
removed, such as would be the case if it was decided
that alpha should no longer provide samba service.
The next time newfig is invoked, it will rebuild all the
channels, including the inetd.conf channel. But this
time it will build it without the smbd and nmbd lines.
Newfig will detect that the resulting channel is differ-
ent from the file inetd.conf and will instantiate the
new channel contents as inetd.conf. Finally, if the
channel definition for inetd.conf has an action com-
mand, newfig will run the action providing an opportu-
nity to send a signal to inetd. The removal of this data

happens as a natural consequence of the information
from the configuration itself.

Fail-safe Operation

The newfig design defers any modifications to
the system until all other processing is complete. The
soundness of the configuration is checked during read-
ing and inference. The integrity of each channel’s con-
tent can be checked and augmented with syntax and
filter commands. No changes are made to the system
until the final phase. If any problems are found prior
to instantiation, newfig can decide not to continue.
This provides a fail-safe mechanism to ensure that an
incorrect configuration is not applied to any systems.

The original design goal of newfig was to pro-
vide an entirely fail-safe design: any sort of errors
would prevent newfig from instantiating any changes
and executing any action. During the deployment of
this 100% fail-safe model we discovered that this may
not be a desirable design.

One obvious function that newfig can supply is
driving the distribution of files from a central reposi-
tory (commonly called a gold server). For example, a
channel can contain the names of directories and files
which must be kept in sync with a central server, and
the action for that channel can provide the mechanism
which performs the syncing. Such a channel is an obvi-
ous choice for keeping the newfig configuration itself
in sync. Unfortunately, if newfig is 100% fail-safe, then
any error in the configuration will completely disable
this mechanism, making it impossible to recover with-
out a mechanism outside of newfig itself.

Experience with a 100% fail-safe system has
made it obvious that certain types of errors need not
hinder the update of unrelated items. As an example,
consider a configuration which maintains password
files and hosts.allow files. A mistake in an entry for
hosts.allow files could be something as simple as for-
getting the dot at the end of a network pattern (such as
‘‘172.16.1’’ without the trailing dot). A properly writ-
ten syntax command will catch that mistake and cor-
rectly flag it. However, a 100% fail-safe design will
also prevent the passwd file from being updated, even
though it has nothing to do with hosts.allow.

A better design would be to contain the failure,
failing only what is affected. In the case of hosts.allow
it would be contained to just its channel and none
other. If the configuration states a dependency
between channels, such as the after property, then fail-
ure of a channel should also cause failure of any chan-
nels that depend on it. Newfig can easily be adopted to
fit this more limited idea of fail-safe.

Declarative Language

The configuration language is designed to be
declarative. As a result, the order in which files are
processed, and the order in which statements and
clauses appear in the file do not matter. This allows

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 99



Auto-configuration by File Construction: Configuration Management with Newfig LeFebvre and Snyder

the maximum amount of flexibility for organization of
the configuration information. Many of the files of
concern do not depend on the ordering of lines, some
important files do have this requirement. In order to
accommodate this, certain guarantees are made about
the order in which output statements are processed,
thus affecting the order of the lines within the chan-
nels. Clauses can be processed in any order, but state-
ments within the body of a clause will be processed in
the order they appear. Line ordering in an included file
will be preserved. Consider the following example:
x: { output a; };
x: { output b; };

There is no guarantee that the output will be ordered a,
b. Although generally this will be true, newfig makes
no guarantees and configurations should not rely on it.
However, in the following example it is guaranteed
that the lines will appear a followed by b, since both
statements appear in the same body:
x: {

output a;
output b;

};

Examples of Practical Applications

Examples of some common applications for
newfig are as follows.
hosts.allow

Access to services controlled by tcp wrappers
[11] is set with the use of hosts.allow. This file can be
controlled by newfig, allowing for the creation of any
arbitrary hierarchy to define allowable access. The
channel definition would be:
%channel hosts.allow {

file /etc/hosts.allow;
filter allow-filter;
owner root;
mode 444;

};

Although it is optional, a filter for processing this
channel provides improved results. The filter can opti-
mize the channel contents to ensure that there are no
extraneous specifications in the channel. Consider the
following usage of this channel:
all { hosts.allow "ALL: 10.2.1.5"; };
beta { hosts.allow "ALL: 10.2.1."; };

For host beta both lines will appear in hosts.allow. A
channel filter would be able to detect that the first
entry is extraneous and remove it. The filter can also
collapse multiple lines for the same daemon (or for
ALL) in to a single line.
Services

Something as simple as /etc/services can easily
be maintained by newfig. It’s channel definition only
needs to provide the link between the channel and the
file. If desired, a syntax checking step can be written
and added to the channel definition:

%channel services {
file /etc/services;
syntax services-syntax;
owner root;
mode 444;

};

This channel can be used in the configuration to add
lines to services, as follows:
rsyncd: {

services "rsync 873/tcp";
services "rsync 873/udp";

};

Since newfig generates files from scratch, the entire
contents of the file must be specified by the configura-
tion. This means that there must be a baseline of data
available to add to the services channel to ensure that
all the standard entries are there. Although each entry
could be listed separately, it would be easier to include
the baseline from a separate file (shown here with a
broken line):
all: {

%include services /opt/newfig/base/services;
};

cron
Each crontab file needs to be controlled as a sep-

arate channel. For most systems, only root and a few
system crontabs need to be managed. Since it is
unwise to edit a crontab file directly, this channel uses
a proxy file instead. For the best results, the proxy
should be persistent across invocations of newfig so
that crontab itself is only invoked when there has actu-
ally been a change. For ease of demonstration, it is
assumed that the macro PROXYFILES contains the
name of a directory that holds proxy files.

This channel definition has to define different
actions for each operating system it supports, as there
is wide variation in the use of the crontab command.
The channel also invokes a syntax checker to ensure
the channel’s contents are correct.
%channel cron.root {

file "${PROXYFILES}/crontabs/root";
syntax "syntax-cron";
linux { action "crontab -u root -"; };
sunos { action "crontab"; };

};

Typical usage of this channel would be:
sunos {
cron.root "10 3 * * 0 /usr/lib/newsyslog";

};

sysctl
Linux sysctl is used to configure various kernel

and driver parameters at runtime. The desired settings
are kept in the file sysctl.conf and the command sysctl
is run to set the parameters. Newfig can easily be used
to drive the generation of sysctl.conf and provides cen-
tral control over these settings. If a system is config-
ured to be a web server, then its sysctl.conf can contain
the settings needed to provide maximum performance.

100 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA



LeFebvre and Snyder Auto-configuration by File Construction: Configuration Management with Newfig

If it is then changed to run a database server, newfig
would alter the contents of sysctl.conf as described by
its configuration to use the appropriate settings.

ftp-standalone: {
rc /opt/ftp/rc/ftpd;

};
ftp-inetd: {
inetd "ftp stream tcp nowait root /opt/ftp/sbin/ftpd ftpd -a";

};

Listing 1: ftp multiplexed between stand-alone and inetd service.

A sysctl channel for linux would probably look
like this:
%channel sysctl {
linux {
file /etc/sysctl.conf;
action /sbin/sysctl -p;

};
};

The linux conditional is not strictly necessary, but
does allow greater flexibility in the use of the channel.
On non-linux systems, the channel contents will be
ignored rather than generating an error.

Symbolic Links
Although newfig does not provide any built-in

mechanisms for managing symbolic links, adding the
functionality is as easy as writing a script. All that is
needed is an action script that reads pathname pairs from
standard input and ensures that one is a symbolic link to
the other. This is a simple script to write, and it can be
made as elaborate as necessary. It would also be benefi-
cial for the script to have a syntax checking option.

An example channel definition for handling sym-
bolic links is as follows:
%channel symlink {

syntax "link-action -s";
action "link-action";

};

This channel would be used as follows:
sunos {
symlink /etc/inet/hosts /etc/hosts;

};

Management of an application’s multiple versions can
be handled via symbolic links as follows:
proftpd-1.2.9: {

symlink /opt/proftpd-1.2.9 /opt/proftpd;
resync /opt/proftpd-1.2.9;

};

proftpd-1.2.10rc3: {
symlink /opt/proftpd-1.2.10rc3 /opt/proftpd;
resync /opt/proftpd-1.2.10rc3;

};

File Distribution
Newfig does not have a built-in file distribution

mechanism, not even for its own configuration files.
The focus of this tool was on automatic configuration,
so it relies on other means to accomplish file distribu-
tion. Newfig can easily be used to drive a file

distribution and synchronization mechanism. For the
sake of example, consider a script, named resync, that
takes a list of directories and files on its standard
input. Each entry is synced up with a central server
using rsync [10] (recursively for directories). The fol-
lowing channel can be used to feed the data to resync:
%channel resync {

action resync;
};

all: { resync /opt/local; };
samba: { resync /opt/samba; };

Inet Daemon
The typical inet daemon is controlled through the

file /etc/inetd.conf. However, some systems (such as
Linux) have a more sophisticated inetd that is config-
ured through a collection of files in a directory, typi-
cally /etc/inetd.d . An infrastructure with a mix of these
systems can still be controlled with newfig but the two
types of inet daemons must be configured separately.
This example uses a directory channel and a null chan-
nel. A directory channel contains a list of files and
ensures that the target directory contains each of the
named files and only those files. The files can origi-
nate anywhere but will bear the same names in the tar-
get directory. Here are two definitions, one for sunos
(which uses the traditional inetd) and one for linux:
%channel inetd {
sunos {
file /etc/inetd.conf;
owner root;
mode 644;
syntax "inetd-syntax";
action "pkill -1 -u root inetd";

};
};
%channel xinetd {
linux {
directory /etc/xinetd.d;
action "pkill -1 -u root xinetd";

};
};

Typical usage would look like this:
rsyncd: {
inetd rsync stream tcp nowait
root /usr/sbin/in.tcpd
/usr/bin/rsync --daemon;

xinetd /opt/rsync/etc/xinetd/rsync;
};

Note that the body of the rsyncd clause specifies data
for both inetd and xinetd. However, it does not need to
distinguish between different system types. That dis-
tinction is made in the channel definitions, not their

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 101



Auto-configuration by File Construction: Configuration Management with Newfig LeFebvre and Snyder

usage. Thus any system which supports xinetd can be
added to the channel definition.

Differing FTP Usages
Because newfig evaluates logical clauses declara-

tively rather than procedurally, it is able to detect con-
flicts between clauses. For example, the following two
clauses are conflicting and are flagged as an error:
one: two;
two: !one;

This feature can be used to protect a configuration
from implementing conflicting configurations. One
example of this ftp: it can be used either from within
inetd or as a stand-alone daemon. Sometimes there are
good reasons to use both types of configurations
within the same infrastructure. Newfig can handle this
and can also guard against accidentally attempting to
implement both methods on the same system.

Assume that a configuration has channels to sup-
port the configuration of inetd.conf and boot time
‘‘rc’’ scripts in the style of System V. Listing 1 shows
how ftp can be defined to act as stand-alone in some
cases and as an inetd service in others.

Individual machines are configured to request
either of these two symbols:
server1 -> ftp-standalone;
server2 -> ftp-inetd;

To prevent a misconfiguration from setting both sym-
bols for the same server, the following statement can
be used:
false: ftp-standalone & ftp-inetd;

Since the symbol false is always false, this statement
will cause a logic conflict whenever both ftp-stand-
alone and ftp-inetd are true.

Deployment at CNN

We began roll-out of newfig in to the CNN web
farm infrastructure earlier this year. The web farm
consists of over 800 hosts running a mix of Solaris
and Linux. Prior to the use of newfig, we had con-
structed a system to control file distribution utilizing
rsync. A central repository (gold server) holds all the
files that need to be distributed for the various plat-
forms we support. The resync script uses information
about the host to determine a list of directories that
must be kept in sync, then uses rsync to ensure that
they are. This system, part of an effort called Unity, is
used to distribute binaries and configuration files for
key services in our infrastructure, including web ser-
vice and ftp service as well as patches.

The deployment of newfig was built upon the
success of resync. The initial configuration for newfig
completely replaced the functionality of the original
resync, and its deployment was seemless. Once newfig
was in place, we targeted hosts.allow as our first file to
control: it is relatively simple to support but requires
significant fine-grained control.

A few weeks of effort was spent collecting the
existing settings from across the infrastructure and
codifying them in the newfig configuration language.
Our initial goal was to automatically generate hosts.
allow files that were no more restrictive than the ones
already in place. In may cases the resulting files were
more generous. Testing of this configuration was
accomplished by generating the file as /etc/hosts.allow.x,
then comparing the results to the existing hosts.allow.
We eventually reached a point where the host access
being removed could be summarized in a short list,
and we decided that each of the items on the list was
acceptable or even desirable. Then we changed the
configuration to generate the actual hosts.allow file.
Of the nearly 800 machines in the infrastructure, we
only experienced access problems with one.

The resulting configuration was approximately
2400 lines spread out across 52 files, plus four sepa-
rate files utilized in include statements. A filter script
was written to organize and optimize the channel
results as well as check for errors. We found many
errors in the pre-existing hosts.allow files which had
gone undetected, usually a class C network specifica-
tion with no trailing dot. The next goal for hosts.allow
is to analyze the current access and determine what is
still needed and what should be removed. We expect to
dramatically simplify the final configuration by ratio-
nalizing host access across large groups of systems.

The hosts.allow experiment was sufficient to
prove the viability of the project. With its success we
intend to take control over the hosts file, the startup
scripts, crontab files, inetd.conf, boot time configura-
tions (especially default routes), and perhaps passwd
and shadow. The hosts file poses a unique challenge.
Our hosts are divided in to internal and external,
depending on whether or not they can be accessed
directly by the outside world. All external hosts
receive a common hosts file, but internal hosts use
DNS. We have found it desirable to use minimal hosts
files on the internal hosts: ones that only contain infor-
mation on the host itself, and the NIS and NFS
servers. We want newfig to generate this file from a
list of hostnames, ensuring that the IP addresses are
always correct and providing central control over the
hosts that appear in the file.

Future Work

Our experiences with newfig are still very lim-
ited. As the support staff becomes more accustomed to
its use, we plan to extend its control to as many facets
of our systems as is feasible.

One set of files we would like to control with
newfig are the passwd and shadow files. Currently we
use NIS for portions of our infrastructure and nothing
but local files for the remainder. Controlling access by
system or by groups of systems is easy with NIS, but
extremely difficult with static files. The tradeoffs with
NIS are well known, including unsuitable security and

102 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA



LeFebvre and Snyder Auto-configuration by File Construction: Configuration Management with Newfig

a poor level of robustness. We could replace NIS with
a system based on LDAP, but in order to reduce single
points of failure we do not want any of our externally
facing servers dependent on a central service. Newfig
would provide us with the centralized control that we
need, but there are security issues that need to be con-
sidered for the distribution of the shadow information.

We want to control startup scripts with newfig,
but these pose a number of interesting problems.
Startup scripts differ widely among systems, requiring
either separate channels or a single channel loaded
with extra information. Effective control of the startup
scripts would also require automatic stopping and
starting of the daemons those scripts control as scripts
are added and removed. Our goal is to control all
startup scripts, so that those scripts which are not
needed simply will not be included in the configura-
tion. This goal is complicated by operating system
vendor patches that alter these scripts.

We have found the use of ‘‘net’’ symbols (such as
‘‘ n e t . 1 0 . 1 . 2 ’’ ) to describe a system’s local network very
beneficial for many aspects of system configuration.
For example, the symbols are the basis for determining
if a system is ‘‘internal’’ or ‘‘external’’ (the latter are
accessible by the outside world). However, the current
implementation is very limited, and assumes that net-
work divisions all fall on the traditional class C bound-
ary [4]. The usefulness of these symbols could be
enhanced by extending the notation to something more
general, especially something that includes a netmask.
But the simple boolean logic makes this more difficult.
Further thought in this area would be beneficial.

Newfig provides a natural way to implement con-
formance for data in files. When a configuration
change requires lines to be removed from files which
are controlled by newfig the changes happen automati-
cally as a result of file construction. However, this
characteristic does not extend to the side effects imple-
mented by action scripts, such as the symbolic link
example in 6.5 and the file distribution example in 6.6.
In these cases, newfig is constructing the input to a
process which generates side effects. Consider the case
of symbolic links with the following example:
one: alpha {

symlink /opt/etc/one /etc/one;
};

The first time newfig runs, host alpha will have
the symbolic link /etc/one created. If alpha is removed
from the definition of the symbol one then the output
line will no longer appear in the symlink channel.
However, the symbolic link will remain as there is
nothing that will remove it. We have an idea on how
this problem can be overcome and will be pursuing its
implementation.

There are times when it is advantageous to impose
an ordering on output statements for a particular chan-
nel. Rather than use syntactic rules to imply an ordering,
we envision a way to explicitly specify interrelationships

between the output lines. One possibility is to allow
for the specification of priorities on output statements,
with a default of 100, and ensuring that lines appear in
priority order. Thus a line that must always appear
first could be given a priority of 1, and a line at the
end a priority of 200.

The manipulation of macros in the configuration
files is well motivated but poorly implemented. They
are not as intuitive as one would hope. Further work
needs to be done on this concept to provide the neces-
sary functionality in a way that is still easy to follow.

Software Availability

The software was developed internally at CNN.
Its availability for public use and review has not yet
been determined.

Author Information

William LeFebvre is a technology fellow and
David Snyder is a Chief Engineer. Both work for CNN
Internet Technologies, the organization that runs over
60 web sites for CNN and Turner Broadcasting.

References

[1] Burgess, M., ‘‘Cfengine-Reference version 2.1.3,’’
Centre of Science and Technology, Faculty of
Engineering, Oslo College, Norway, Feb 2004.

[2] Craig, W. and P. McNeal, ‘‘Radmind: The Inte-
gration of Filesystem Integrity Checking with
Filesystem Management’’ Proceedings of the
Seventeenth Systems Administration Conference
(LISA XVII), p. 1, USENIX Association, 2003.

[3] Hagemark, B. and K. Zadeck, ‘‘Site: A Language
and System for Configuring Many Computers as
One Computer Site,’’ Proceedings of the Work-
shop on Large Installation Systems Administra-
tion III, p. 1, USENIX Association CA, 1989.

[4] Harrenstien, K., M. Stahl, and E. Feinler, ‘‘DoD
Internet Host Table Specification,’’ RFC 952,
October 1985.

[5] Osterlund, R., ‘‘PIKT: Problem Informant/Killer
Tool,’’ Proceedings of the Fourteenth Systems
Administration Conference (LISA XIV), p. 147,
USENIX Association, 2000.

[6] Roth, M., ‘‘Preventing Wheel Reinvention: The
psgconf System Configuration Framework,’’
Proceedings of the Seventeenth Systems Adminis-
tration Conference (LISA XVII), USENIX Asso-
ciation, Berkeley, p. 205, 2003.

[7] Terpstra, J. and J. Vernooij, The Official Samba-3
HOWTO and Reference Guide, Prentice Hall,
2003.

[8] Thorton, J., ‘‘Prescriptions: A Language for
Describing Software Configurations,’’ Technical
Report 94-18, Jun 1994.

[9] Traugott, S. and L. Brown, ‘‘Why Order Matters:
Turing Equivalence in Automated Systems

2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA 103



Auto-configuration by File Construction: Configuration Management with Newfig LeFebvre and Snyder

Administration,’’ Proceedings of the Sixteenth
Systems Administration Conference (LISA XVI),
USENIX Association, p. 99, 2002.

[10] Tridgell, A. and P. Mackerras, ‘‘The Rsync Algo-
rithm,’’ Technical Report TR-CS-96-05, The
Australian National University, June 1996.

[11] Venema, W., ‘‘TCP WRAPPER: Network moni-
toring, access control, and booby traps,’’ Pro-
ceedings of the Third UNIX Security Symposium,
p. 85, September 1992.

104 2004 LISA XVIII – November 14-19, 2004 – Atlanta, GA


